专利名称:硼碳氮纳米管的制备方法
技术领域:
本发明的技术方案涉及含硼和氮的化合物,具体地说是硼碳氮纳米管的制备方法。
背景技术:
硼碳氮纳米管可以看作石墨网络中部分碳原子被硼或氮原子取代的产物,B-C-N三元化合物介于六方氮化硼和石墨结构之间。虽其形态结构与碳纳米管有相似之处,但它具有比碳纳米管更优异的机械性能和电学性能,有更高的抗氧化能力,而且机械性能和电学性能不受其直径的影响,只与其组成有关。因此,硼碳氮纳米管具有比碳纳米管更佳的物理和力学性质,在复合材料、磁性材料、发光材料和电子材料诸多领域有着广泛的应用前景。虽然硼碳氮纳米管具有许多优良性质,但制约硼碳氮纳米管应用的瓶颈在于其制备困难,合成产率较低,而且合成过程难以控制。现有技术中,制备硼碳氮纳米管的主要方法有电弧放电法、等离子体蒸发法、热丝气相沉积法和热解法,已在不同的制备条件下,借助催化剂、碳源、硼源和氮源,制备出了形态各异和元素分布不同 的硼碳氮纳米管。CN101718731B公开了硼碳氮纳米管/半导体氧化物复合材料及其制备方法,其中硼碳氮纳米管由催化剂、含硼材料和碳纳米管在氨气气氛中制成;CN100354202C报道了一种在低温下制备硼碳氮纳米管的方法,以KBH4、NH4Cl,ZnBr2和苯为原材料在不锈钢反应釜中制备硼碳氮纳米管;CN101718732B披露了碳掺杂硼氮纳米管/半导体氧化物复合材料及其制备方法,其中采用催化剂、含硼材料和碳纳米管研磨后在氨气中合成,再提纯、焙烧后得到碳掺杂硼氮纳米管。虽然,上述现有技术采用各种方法实现了硼碳氮纳米管的合成与控制,但存在的缺点是(I)制备出的硼碳氮纳米管晶型较差、掺杂效率和纯度低;(2)合成条件比较苛刻,不适于硼碳氮纳米管的量产;(3)硼碳氮纳米管的提纯与分散难度大。因此,寻找一种合成工艺路线简单、晶型好、产率和纯度高、提纯与分散简便的硼碳氮纳米管制备方法对于促进其广泛应用具有重要意义。
发明内容
本发明所要解决的技术问题是提供硼碳氮纳米管的制备方法,是一种通过化学气相沉积法合成硼碳氮纳米管的制备方法,在制备氧化镍-氯化钠催化剂前躯体基础上,通过化学气相沉积工艺制备硼碳氮纳米管-氯化钠粉末,进而提纯获得硼碳氮纳米管,克服了现有技术中硼和氮掺杂碳纳米管晶型差,掺杂效率和纯度低,以及硼碳氮纳米管提纯与分散难度大的缺点。本发明解决该技术问题所采用的技术方案是硼碳氮纳米管的制备方法,是一种通过化学气相沉积法合成硼碳氮纳米管的制备方法,具体步骤如下第一步,制备氧化镍-氯化钠催化剂前躯体按重量比为硝酸镍氯化钠=0. 02 O. 55:1的比例,称取所需用量的六水合硝酸镍与氯化钠,在电磁搅拌状态下,将称取的氯化钠按50 80g/L的浓度溶入去离子水中,而后将称取的六水合硝酸镍溶入上述去离子水中,持续电磁搅拌直至氯化钠和六水合硝酸镍完全溶解,将上述溶液置于电热恒温干燥箱中于60 90°C干燥48 96h,至水分完全蒸发,然后将干燥后得到的硝酸镍与氯化钠结晶混合物置于球磨罐中,采用行星式球磨机以500 1000r/min的速度球磨3 6h,将上述经球磨处理后的混合物置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以180 240ml/min的流速向该管式炉中持续通入氮气并升温至350 600°C,保温2 4h,使该管式炉在180 240ml/min流速的氮气氛围下冷却到室温为止,制得氧化镍-氯化钠催化剂前躯体;第二步,制备硼碳氮纳米管-氯化钠复合粉末将第一步制得的氧化镍-氯化钠催化剂前躯体置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以180 240ml/min的流速向该管式炉中通入氢气并升温至550 750°C,保温1.5 3. 5h,而后关闭氢气,再将体积比为氮气硼酸甲酯蒸汽甲烷=4 8:0. 5 1:1的混合气以330 600ml/min的流速持续通入该管式炉中,在550 750°C下进行化学气相沉积反应O. 5 1. 5h,之后关闭硼酸甲酯蒸汽和甲烷并调整氮气流量,使上述管式炉在180 240ml/min流速的氮气氛围下冷却到室温为止,由此制得硼碳氮纳米管-氯化钠复合粉末,其中硼碳氮纳米管的质量百分含量为5.1 17. 6% ;第三步,提纯硼碳氮纳米管按2 5g/L的浓度将第二步制得的 硼碳氮纳米管-氯化钠复合粉末放入质量百分比浓度为O. 3 1. 0%的十二烷基苯磺酸钠的去离子水溶液中,将装有上述溶液的烧杯置于超声分散仪中用30kHz 40kHz的超声波分散10 20min使氯化钠完全溶解,将溶液中的沉淀物过滤,用去离子水清洗3 4遍,而后用电热恒温干燥箱于80 90°C干燥2 4h,即制得提纯后的硼碳氮纳米管。上述硼碳氮纳米管的制备方法,所涉及的原材料均通过商购获得,所用的设备和工艺均是本技术领域的技术人员所熟知的。本发明的有益效果是与现有技术相比,本发明硼碳氮纳米管的制备方法所具有突出的实质性特点是(I)由于硼碳氮纳米管长径比大、比表面能高,在液相热分解法合成过程中,受强烈范德华力作用,所合成的硼碳氮纳米管不可避免在液相中团聚在一起而在后续处理过程中难以分散;在固相热解法合成过程中,用于分散催化剂的载体虽可间接起到分散硼碳氮纳米管的作用,但往往难以去除,借助强酸、强碱去除载体的工艺会对硼碳氮纳米管本身的结构造成损坏,且后续分散工艺复杂、分散效果差。本发明方法借助氯化钠作为支撑镍催化剂的载体,在前期合成过程中可对合成的硼碳氮纳米管起到分散作用,而且通过将合成产物放入含有分散剂的水溶液的方法即可实现载体的去除和硼碳氮纳米管的分散,因而本发明方法提出的在氯化钠载体上通过工艺控制合成硼碳氮纳米管的制备思路,有效解决了现有合成方法中硼碳氮纳米管团聚及后续分散、提纯工艺复杂及效果差的问题。(2)现有技术采用硼源和氮源对碳纳米管进行掺杂是制备硼碳氮纳米管的常用方法,但通过硼源和氮源对碳纳米管进行掺杂的工艺易导致产物晶型不稳定、B和N的掺杂效率低、硼碳氮纳米管纯度低和硼碳氮纳米管产率低;同时,受强烈范德华力的作用,原材料中碳纳米管的团聚导致后续硼碳氮纳米管提纯与分散非常困难。本发明方法借助硼源、碳源和氮源,在反应区内使B、C和N原子在催化剂金属颗粒中溶解、扩散和析出,形成五边形的类石墨层结构,进而合成硼碳氮纳米管,使得其具有稳定的晶型出和N原子在合成过程中直接进入管体内部,因而B和N的掺杂效率、硼碳氮纳米管纯度和硼碳氮纳米管合成产率均提高,使得硼碳氮纳米管合成产物具有较高的化学稳定性和热稳定性;通过水溶性氯化钠做载体更容易实现硼碳氮纳米管的提纯与分散。与现有技术相比,本发明硼碳氮纳米管的制备方法所具有显著进步是(I)与现有技术CN101718731B和CN101718732B相比,用本发明硼碳氮纳米管的制备方法所制得的硼碳氮纳米管晶型更稳定,掺杂效率、纯度和合成产率更高,且易于提纯与分散。(2)与现有技术CN100354202C相比,本发明方法克服了上述现有技术制得的产品在液相中难以分散、分散效果差的缺点,具有分散工艺简便易行的特点,且提纯和分散效果更好。(3)本发明方法工艺方法简便、生产成本低。
下面结合附图和实施例对本发明进一步说明。图1为本发明实施例1所制得的硼碳氮纳米管-氯化钠复合粉末的高分辨扫描电子显微镜照片。 图2为本发明实施例1所制得的提纯后的硼碳氮纳米管的透射电子显微镜照片。图3为本发明实施例1所制得的提纯后的硼碳氮纳米管的高分辨透射电子显微镜照片。
具体实施例方式实施例1第一步,制备氧化镍-氯化钠催化剂前躯体按重量比为硝酸镍氯化钠=0. 02:1的比例,称取所需用量的六水合硝酸镍与氯化钠,在电磁搅拌状态下,将称取的氯化钠按50g/L的浓度溶入去离子水中,而后将称取的六水合硝酸镍溶入上述去离子水中,持续电磁搅拌直至氯化钠和六水合硝酸镍完全溶解,将上述溶液置于电热恒温干燥箱中于60°C干燥48h,至水分完全蒸发,然后将干燥后得到的硝酸镍与氯化钠结晶混合物置于球磨罐中,采用行星式球磨机以500r/min的速度球磨3h,将上述经球磨处理后的混合物置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以180ml/min的流速向该管式炉中持续通入氮气并升温至350°C,保温2h,使该管式炉在180ml/min流速的氮气氛围下冷却到室温为止,制得氧化镍_氯化钠催化剂前躯体;第二步,制备硼碳氮纳米管-氯化钠复合粉末将第一步制得的氧化镍-氯化钠催化剂前躯体置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以180ml/min的流速向该管式炉中通入氢气并升温至550°C,保温1. 5h,而后关闭氢气,再将体积比为氮气硼酸甲酯蒸汽甲烷=4:0.5:1的混合气以330ml/min的流速持续通入该管式炉中,在550°C下进行化学气相沉积反应O. 5h,之后关闭硼酸甲酯蒸汽和甲烷并调整氮气流量,使上述管式炉在180ml/min流速的氮气氛围下冷却到室温为止,由此制得硼碳氮纳米管-氯化钠复合粉末,其中硼碳氮纳米管的质量百分含量为5. 1% ;图1为本发明实施例1所制得的硼碳氮纳米管-氯化钠复合粉末的高分辨扫描电子显微镜照片。由该图中可见,通过混合气体的化学气相沉积反应,在复合粉末中合成大量分散均匀的硼碳氮纳米管,其长径比较大,长度达到I μ m以上,受B和N原子掺杂形成五边形类石墨层结构的影响,管壁的曲率不断发生变化,导致所形成的硼碳氮纳米管呈弯曲状和表面粗糙。 第三步,提纯硼碳氮纳米管按2g/L的浓度将第二步制得的硼碳氮纳米管-氯化钠复合粉末放入质量百分比浓度为O. 3%的十二烷基苯磺酸钠的去离子水溶液中,将装有上述溶液的烧杯置于超声分散仪中用30kHz的超声波分散IOmin使氯化钠完全溶解,将溶液中的沉淀物过滤,用去离子水清洗3遍,而后用电热恒温干燥箱于80°C干燥2h,即制得提纯后的硼碳氮纳米管。图2为本发明实施例1所制得的提纯后的硼碳氮纳米管的透射电子显微镜照片。从该图中可见,提纯后的硼碳氮纳米管在透射电子显微镜粉末样品制备过程中未发生团聚,能够实现单根硼碳氮纳米管的均匀分散;所合成的硼碳氮纳米管直径约30nm,管体具有竹节状结构,外表面较粗糙,存在大量凸起和凹陷。图3为本发明实施例1所制得的提纯后的硼碳氮纳米管的高分辨透射电子显微镜照片。从该图中可见,所合成的硼碳氮纳米管管壁为多壁管状结构,具有良好的晶化程度,未发现无定形碳类杂质物质出现;管体外表面粗糙,外径在25 35nm之间,管体内径在8 15nm之间;硼碳氮纳米管内壁之间形成了许多连接,是一种类竹节结构,每节的间隔约20nmo实施例2第一步,制备氧化镍-氯化钠催化剂前躯体按重量比为硝酸镍氯化钠=0. 55:1的比例,称取所需用量的六水合硝酸镍与氯化钠,在电磁搅拌状态下,将称取的氯化钠按80g/L的浓度溶入去离子水中,而后将称取的六水合硝酸镍溶入上述去离子水中,持续电磁搅拌直至氯化钠和六水合硝酸镍完全溶解,将上述溶液置于电热恒温干燥箱中于90°C干燥96h,至水分完全蒸发,然后将干燥后得到的硝酸镍与氯化钠结晶混合物置于球磨罐中,采用行星式球磨机以1000r/min的速度球磨6h,将上述经球磨处理后的混合物置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以240ml/min的流速向该管式炉中持续通入氮气并升温至600°C,保温4h,使该管式炉在240ml/min流速的氮气氛围下冷却到室温为止,制得氧化镍_氯化钠催化剂前躯体;第二步,制备硼碳氮纳米管-氯化钠复合粉末将第一步制得的氧化镍-氯化钠催化剂前躯体置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以240ml/min的流速向该管式炉中通入氢气并升温至750°C,保温3. 5h,而后关闭氢气,再将体积比为氮气硼酸甲酯蒸汽甲烷=8:1:1的混合气以600ml/min的流速持续通入该管式炉中,在7 50°C下进行化学气相沉积反应1. 5h,之后关闭硼酸甲酯蒸汽和甲烷并调整氮气流量,使上述管式炉在240ml/min流速的氮气氛围下冷却到室温为止,由此制得硼碳氮纳米管-氯化钠复合粉末,其中硼碳氮纳米管的质量百分含量为17. 6% ;第三步,提纯硼碳氮纳米管
按5g/L的浓度将第二步制得的硼碳氮纳米管-氯化钠复合粉末放入质量百分比浓度为1.0%的十二烷基苯磺酸钠的去离子水溶液中,将装有上述溶液的烧杯置于超声分散仪中用40kHz的超声波分散20min使氯化钠完全溶解,将溶液中的沉淀物过滤,用去离子水清洗4遍,而后用电热恒温干燥箱于90°C干燥4h,即制得提纯后的硼碳氮纳米管。实施例3第一步,制备氧化镍-氯化钠催化剂前躯体按重量比为硝酸镍氯化钠=0. 26:1的比例,称取所需用量的六水合硝酸镍与氯化钠,在电磁搅拌状态下,将称取的氯化钠按65g/L的浓度溶入去离子水中,而后将称取的六水合硝酸镍溶入上述去离子水中,持续电磁搅拌直至氯化钠和六水合硝酸镍完全溶解,将上述溶液置于电热恒温干燥箱中于75°C干燥72h,至水分完全蒸发,然后将干燥后得到的硝酸镍与氯化钠结晶混合物置于球磨罐中,采用行星式球磨机以800r/min的速度球磨4h,将上述经球磨处理后的混合物置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以210ml/min的流速向该管式炉中持续通入氮气并升温至470°C,保温3h,使该管式炉在210ml/min流速的氮气氛围下冷却到室温为止,制得氧化镍_氯化钠催化剂前躯体;第二步,制备硼碳氮纳米管-氯化钠复合粉末将第一步制得的氧化镍-氯化钠催化剂前躯体置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以210ml/min的流速向该管式炉中通入氢气并升温至650°C,保温2. 5h,而后关闭氢气,再将体积比为氮气硼酸甲酯蒸汽甲烷=6:0.8:1的混合气以470ml/min的流速持续通入该管式炉中,在650°C下进行化学气相沉积反应lh,之后关闭硼酸甲酯蒸汽和甲烷并调整氮 气流量,使上述管式炉在210ml/min流速的氮气氛围下冷却到室温为止,由此制得硼碳氮纳米管-氯化钠复合粉末,其中硼碳氮纳米管的质量百分含量为 8. 3% ;第三步,提纯硼碳氮纳米管按4g/L的浓度将第二步制得的硼碳氮纳米管-氯化钠复合粉末放入质量百分比浓度为O. 65%的十二烷基苯磺酸钠的去离子水溶液中,将装有上述溶液的烧杯置于超声分散仪中用35kHz的超声波分散15min使氯化钠完全溶解,将溶液中的沉淀物过滤,用去离子水清洗3遍,而后用电热恒温干燥箱于85°C干燥3h,即制得提纯后的硼碳氮纳米管。上述所有实施例中所涉及的原材料均通过商购获得,所用的设备和工艺均是本技术领域的技术人员所熟知的。
权利要求
1.硼碳氮纳米管的制备方法,其特征在于是一种通过化学气相沉积法合成硼碳氮纳米管的制备方法,具体步骤如下 第一步,制备氧化镍-氯化钠催化剂前躯体 按重量比为硝酸镍氯化钠=0. 02 O. 55:1的比例,称取所需用量的六水合硝酸镍与氯化钠,在电磁搅拌状态下,将称取的氯化钠按50 80g/L的浓度溶入去离子水中,而后将称取的六水合硝酸镍溶入上述去离子水中,持续电磁搅拌直至氯化钠和六水合硝酸镍完全溶解,将上述溶液置于电热恒温干燥箱中于60 90°C干燥48 96h,至水分完全蒸发,然后将干燥后得到的硝酸镍与氯化钠结晶混合物置于球磨罐中,采用行星式球磨机以500 1000r/min的速度球磨3 6h,将上述经球磨处理后的混合物置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以180 240ml/min的流速向该管式炉中持续通入氮气并升温至350 600°C,保温2 4h,使该管式炉在180 240ml/min流速的氮气氛围下冷却到室温为止,制得氧化镍-氯化钠催化剂前躯体; 第二步,制备硼碳氮纳米管-氯化钠复合粉末 将第一步制得的氧化镍-氯化钠催化剂前躯体置于石英方舟中,将该石英方舟置于水平管式炉恒温区,以180 240ml/min的流速向该管式炉中通入氢气并升温至550 750°C,保温1.5 3. 5h,而后关闭氢气,再将体积比为氮气硼酸甲酯蒸汽甲烷=4 8:0. 5 1:1的混合气以330 600ml/min的流速持续通入该管式炉中,在550 750°C下进行化学气相沉积反应O. 5 1. 5h,之后关闭硼酸甲酯蒸汽和甲烷并调整氮气流量,使上述管式炉在180 240ml/min流速的氮气氛围下冷却到室温为止,由此制得硼碳氮纳米管-氯化钠复合粉末,其中硼碳氮纳米管的质量百分含量为5.1 17. 6% ; 第三步,提纯硼碳氮纳米管 按2 5g/L的浓度将第二步制得的硼碳氮纳米管-氯化钠复合粉末放入质量百分比浓度为O. 3 1. 0%的十二烷基苯磺酸钠的去离子水溶液中,将装有上述溶液的烧杯置于超声分散仪中用30kHz 40kHz的超声波分散10 20min使氯化钠完全溶解,将溶液中的沉淀物过滤,用去离子水清洗3 4遍,而后用电热恒温干燥箱于80 90°C干燥2 4h,即制得提纯后的硼碳氮纳米管。
全文摘要
本发明硼碳氮纳米管的制备方法,涉及含硼和氮的化合物,是一种通过化学气相沉积法合成硼碳氮纳米管的制备方法,步骤是先制备氧化镍-氯化钠催化剂前躯体,将其置于石英方舟中,将该石英方舟置于水平管式炉恒温区,通入氢气并升温和保温,而后关闭氢气,再将氮气、硼酸甲酯蒸汽和甲烷的混合气持续通入该管式炉中,进行化学气相沉积反应,由此制得硼碳氮纳米管-氯化钠复合粉末,该粉末放入十二烷基苯磺酸钠的去离子水溶液中,用超声波分散使氯化钠完全溶解,将溶液中的沉淀物过滤,再经清洗、干燥,即制得提纯后的硼碳氮纳米管,克服了现有技术中硼和氮掺杂碳纳米管晶型差,掺杂效率和纯度低,以及硼碳氮纳米管提纯与分散难度大的缺点。
文档编号C01B21/082GK103030120SQ201210593109
公开日2013年4月10日 申请日期2012年12月29日 优先权日2012年12月29日
发明者李海鹏, 张娜, 王雪霞, 耿晓欣, 梁春永, 王洪水, 李宝娥 申请人:河北工业大学