一种碳纳米管‑氧化石墨烯三维混杂材料的制备方法与流程

文档序号:12448330阅读:284来源:国知局
一种碳纳米管‑氧化石墨烯三维混杂材料的制备方法与流程

本发明属于纳米材料领域,具体涉及一种碳纳米管-氧化石墨烯三维混杂材料的制备方法。



背景技术:

以碳纳米管和石墨烯为代表的纳米碳材料具有巨大的比表面积、优异的力学性能和导电、导热性能,近年来在电子信息、新型能源、生物和功能材料领域倍受关注。一般认为,材料性能从根本上取决于其内部的微观结构,利用纳米碳材料的根本出发点在于其具有由sp2杂化轨道形成的离阈π键,目前广泛采用的化学气相沉积(CVD)法生产碳纳米管和石墨烯,一方面具有较为完整的sp2碳原子结构,因而具有相对较佳的导电、导热性能。另一方面,高温、金属催化剂的使用以及石墨烯迁移问题影响了纳米碳材料的推广和应用。纳米碳复合材料的发展面临以下三方面问题:(1)由于碳纳米管和石墨烯的一维和二维结构导致的功能各向异性;(2)高长径比(横纵比)以及较强的π-π相互作用使纳米碳材料极易产生团聚和堆砌,严重制约纳米碳材料性能的充分发挥;(3)CVD法生产的碳纳米管和石墨烯具有很强的疏水性以及由此产生的化学惰性。

氧化石墨烯是采用化学剥离方法获得的石墨烯衍生物,在制备过程中,氧化处理在石墨烯表面,尤其是在边缘引入了大量的羟基、环氧基和羧基等极性基团,形成部分sp3杂化碳原子,而未被氧化的区域仍然保持疏水的sp2杂化碳原子结构,因此氧化石墨烯在保留石墨烯柔性二维结构的同时,兼具聚合物、胶体和表面活性剂的属性。将氧化石墨烯和碳纳米管组装成为三维纳米碳混杂结构具有巨大的比表面积,克服了一维碳纳米管和二维石墨烯在结构和功能方面的各向异性,从根本上解决了纳米碳材料在使用过程中的聚集和堆砌问题。特别是碳纳米管-氧化石墨烯混杂材料适用热还原和化学还原的特点使其结构和性能具有很大的调控空间。目前,制造碳纳米管-氧化石墨烯混杂材料的方法主要有以下两种:(1)使用不同催化剂的两步CVD法在基底材料上先后生长碳纳米管-石墨烯混杂材料,这种方法会导致混杂材料内部残留金属催化剂和强疏水性,后续的迁移过程不可避免的影响纳米碳混杂结构和性能;(2)碳纳米管和氧化石墨烯在水相中直接组装成气凝胶,碳纳米管和氧化石墨烯之间仅存在π-π相互作用,这种全碳气凝胶的自持性尚有待进一步提高。

Pickering乳液是指固体粒子自发聚集于两相液体界面并稳定该界面的多相体系,本发明公开的碳纳米管-氧化石墨烯混杂材料利用了碳纳米管和氧化石墨烯在Pickering体系油水两相界面自组装过程,获得了一种高自持性三维全碳纳米混杂结构,在工业催化、电化学电容器、热界面材料和相变材料等领域具有广阔的发展前景。



技术实现要素:

针对现有技术存在的问题,本发明提供一种碳纳米管-氧化石墨烯三维混杂材料的制备方法,目的是利用氧化石墨烯的表面活性剂属性,将氧化石墨烯与碳纳米管组装成为两亲性可控的Pickering体系稳定剂,以油相和水相界面自由能降低作为自组装过程驱动力形成水包油乳液体系,碳纳米管和氧化石墨烯组装成的纳米碳混杂材料包覆在油滴表面,经冷冻干燥和去除油相后,获得全碳结构的碳纳米管-氧化石墨烯混杂材料,同时保留了氧化石墨烯和碳纳米管的各自特点,具有可调的导电性、导热性和三维宏观形貌,制备工艺简便,成本低廉。

实现本发明目的的技术方案按照以下步骤进行:

(1)将氧化石墨烯在水中超声分散30~60分钟,得到氧化石墨烯分散液;

(2)将碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散2~3小时后,得到碳纳米管-氧化石墨烯分散体系,加入酸调节分散体系pH值为2-6;

(3)以疏水性有机物作为油相,将其加入至步骤(2)所得碳纳米管-氧化石墨烯分散体系,升温至45~50℃,超声分散4~6小时,得到碳纳米管-氧化石墨烯稳定的水包油型Pickering乳液;

(4)将步骤(3)所得碳纳米管-氧化石墨烯稳定的水保油型Pickering乳液冷至室温,经液氮冷冻干燥处理12~14小时后,获得由碳纳米管-氧化石墨烯包覆的有机物油滴,去除作为油相的有机物,得到初步碳纳米管-氧化石墨烯混杂材料;

(5)采用热还原或化学还原方法对步骤(4)所得初步碳纳米管-氧化石墨烯混杂材料进行还原,获得表面性质、导电性能、导热性能可控的碳纳米管-氧化石墨烯混杂材料。

其中,步骤(1)所述的氧化石墨烯的直径为20μm-100μm,氧化石墨烯分散液的浓度为0.1mg/ml-4mg/ml。

步骤(2)所述的碳纳米管为表面羧基修饰碳纳米管、表面氨基修饰碳纳米管或表面羟基修饰碳纳米管,其为单壁、双壁或多壁碳纳米管。

步骤(2)所述的氧化石墨烯与碳纳米管的重量比为3~1:1

步骤(2)所述的酸为盐酸或乙酸。

步骤(3)所述的疏水性有机物为氯仿、四氯化碳、甲苯或苄基氯;当所述的疏水性有机物为氯仿、四氯化碳或甲苯时,步骤(4)中所述的去除作为油相的有机物的方法为真空干燥;当所述的疏水性有机物为苄基氯时,步骤(4)中所述的去除作为油相的有机物的方法为使用乙醇作为溶剂洗涤4次后进行真空干燥。

步骤(5)所述的热还原方法的还原温度为200-800℃,还原时间为0.5-4小时。

步骤(5)所述的化学还原方法是以硼氢化钠、水合肼作为还原剂,还原反应时间为0.5-8 小时,还原温度为25℃-80℃。

与现有技术相比,本发明的特点和有益效果是:

(1)本发明是利用氧化石墨烯的两亲性,使碳纳米管在水中均匀分散,由π-π相互作用和油水界面自由能降低驱动碳纳米管和氧化石墨烯自组装成为具有良好自持性的三维纳米碳混杂材料。

(2)碳纳米管-氧化石墨烯混杂材料既具有氧化石墨烯的极性活性基团,又具有碳纳米管的结构和高长径比(如图1所示),因而具有高比表面积、高导电、导热能力。

(3)碳纳米管-氧化石墨烯混杂材料具有全碳结构,其性能可通过控制氧化石墨烯尺寸、与碳纳米管比例和用量以及还原程度进行调节。

(4)本发明所需设备简单,成本低廉,工艺操作方便。

附图说明

图1是本发明实施例1中制备的碳纳米管-氧化石墨烯三维混杂材料的红外光谱图;

图2是本发明实施例1中制备的碳纳米管-氧化石墨烯三维混杂材料的XRD图谱;

图3是本发明实施例1中制备的碳纳米管-氧化石墨烯三维混杂材料的光学照片。

具体实施方式

以下实施例是对本发明的进一步说明,实施例中采用的氯仿、四氯化碳、甲苯和苄基氯为市购产品。

本发明实施例中采用的表面羧基修饰碳纳米管、表面氨基修饰碳纳米管和表面羟基修饰碳纳米管均为市购产品,其中,单壁纳米管比表面积>140m2/g,双壁纳米管的比表面积>350m2/g,多壁碳纳米管的比表面积>500m2/g;本实施例采用的氧化石墨烯直径为20μm-100μm。

本发明实施例中采用的超声场工作频率为45kHz,功率为100W。

实施例1

本实施例的碳纳米管-氧化石墨烯三维混杂材料的制备方法按照以下步骤进行:

(1)将2g氧化石墨烯在2000ml水中超声分散30分钟,得到1mg/ml氧化石墨烯分散液;

(2)将1g羧基修饰碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散2小时后,得到碳纳米管-氧化石墨烯分散体系,加入盐酸调节分散体系pH值为2-6;

(3)以甲苯作为油相,将其加入至步骤(2)所得碳纳米管-氧化石墨烯分散体系,升温至45℃,超声分散4小时,得到羧基修饰碳纳米管-氧化石墨烯稳定的水包油型Pickering乳液;

(4)将步骤(3)所得羧基修饰碳纳米管-氧化石墨烯稳定的水保油型Pickering乳液冷 至室温,经液氮冷冻干燥处理14小时后,获得由碳纳米管-氧化石墨烯包覆的有机物油滴,去除作为油相的有机物,得到初步羧基修饰碳纳米管-氧化石墨烯混杂材料;

(5)采用热还原方法对步骤(4)所得初步羧基修饰碳纳米管-氧化石墨烯混杂材料进行还原,获得表面性质、导电性能、导热性能可控的羧基修饰碳纳米管-氧化石墨烯混杂材料,其电导率为0.1Sm-1,比表面积为3.5m2g-1,热导率为4.6Wm-1K-1;其红外光谱图如图1所示,从图1可以看出所得羧基修饰碳纳米管-氧化石墨烯混杂材料表面具有活性官能团;其XRD图如图2所示,从图2可以看出碳纳米管-氧化石墨烯混杂材料既具有在2θ=25.9°的导电石墨结构,又在2θ=21.5°形成了新的结构,因此所述混杂材料具有高比表面积、高导电、导热能力;其光学照片如图3所示,其具有三维混杂结构。

实施例2

本实施例的碳纳米管-氧化石墨烯三维混杂材料的制备方法按照以下步骤进行:

(1)将2g氧化石墨烯在2000ml水中超声分散60分钟,得到1mg/ml氧化石墨烯分散液;

(2)将1g羟基修饰碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散3小时后,得到羟基修饰碳纳米管-氧化石墨烯分散体系,加入乙酸调节分散体系pH值为2-6;

(3)以氯仿作为油相,将其加入至步骤(2)所得碳纳米管-氧化石墨烯分散体系,升温至50℃,超声分散6小时,得到羟基修饰碳纳米管-氧化石墨烯稳定的水包油型Pickering乳液;

(4)将步骤(3)所得羟基修饰碳纳米管-氧化石墨烯稳定的水保油型Pickering乳液冷至室温,经液氮冷冻干燥处理12小时后,获得由羟基修饰碳纳米管-氧化石墨烯包覆的有机物油滴,去除作为油相的有机物,得到初步羟基修饰碳纳米管-氧化石墨烯混杂材料;

(5)采用化学还原方法对步骤(4)所得初步羟基修饰碳纳米管-氧化石墨烯混杂材料进行还原,获得表面性质、导电性能、导热性能可控的羟基修饰碳纳米管-氧化石墨烯混杂材料,其电导率为3.2Sm-1,比表面积为7.1m2g-1,热导率为2.6Wm-1K-1

实施例3

本实施例的碳纳米管-氧化石墨烯三维混杂材料的制备方法按照以下步骤进行:

(1)将1.5g氧化石墨烯在2000ml水中超声分散45分钟,得到0.75mg/ml氧化石墨烯分散液;

(2)将0.5g氨基修饰碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散2小时后,得到氨基修饰碳纳米管-氧化石墨烯分散体系,加入盐酸调节分散体系pH值为2-6;

(3)以四氯化碳作为油相,将其加入至步骤(2)所得碳纳米管-氧化石墨烯分散体系,升温至48℃,超声分散5小时,得到氨基修饰碳纳米管-氧化石墨烯稳定的水包油型Pickering 乳液;

(4)将步骤(3)所得氨基修饰碳纳米管-氧化石墨烯稳定的水保油型Pickering乳液冷至室温,经液氮冷冻干燥处理13小时后,获得由氨基修饰碳纳米管-氧化石墨烯包覆的有机物油滴,去除作为油相的有机物,得到初步氨基修饰碳纳米管-氧化石墨烯混杂材料;

(5)采用热还原方法对步骤(4)所得初步氨基修饰碳纳米管-氧化石墨烯混杂材料进行还原,获得表面性质、导电性能、导热性能可控的氨基修饰碳纳米管-氧化石墨烯混杂材料,其电导率为0.38Sm-1,比表面积为2.5m2g-1,热导率为6.1Wm-1K-1

实施例4

本实施例的碳纳米管-氧化石墨烯三维混杂材料的制备方法按照以下步骤进行:

(1)将2g氧化石墨烯在2000ml水中超声分散30分钟,得到1mg/ml氧化石墨烯分散液;

(2)将2g羧基修饰碳纳米管加入到步骤(1)所得氧化石墨烯分散液中,超声分散2小时后,得到羧基修饰碳纳米管-氧化石墨烯分散体系,加入乙酸调节分散体系pH值为2-6;

(3)以苄基氯作为油相,将其加入至步骤(2)所得碳纳米管-氧化石墨烯分散体系,升温至45℃,超声分散4小时,得到羧基修饰碳纳米管-氧化石墨烯稳定的水包油型Pickering乳液;

(4)将步骤(3)所得羧基修饰碳纳米管-氧化石墨烯稳定的水保油型Pickering乳液冷至室温,经液氮冷冻干燥处理14小时后,获得由羧基修饰碳纳米管-氧化石墨烯包覆的有机物油滴,去除作为油相的有机物,得到初步羧基修饰碳纳米管-氧化石墨烯混杂材料;

(5)采用化学还原方法对步骤(4)所得初步羧基修饰碳纳米管-氧化石墨烯混杂材料进行还原,获得表面性质、导电性能、导热性能可控的羧基修饰碳纳米管-氧化石墨烯混杂材料,其电导率为0.75Sm-1,比表面积为1.9m2g-1,热导率为7.6Wm-1K-1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1