一种由钼精矿制备2H?MoS<sub>2</sub>纳米片的方法

文档序号:10695829阅读:305来源:国知局
一种由钼精矿制备2H?MoS<sub>2</sub>纳米片的方法
【专利摘要】本发明公开了一种由钼精矿制备2H?MoS2纳米片的方法,先将钼精矿放置在气流粉碎机中,粉碎成超细粉;然后将超细粉加入到H2O2中,再加入乙醇并搅拌混匀,静置分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥,得到2H?MoS2纳米片。本发明采用钼精矿在常压下操作制备2H?MoS2纳米片,该方法工艺简单、制备效率高,且整个过程能耗低、无污染,对环境友好,能够广泛适用于工业生产,制备出的2H?MoS2纳米片可广泛应用于能量储存与转化、催化、润滑以及各种复合材料等领域。
【专利说明】
一种由钼精矿制备2H-MoS2纳米片的方法
技术领域
[000?]本发明属于纳米材料制备技术领域,具体涉及一种由钼精矿制备2H_MoS2纳米片的方法。
【背景技术】
[0002]MoS2是一种典型的过渡金属层状化合物,具有1T、2H、3R三种晶体结构= IT-MoS2为亚稳性,晶型结构具有金属性,Mo原子为八面体配位,晶胞由I个S-Mo-S单分子层组成。2H-MoS2为稳定相,晶型结构具有半导体性和润滑性,Mo原子为三角棱柱配位,晶胞由2个S-Mo-S单分子层组成,天然产出的钼矿为2H型,常温下存在典型的层状结构。3R-MoS2也为亚稳性,Mo原子为三角棱柱配位,晶胞由3个S-Mo-S单分子层组成。只有2H-MoS2具有优异的润滑性、半导体特性,当其变为超薄二维结构材料时,MoS2的禁带宽度随着其层数的较小而增加,到单层时,不但其禁带宽度由体相材料时的1.29eV增加至1.90eV,而且电子能带结构也由非直接带隙变为直接带隙。
[0003]单层的MoS2相比零带隙的石墨烯,在光电子器件方面,表现出更为优异的特性,使得人们有望得到比硅芯片更薄的一种新型的MoS2芯片。此外,MoS2因其固有的二维层状结构能够方便锂离子的嵌脱而使得其在锂离子电池中具有较高的电化学储锂性能,并得到了人们的广泛关注,在催化剂方面,二维结构的MoS2也具有更广阔的应用前景。
[0004]目前MoS2纳米片的制备方法主要分为微机械剥离法、锂离子插层法、液相超声剥离法、水热法以及CVD法等。微机械剥离法工艺简单,剥离效率高,但产量低和重复性差。锂离子插层剥离法的剥离效率高,但制备方法复杂,插层剂对环境敏感,生产成本高,制备时间较长。液相超声剥离法简单快捷,能够适合大规模生产,但一般剥离程度不高,得到纳米片溶液浓度较小,对超声条件依赖性高。水热法具有操作简单、条件温和、污染小等优点,但反应过程中纳米粒子易团聚,很难控制合成单层的纳米片,CVD法一般得到的晶体结晶性较差,大多需要经过退火处理,工艺还不成熟。
[0005]以上MoS2纳米片的制备技术,多为人工合成方法,合成的一般为3R或2H+3R型,半导体性能及润滑性能逊色2H型,制备过程周期长、工艺繁琐、能耗大,效率有待进一步改善。

【发明内容】

[0006]本发明的目的是提供一种由钼精矿制备2H-MoS2纳米片的方法,实现低成本、低能耗、高效率、环境友好的2H-MoS2纳米片的制备,解决了现有制备方法制备过程周期长、工艺繁琐、效率较低、能耗大的问题。
[0007]本发明所采用的技术方案是,一种由钼精矿制备2H_MoS2纳米片的方法,先将钼精矿放置在气流粉碎机中,粉碎成超细粉;然后将超细粉加入到H202(30%)中,再加入乙醇并搅拌混匀,静置分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥,得到2H-MoS2纳米片。
[0008]优选地,钼精矿中Mo的含量彡59%。
[0009]优选地,超细粉激光粒度D5Q = 0.5?0.8μπι。
[0010]优选地,Η202(30%)的质量为超细粉的50?200倍,乙醇的质量为超细粉的800?1500倍。
[0011]优选地,搅拌时间为I?8h。
[0012]优选地,真空干燥至水分含量<0.2%。
[0013]优选地,2H-MoS2纳米片的横向尺寸为0.2?5μπι,厚度为I?2nm。
[0014]本发明的有益效果是,本发明采用钼精矿在常压下操作制备2H-Mo&纳米片,该方法工艺简单、制备效率高,且整个过程能耗低、无污染,对环境友好,能够广泛适用于工业生产,制备出的2H-MoS2纳米片可广泛应用于能量储存与转化、催化、润滑以及各种复合材料等领域。
【附图说明】
[0015]图1是钼精矿的XRD衍射图谱;
[0016]图2是本发明制备的2H_MoS2纳米片的原子力显微镜的形貌图;
[0017]图3是本发明制备的2H-MO&纳米片的原子力显微镜的数据图。
【具体实施方式】
[0018]下面结合附图和【具体实施方式】对本发明作进一步的详细说明,但本发明并不限于这些实施方式。
[0019]本发明的由钼精矿制备2H_MoS2纳米片的方法具体为:
[0020]先将Mo含量多59%的钼精矿放置在气流粉碎机中,粉碎成激光粒度D5q = 0.5?0.8μπι的超细粉;然后将超细粉加入到H2O2 (质量分数30 % )中,再加入乙醇,其中H2O2 (30 % )的质量为超细粉的50?200倍,乙醇的质量为超细粉的800?1500倍。对混合液充分搅拌I?Sh,静止分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥至水分含量< 0.2%,得到2H-MoS2纳米片。
[0021]根据以上方法即可制备出2H型的MoS2纳米片。区别于人工合成法,本发明采用2H型的钼精矿为原料,如图1所示,以其制备MoS2纳米片,得到的产物为2H型,制备方法简单、效率高,且能耗低。由图2、3的原子力显微镜图(AFM)可知,本发明制备的2H-MoS2纳米片横向尺寸为0.2?5μπι,厚度约为I?2nm。该尺寸纳米片的产率为30-50%。
[0022]下面以实施例进一步说明本粉末的方法。
[0023]将纯化后的钼精矿(Mo多59%)放置于气流粉碎机中,粉碎成激光粒度D5q在0.5?0.8μπι之间的超细粉。
[0024]实施例1
[0025]取上述超细粉(D5o = 0.5ym)lg,加入到50mL H202(30% )中,再加入800mL乙醇,持续搅拌Ih后静置分层,取上层液,过滤、真空干燥至水分含量<0.2 %,得到2H-MO&纳米片,放置冷冻保存。
[0026]实施例2
[0027]取上述超细粉(D5o = 0.7ym)lg,加入到10mL H202(30% )中,再加入1200mL乙醇,
持续搅拌4h后静置分层,取上层液,过滤、真空干燥至水分含量彡0.2%,得到2H-MoS2纳米片,放置冷冻保存。
[0028]实施例3
[0029]取上述超细粉(D5Q = 0.8μπι) Ig,加入到200mL H202(30% )中,再加入1500mL乙醇,
持续搅拌Sh后静置分层,取上层液,过滤、真空干燥至水分含量彡0.2%,得到2H-MoS2纳米片,放置冷冻保存。
[0030]本发明采用钼精矿在常压下操作制备2H_MoS2纳米片,该方法工艺简单、制备效率高,且整个过程能耗低、无污染,对环境友好,能够广泛适用于工业生产,制备出的2H-MoS2纳米片可广泛应用于能量储存与转化、催化、润滑以及各种复合材料等领域。
[0031]本发明以上描述只是部分实施例,但是本发明并不局限于上述的【具体实施方式】。上述的【具体实施方式】是示意性的,并不是限制性的。凡是采用本发明的材料和方法,在不脱离本发明宗旨和权利要求所保护的范围情况下,所有具体拓展均属本发明的保护范围之内。
【主权项】
1.一种由钼精矿制备2H-MoS2纳米片的方法,其特征在于,先将钼精矿放置在气流粉碎机中,粉碎成超细粉;然后将超细粉加入到H2O2中,再加入乙醇并搅拌混匀,静置分层后,取上层液进行过滤,对过滤出的固体物进行真空干燥,得到2H-M0S2纳米片。2.根据权利要求1所述的由钼精矿制备2H-MO&纳米片的方法,其特征在于,所述钼精矿中Mo的含量彡59%。3.根据权利要求1所述的由钼精矿制备2H-MO&纳米片的方法,其特征在于,所述超细粉激光粒度D5Q = 0.5?0.8μηι。4.根据权利要求1所述的由钼精矿制备2Η-Μο&纳米片的方法,其特征在于,所述H2O2质量分数为30%,所述H2O2的质量为所述超细粉的50?200倍,所述乙醇的质量为所述超细粉的800?1500倍。5.根据权利要求1所述的由钼精矿制备2Η-ΜΟ&纳米片的方法,其特征在于,所述搅拌时间为I?8h。6.根据权利要求1所述的由钼精矿制备2H-Mo&纳米片的方法,其特征在于,所述真空干燥至水分含量<0.2%。7.根据权利要求1所述的由钼精矿制备2H-MoS2纳米片的方法,其特征在于,所述2H-M0S2纳米片的横向尺寸为0.2?5μηι,厚度为I?2nm。
【文档编号】C01G39/06GK106064833SQ201610361918
【公开日】2016年11月2日
【申请日】2016年5月26日 公开号201610361918.8, CN 106064833 A, CN 106064833A, CN 201610361918, CN-A-106064833, CN106064833 A, CN106064833A, CN201610361918, CN201610361918.8
【发明人】唐军利, 崔玉青, 席莎, 周新文, 何凯, 朱琦
【申请人】金堆城钼业股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1