5‑取代噻唑酰胺类化合物及其制备方法与应用与流程

文档序号:12638804阅读:259来源:国知局

本发明属于植物生长调节剂领域,涉及一种5-取代噻唑酰胺类化合物及其制备方法与应用。



背景技术:

油菜素内酯又称芸苔素内酯(BRs),是由植物内合成的一类内源性植物生长调节剂。它能调节植物本身所需要的多种酶和激素,充分发挥植物自身潜能和生长优势,增强生命活力和抗旱耐涝能力。鉴于芸苔素内酯等在植物中的含量极低(小于10-6ppm)和它作为植物激素在农业作物中所表现出的优异的生理活性,其合成和改造研究一直受到各国科学家的青睐。然而对于油菜素内酯合成成本高昂及体内代谢位点多、极易代谢失活的问题却束手无策,因而寻找新靶标受体进行类似物开发的探索日益引起人们关注。

US6667278(2003)报道了根据BL的结构和单元仿造了第一类非甾体类似物,并筛选得到高活性BM1(pM级),但高浓度(nM以上)表现为无生理活性,且必须与IAA(5μM)协同才能发挥作用。WO2009109570和US20100152253报道了在研究糖原合酶激酶3(GSK3s)时,通过化学遗传学筛选得到一个高活性的小分子Bikinin,它能有效抑制BIN2,充当ATP的竞争者,阻止转录因子的磷酸化失活,活性约为BL的1/30。同时,WO2014122066还报道了含氮杂环的Bikinin衍生物,但经测定的活性普遍不高。

鉴于含有N、S杂原子的5-甲基噻唑结构与Bikinin吡啶结构的高度相似性,为了研究发现新型的以BIN2为靶标的高效安全的调节剂,本发明设计合成了一类新型甲基噻唑酰胺类油菜素内酯类似物,并对该类化合物进行了多样化的生物活性评价和制剂制备应用。所有设计的化合物中均为全新结构,首次报道。



技术实现要素:

本发明的目的是提供一种5-取代噻唑酰胺类化合物及其制备方法与应用。

本发明提供的5-取代噻唑酰胺类化合物,其结构通式如式II所示,

所述式Ⅱ中,X为甲基、乙基、异丙基、环丙基、氯甲基、二氯甲基、三氯甲基、丙酰基、甲氧酰基、乙酰氧基、二甲氨基、乙酰氨基、甲氧基、乙氧基、甲硫基、甲基二硫基或硝基;

Y为氢、氧或硫;

Z为氧、亚氨基或亚甲基;

R为乙氧基乙酰基、丙氧基乙酰基、乙磺酰基、2-甲氧基乙基、乙氧基羰基、4-三氟甲氧基苯基、4-硝基苄基、1-氯乙氧基乙酰基、1,1-二氯乙氧基乙酰基、1,1,1-三氯乙氧基乙酰基、异丙氧基乙酰基、异丁氧基乙酰基、新戊氧基乙酰基、甲氧甲氧基乙酰基、2-羟乙氧基乙酰基、乙酰氧基乙酸基或乙酰氧基乙酸甲酯基。

本发明提供的制备式II所示化合物的方法,包括如下步骤:

在催化剂和碱存在的条件下,将式I所示化合物与反应物III进行酰基化反应,反应完毕得到所述式I所示化合物;

所述反应物III为

所述式I中,X的定义与式I中的相同;

所述中,R1为W为C或S;

所述中,R2为如下基团中的任意一种:

上述方法中,所述催化剂为4-二甲氨基吡啶或三乙胺;

所述碱为二乙胺、三乙胺、碳酸钾或N,N-二异丙基乙胺;

所述催化剂与式I所示化合物的投料摩尔比为0.5-5:100;

所述碱与式I所示化合物的投料摩尔比为2-3:1;

所述式I所示化合物与反应物III的摩尔比为1:(0.8-1.5);

所述反应在溶剂中进行;所述溶剂具体选自四氢呋喃、二氯甲烷、乙酸乙酯、丙酮和乙腈中的至少一种;

所述反应物III为时,所述酰基化反应在-5℃-5℃或室温中进行;反应时间为3-12h;

所述反应物III为时,所述酰基化反应的反应温度为所用溶剂的回流温度;反应时间为2-5h;

所述反应物III为所述酰基化反应的反应温度为室温;反应时间为3-12h。

所述方法还包括如下步骤:在所述反应完毕后,将反应体系进行纯化;

所述纯化的方法具体为重结晶或溶剂打浆;

所述重结晶步骤中,所用溶剂具体为乙醇或乙酸乙酯;

所述溶剂打浆步骤中,所用溶剂具体为乙醇或由体积比为2:1的乙酸乙酯和石油醚组成的混合液;

所述溶剂打浆步骤具体包括:向所述反应体系中加入打浆所用溶剂,搅拌至产物析出,抽滤;所述反应体系与溶剂打浆步骤所用溶剂的用量比具体为1g:5mL。

另外,上述本发明提供的式II所述化合物在调节植物生长活性中的应用及含有式II化合物的植物生长活性调节剂,也属于本发明的保护范围。

具体的,所述调节植物生长活性为如下任意一种:

1)促进植物生长;

2)促进茎杆伸长和/或增粗;

3)提高种子萌发率;

4)提高产量;

5)改善品质;

6)增强植物抗倒伏能力;

7)增强植物的抗逆性能;

所述植物生长活性调节剂为具有如下功能的至少一种的调节剂:

1)促进植物生长

2)促进茎杆伸长和/或增粗;

3)提高种子萌发率;

4)提高产量;

5)改善品质;

6)增强植物抗倒伏能力;

7)增强植物的抗逆性能;

所述增强植物的抗逆性能具体为增强植物的耐盐胁迫能力;

所述植物具体为水稻、玉米、小麦或油菜。

另外,上述本发明提供的式II所述化合物在除草中的应用及含有式II化合物的除草剂,也属于本发明的保护范围。

具体的,所述草为禾本科杂草;具体为野燕麦、节节麦、稗草、狗尾巴草或山羊草;所述植物生长活性调节剂或除草剂的剂型为水分散粒剂、悬浮剂、水乳剂、片剂或微胶囊。上述剂型中的载体可为各种常见的载体,只要保证其与本发明式II所示化合物配制后便于施用于待处理的位点即可,例如可以是植物、种子或土壤;或者有利于贮存、运输或操作。载体可以是固体或液体,或通常为气体但已压缩为液体的物质。

本发明设计合成的化合物是一类结构特异的5-取代噻唑酰胺类油菜素内酯类似物,通过相关生物活性验证,发现其中某些化合物具有特异的油菜素内酯反应,如促进黑暗中拟南芥突变体det2-1下胚轴伸长,水稻叶片倾角增大,增强玉米耐盐胁迫,春小麦幼苗耐低温和油菜耐高温的能力等。个别化合物在低浓度就具有很高的响应值,另外在高浓度情况下,还能抑制小麦的株高,延缓生长,提高其抗倒伏的能力。同时在防治野燕麦、节节麦、稗草、狗尾巴草、山羊草等禾本科杂草上具有很好的防治效果。该系列化合物制备容易,成本低廉,农业应用推广价值高,值得后续的深入研究开发。

具体实施方式

下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。

实施例1、化合物2a的制备:

在100mL圆底烧瓶瓶中,加入2-氨基噻唑(10mmol)、丁二酸酐(12mmol),15mL四氢呋喃搅拌溶解,65℃回流反应3h进行酰基化反应,反应完毕降温冷却至室温25℃析出固体,过滤得固体,乙醇重结晶纯化得中间产物。取中间产物(10mmol),甲醇3ml溶解,冰盐浴冷却至0℃,恒温滴加含有5ml二氯亚砜的10ml四氢呋喃溶液,30min滴加完毕;继续反应5小时,反应混合物倒入150mL冰水中,乙酸乙酯提取(3x100mL),饱和食盐水洗涤(3x100mL),无水Na2SO4干燥,过滤浓缩,粗产物通过乙醇重结晶纯化。(乙醇重结晶具体操作为:向1g待重结晶初产物中,逐滴加入乙醇3mL,加热回流(80-100℃),直至初产物全部溶解,继续回流10min,后缓慢降温至室温25℃析出固体,抽滤得纯净产物。)

实施例2、化合物2e的制备:

在100mL圆底烧瓶中,加入5-甲基-2-氨基吡啶(10mmol)、15ml四氢呋喃搅拌溶解,另加入4-(三氟甲氧基)苯基异氰酸酯(10mmol),反应混合物室温25℃搅拌进行酰基化反应12h,TLC检测反应进程。反应结束后,析出大量固体,浓缩得粗产物,通过乙醇重结晶纯化(乙醇重结晶具体操作为:向1g待重结晶初产物中,逐滴加入乙醇3mL,加热回流,直至初产物全部溶解,继续回流10min,后缓慢降温析出固体,抽滤得纯净产物。)。

按照与上相同的方法,可制备得到表1所列其余归属式I的化合物。

化合物2a-2I的结构及产率如下表1所示。

表1合成化合物(2a-2I)的分子式及产率

实施例3、拟南芥突变体det2-1下胚轴伸长活性试验

拟南芥突变体det2-1种子用70%乙醇消毒1min,同时1%次氯酸钠15min,无菌水洗净播种于分装好培养基(1/2MS,0.8%琼脂,1%蔗糖和指定浓度化合物)的培养皿(Φ=9cm)中;4℃冰箱春化3天,随后转移至黑暗下,22℃/65%湿度条件下培养7天,整株拍照后,ImageJ软件测量其下胚轴长度。化合物及浓度为24-epiBL(1μM)、Bikinin(40μM)和待测药剂(40μM)。

所有化合物测试结果如表2所示:

表2对照药剂拟南芥下胚轴伸长测定结果

表3合成化合物拟南芥下胚轴伸长测定结果

从表2和表3可以看出,24-epiBL具有很高的活性,在1μM浓度,下胚轴长度达到0.9413±0.0748cm,而已报道的非甾体油菜素内酯类似物Bikinin在40μM时,伸长活性好于24-epiBL,达到1.1086±0.0684cm;在所有设计合成的化合物中,2a、2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I都对拟南芥突变体下胚轴都具有很高的伸长活性,其中2a在40μM时最大值达到1.4262±0.0527cm,活性甚至好过Bikinin;同时,2e高浓度下具有抑制下胚轴伸长的活性,最小值达到0.2732±0.0215cm。由于化合物成本低廉、药效高,在同等情况下,具有很高的利用价值。

实施例4、水稻叶片倾斜实验

水稻(日本晴)种子用10%H2O2消毒20min,无菌水洗净,30℃培养箱中萌发3天,幼芽(29℃/26℃、65%湿度)条件下黑暗培养5-6天,在28℃弱光条件下截取叶倾角部位置于含不同浓度的药液培养盒(120mm*120mm*60mm)中浸渍48h,量角器测量叶倾角。化合物及浓度为24-epiBL(10μM)、Bikinin(10、100μM)和待测药剂(100μM)。所有化合物测试结果如表4、5所示:

表4对照药剂水稻叶片倾角测定结果

表5合成化合物水稻实验结果

从上述表4、5可以看出,24-epiBL具有很高的活性,在10μM浓度,叶片倾斜角度达到125±9°,而Bikinin在最大浓度100μM时,活性不如24-epiBL,只能达到75±8°;在所有设计合成的化合物中,2a对叶片倾斜都具有极高的活性,100μM时最大值达到89±9°,活性甚至好过Bikinin;另外,2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I都对水稻倾角的增大也有一定的作用。2e对叶片倾角增大具有较好的抑制作用,最小值达到17±1°活性化合物的表现与拟南芥下胚轴伸长实验一致,表明活性化合物具有油菜素内酯相关活性,同时设计化合物成本低廉、药效高,在同等情况下,具有很高的利用价值。

实施例5、化合物对小麦幼苗控制生长试验

小麦(冬小麦济麦22)种子用10%双氧水消毒15-20min,无菌水洗净播种于培养基(0.8%琼脂和指定浓度化合物)的培养盒(120mm*120mm*80mm)中,25℃培养箱黑暗发芽2天,随后100%光照(22000LX)、26℃/22℃、65%湿度条件下培养6天,测量小麦的株高,统计分析结果。化合物及浓度为24-epiBL(10μM)、Bikinin(10、60μM)和待测药剂(100μM)。

统计实验结果如表6、7所示:

表6对照药剂对小麦株高的影响

表7合成化合物对小麦株高的影响

从表6、7中的数据可以得知,本发明制备的某些化合物对小麦幼苗延缓生长具有很好的效果,如2a、2e、2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I;其中2a控制株高最小值达到1.23±0.43cm,相比Bikinin有更高的药效,同时不遏制植株的正常生长发育。在恶劣情况下,这些效应有助于防止小麦的倒伏发生,保障小麦稳产和正常的经济效益。

实施例6、化合物对盐胁迫下玉米幼苗生物量的影响试验

选取籽粒饱满、大小一致、无霉变、无病虫害的玉米种子(郑单958),用对照24-epiBL(1.0mg/L)、Bikinin(20mg/L)和待测药剂(20mg/L)常温浸种24h,浸种完成后,用灭菌滤纸吸干水分备用。将浸种处理的种子置于铺有石英砂的发芽盒(120mm*120mm*60mm)中,每盒中加入150mM NaCl溶液10mL,于培养箱中28℃下催芽,每盒25粒,设3个重复,用清水处理(CK)作为对照,光照培养箱中培养(18h/6h,26℃/22℃;100%光照(22000LX),65%湿度)。每天更换处理液,发芽至第8天时,随机测量10株幼苗的生物量(称量苗鲜重,后置于80℃烘箱中烘干48h,称量干重量)。实验结果如表8所示:

表8对照药剂和化合物对玉米幼苗生物量的影响

从表8数据可以得知,本发明制备的某些化合物对玉米幼苗盐胁迫下的生物量积累具有一定的效果,其中2a、2e、2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I表现显著超过清水对照,其中2a相比Bikinin具有更高的药效,同时促进胁迫下的种子发芽。在恶劣情况下,这些效应有助于帮助轻度盐胁迫下玉米的正常生长及发育,保障玉米的经济效益。

实施例7、化合物诱导春小麦幼苗耐低温试验

春小麦(垦麦2号)种子用10%双氧水消毒15-20min,无菌水洗净播种于含培养基(0.8%琼脂和指定浓度的化合物)的植物培养盒(70mm*70mm*100mm)中,26℃培养箱黑暗发芽1天,随后100%光照(22000LX)、65%湿度条件下,26℃/22℃培养10天,随后培养盒置于4℃低温处理4h(降温从25℃开始,每小时降温10℃,后保持4℃4小时),处理结束后,培养箱重回25℃恢复培养一周,恢复期结束后,统计小麦幼苗的存活数目(叶片50%以上灰白色记为死亡),分析结果。化合物及浓度为24-epiBL(1μM)、Bikinin(30μM)和待测药剂(30μM)。实验结果如表9所示:

表9对照药剂和化合物对春小麦幼苗耐低温的影响

从表9中的数据可以得知,本发明制备的某些化合物对玉米幼苗盐胁迫下的生物量积累具有一定的效果,其中2a、2e、2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I表现显著超过清水对照,其中2a与Bikinin一样具有更高的药效,同时诱导春小麦抵抗春季苗期的低温胁迫。在恶劣情况下,这些效应有助于帮助低温胁迫下春小麦的正常生长及发育,保障东北小麦的经济效益。

实施例8、化合物诱导油菜幼苗耐高温试验

油菜(青杂5号)种子用10%双氧水消毒15-20min,无菌水洗净播种于含培养基(0.8%琼脂和指定浓度的化合物)培养盒(70mm*70mm*100mm)中,20℃培养箱黑暗发芽1天,随后100%光照(22000LX)、22℃/20℃、65%湿度条件下培养14天,随后培养盒置于40℃培养箱中高温处理4h(升温从20℃开始,每小时升温10℃,后保持40℃4小时),处理结束后,培养箱重回22℃恢复培养一周,恢复期结束后,统计油菜幼苗的存活数目(叶片50%以上灰白色记为死亡),分析结果。化合物及浓度为24-epiBL(1μM)、Bikinin(30μM)和待测药剂(30μM)。实验结果如表10所示:

表10对照药剂和化合物对油菜幼苗耐高温的影响

从表10中的数据可以得知,本发明制备的某些化合物对玉米幼苗盐胁迫下的生物量积累具有一定的效果,其中2a、2e、2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I表现显著超过清水对照,其中2a与Bikinin一样具有更高的药效,同时诱导油菜抵抗苗期高温胁迫,增加存活率。在恶劣情况下,这些效应有助于帮助高温胁迫下油菜的正常生长及发育,保障油菜的经济效益。

实施例9、化合物对杂草种子抑制萌发试验

用2a、2e、2h、2i、2l、2o、2q、2r、2s、2t、2v、2w、2C、2E、2G、2I配置的40mg/L的药液对杂草(野燕麦、狗尾巴草、山羊草)种子进行培养皿浸种24h,无菌水洗净播种于底部垫有两层滤纸的一次性灭菌培养皿(Φ=6cm)中,每皿均匀放置适量粒大饱满且大小均一的种子20粒,3个重复,用清水处理(CK)作为对照,试验期间培养皿滤纸一直保持湿润。培养箱中黑暗培养(18h/6h,25℃/20℃,65%湿度),统计3天发芽势和7天发芽率。实验结果如表11所示:

表11化合物对杂草的抑制萌发活性

从表11的结果可以看出,在40mg/L的药物浓度下,狗尾巴草、山羊草和野燕麦的种子发芽都受到一定程度的抑制。在狗尾巴草中,抑制最好的是2a,抑制率达到了55.8%;其次是2q,达到了54.8%;抑制率一半以上的还有2v、2o和2C。山羊草中,抑制最好的还是2a,抑制率达到了52.8%;其次是1v,达到了51.7%;抑制率一半以上的还有2o、2q和2C。2a对野燕麦的抑制同样也是最好的,达到了55.7%;其次是2q,达到了51.8%;抑制率达到和超过一半的还有1v、1o和1C。随着浓度的提高,药效可能会更好,其中2a具有很高的应用价值,值得后续的开发研究。

实施例12、化合物2a水分散粒剂(10%)的配制

称量2a 10g、润湿分散剂脂肪醇硫酸酯盐6g、崩解剂硫酸铵3g、载体高岭土补足至100g,充分混合均匀,经气流粉碎机粉碎成可湿性粉剂,加入流化床干燥造粒机中,用含有黏结剂聚乙二醇2g的水溶液,在(50℃-70℃)的流化床造粒,干燥机中干燥(60-80℃),筛分后得到10%2a水分散粒剂产品。

其他通式化合物的水分散粒剂均可通过上述方法制备。

实施例13、化合物2h水悬浮剂(25%)的配制

称量2b 25g、乳化剂NPEPO4 4.8g、脱糖木质素磺酸盐1.2g,连同加水总量70g加入到砂磨釜中进行磨研,1h后,将增稠剂黄原胶0.15g、防冻剂乙二醇4g及剩余水补足100%,加入体系中,进行调制,得到2b(25%)白色均相水悬浮剂。

其他通式化合物的水悬浮剂均可通过上述方法制备。

实施例14、化合物2i水乳剂(5%)的配制

称量2c 5g和乳化剂农乳501#2.8g、共乳化剂农乳601#7.2g加在一起,使溶解成均匀油相。将水、抗冻剂乙二醇5g混合在一起,成为均一水相。在常温25℃和高剪切乳化机搅拌下,将水相加入油相,形成分散良好的水乳剂。

其他通式化合物的水乳剂均可通过上述方法制备。

实施例15、化合物2j泡腾片剂(1%)的配制

称量2d 1g在80℃烘干24小时后密封包装,将草酸30g、碳酸氢钠30g机械粉碎到100目,硅藻土0.1g、乳糖3g、白炭黑31g和滑石粉5g混合搅拌均匀,粉碎到800目,与2d在混合搅拌机内搅拌10分钟后压制成泡腾片,密封包装即成产品。

其他通式化合物的片剂均可通过上述方法制备。

实施例16、化合物2l粒径20μm微胶囊(3%)的配制

称取2.0g壳聚糖和1.0g明胶溶于100ml 2%的醋酸溶液中,将2ml失水山梨酸钾单月桂酸酯在800rpm搅拌下,缓慢加入到上述溶液中,持续搅拌20min。再将1.0ml脂肪醇聚氧乙烯醚与2.0ml 7.5%2e乙醇溶液混合,1000rpm下搅拌乳化10min。而后将2e的乳化液在1200rpm搅拌下缓慢加入到已乳化好的壳聚糖与明胶的醋酸溶液中,继续搅拌45min直至混合液均匀分散。最后将制得的混合液在进口温度为135℃、出口温度为85℃的喷雾干燥器中进行固化干燥,所得粉末即为2e缓释微胶囊。经测定,药物成囊率83%,载药率3.0%,平均粒径20.5μm。

其他通式化合物的微胶囊均可通过上述方法制备。

实施例17、不同的2a化合物制剂对药效的影响(拟南芥下胚轴伸长实验)

拟南芥突变体det2-1种子用70%乙醇消毒1min,同时1%次氯酸钠15min,无菌水洗净播种于分装好培养基(1/2MS,0.8%琼脂,1%蔗糖和指定浓度化合物)的培养皿(Φ=9cm)中;4℃冰箱春化3天,随后转移至黑暗下,22℃/65%湿度条件下培养7天,整株拍照后,ImageJ软件测量其下胚轴长度。制剂浓度为10mg/L,配制方法为将各种浓度的制剂按标明的浓度,加水或DMSO稀释至所需的浓度。

所有化合物测试结果如表12所示。

表12拟南芥下胚轴伸长测定结果

从表12中的数据可以得知,本发明制备的2a化合物制剂对拟南芥下胚轴的药效都好于纯药剂的处理。其中水分散粒剂、水悬浮剂、水乳剂和微胶囊表现了较高的活性,在10mg/L的浓度下好于片剂和2a,突显了制剂对提高药效的普遍作用,对于后期的应用研究提供了一定的指导意义。

附所有化合物谱图表征数据

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2a)

1H NMR(300MHz,DMSO-d6)δ11.93(s,1H),7.10(q,J=1.2Hz,1H),4.03(t,J=7.1Hz,2H),2.73–2.54(m,4H),2.32(d,J=1.3Hz,3H),1.16(t,J=7.1Hz,3H).13C NMR(75MHz,DMSO-d6)δ172.15,169.76,156.27,134.70,126.01,60.07,29.79,28.48,14.14,11.13.HRMSm/z:243.0795(M+H+,calcd for C10H15N2O3S,243.0798)mp:163.2-164.6℃

3-(5-甲基噻唑-2-氨基)-1-丙磺酸(2b)

1H NMR(300MHz,D2O)δ6.83(s,1H),4.00(t,J=7.2Hz,2H),2.86(t,J=7.4Hz,2H),2.20–2.03(m,5H).13C NMR(75MHz,DMSO-d6)δ167.26,125.45,120.79,46.94,46.14,10.84.HRMSm/z:237.0365(M+H+,calcd for C7H13N2O3S2,237.0362)mp:301.2-302.8℃

2-甲氧乙基-N-(5-甲基-2-噻唑)氨基甲酸酯(2c)

1H NMR(300MHz,DMSO-d6)δ11.53(s,1H),7.10–6.99(m,1H),4.32–4.21(m,2H),3.62–3.51(m,2H),3.28(s,3H),2.32(d,J=1.3Hz,3H).13C NMR(75MHz,DMSO-d6)δ158.13,153.81,134.83,126.07,69.98,64.49,58.06,11.12.HRMSm/z:217.0643(M+H+,calcd for C8H13N2O3S,217.0641)mp:146.2-147.2℃

[N-(5-甲基-2-噻唑)硫代甲酰胺]氨基甲酸乙酯(2d)

1H NMR(300MHz,CDCl3-d)δ12.92(s,1H),11.70(s,1H),7.28(t,J=1.2Hz,1H),4.23(q,J=7.1Hz,2H),2.36(d,J=1.3Hz,3H),1.26(t,J=7.1Hz,3H).13C NMR(75MHz,DMSO-d6)δ175.64,157.62,153.69,134.02,127.05,62.50,14.16,11.23.HRMSm/z:246.0364(M+H+,calcd for C8H12N2O3S2,246.0365)mp:163.3-164.9℃

N-[4-三氟甲氧基苯基]-N-[5-甲基-2-噻唑]脲(2e)

1H NMR(300MHz,DMSO-d6)δ10.49(s,1H),9.14(s,1H),7.65–7.53(m,2H),7.31(d,J=8.5Hz,2H),7.04(d,J=1.6Hz,1H),2.35–2.28(m,3H).13C NMR(75MHz,DMSO-d6)δ158.40,152.29,143.23,138.26,133.19,128.02–112.55(m),11.27.HRMSm/z:318.0519(M+H+,calcd for C12H11F3N3O2S,318.0519)mp:201.1-202.3℃

4-硝基苄基-N-(5-甲基-2-噻唑)氨基甲酸酯(2f)

1H NMR(300MHz,DMSO-d6)δ11.79(s,1H),8.32–8.21(m,2H),7.73–7.63(m,2H),7.06(d,J=1.5Hz,1H),5.36(s,2H),2.32(d,J=1.3Hz,3H).13C NMR(75MHz,DMSO-d6)δ157.98,153.68,147.29,144.05,134.91,128.53,126.25,123.73,65.52,11.25.HRMSm/z:294.0547(M+H+,calcd for C12H12N3O4S,294.0543)mp:196.4-198.0℃

4-甲氧羰基-N-(5-甲基噻唑-2-氨基)苯甲酸(2g)

1H NMR(300MHz,CDCl3)δ12.68(s,1H),8.19(d,J=8.4Hz,2H),8.08(d,J=8.4Hz,2H),7.25(s,1H),3.90(s,3H),2.51(s,3H).

13C NMR(75MHz,DMSO-d6)δ167.84,166.87,162.80,134.88,134.08,134.05,133.89,129.25,122.45,52.17,12.30.HRMSm/z:277.0642(M+H+,calcd for C13H13N2O3S,277.0641)mp:198.2-200.0℃

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸丙酯(2h)

1H NMR(300MHz,DMSO-d6)δ12.23(s,1H),δ7.45(s,1H),4.12(t,J=7.5Hz,2H),2.60–2.43(m,2H),2.32(s,3H),1.73(h,J=7.8Hz,2H),1.01(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.14,165.60,134.88,122.45,66.20,32.19,30.93,21.93,12.30,10.30.HRMSm/z:256.0882(M+H+,calcd for C11H17N2O3S,256.0888)mp:178.9-179.3℃

2-氯-4-(5-甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2i)

1H NMR(300MHz,DMSO-d6)δ12.82(s,1H),7.45(s,1H),4.36(t,J=7.3Hz,2H),3.94(t,J=7.3Hz,2H),2.60–2.43(m,4H),2.31(s,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.14,165.60,134.88,122.45,64.69,41.49,32.19,30.93,12.30.HRMSm/z:277.0363(M+H+,calcd for C10H14ClN2O3S,277.0365)mp:181.3-182.6℃

2,2-二氯-4-(5-甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2j)

1HNMR(300MHz,DMSO-d6)δ12.89(s,1H),7.50(s,1H),6.56(t,J=7.0Hz,1H),4.60(d,J=6.9Hz,2H),2.61–2.42(m,4H),2.33(s,3H).13CNMR(75MHz,DMSO-d6)δ173.85,172.87,165.60,134.88,122.45,70.13,68.52,32.19,30.93,12.30.HRMSm/z:311.1753(M+H+,calcd for C10H14Cl2N2O3S,311.1756)mp:200.1-201.4℃

2,2,2-三氯-4-(5-甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2k)

1HNMR(300MHz,DMSO-d6)δ12.51(s,1H),7.52(s,1H),4.84(s,2H),2.60–2.43(m,4H),2.34(s,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.00,165.60,134.88,122.45,95.10,73.93,32.19,30.93,12.30.HRMSm/z:345.6175(M+H+,calcd for C10H14Cl3N2O3S,345.6180)mp:238.7-239.9℃

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸异丙酯(2l)

1H NMR(300MHz,DMSO-d6)δ12.48(s,1H),7.52(s,1H),4.90(p,J=6.8Hz,1H),2.60–2.43(m,4H),2.34(s,3H),1.14(d,J=6.8Hz,6H).13C NMR(75MHz,DMSO-d6)δ173.85,173.28,165.60,134.88,122.45,67.37,33.01,30.93,21.92,12.30.HRMSm/z:256.0881(M+H+,calcd for C11H17N2O3S,256.0880)mp:167.6-169.0℃

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸异丁酯(2m)

1H NMR(300MHz,DMSO-d6)δ12.32(s,1H),δ7.45(s,1H),3.88(d,J=7.0Hz,2H),2.60–2.43(m,4H),2.32(s,3H),1.87(dt,J=13.7,6.8Hz,1H),0.88(d,J=6.8Hz,6H). 13C NMR(75MHz,DMSO-d6)δ173.85,172.87,165.60,134.88,122.45,70.79,32.19,30.93,27.70,18.86,12.30.HRMSm/z:271.1010(M+H+,calcd for C12H19N2O3S,271.1009)mp:177.3-178.7℃

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸新戊酯(2n)

1HNMR(300MHz,DMSO-d6)δ12.36(s,1H),δ7.45(s,1H),3.94(s,2H),2.60–2.43(m,3H),2.31(s,3H),1.03(s,9H).13C NMR(75MHz,DMSO-d6)δ173.85,173.00,165.60,134.88,122.45,73.90,32.19,31.40,30.93,26.50,12.30.HRMSm/z:285.1190(M+H+,calcd for C13H21N2O3S,285.1188)mp:182.3-183.4℃

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸甲氧甲酯(2o)

1HNMR(300MHz,DMSO-d6)δ12.84(s,1H),7.45(s,1H),6.16(s,2H),3.21(s,3H),2.60–2.43(m,3H),2.32(s,3H).13C NMR(75MHz,DMSO-d6)δ173.85,171.28,165.60,134.88,122.45,93.75,56.37,32.19,30.93,12.30.HRMSm/z:259.0678(M+H+,calcd for C10H15N2O4S,259.0677)mp:175.8-176.9℃

4-(5-甲基噻唑-2-氨基)-4-氧代丁酸乙二单酯(2p)

1H NMR(300MHz,DMSO-d6)δ12.82(s,1H),7.45(s,1H),4.97(t,J=5.0Hz,1H),4.22(t,J=7.2Hz,2H),3.71(td,J=7.2,5.0Hz,2H),2.60–2.43(m,4H),2.31(s,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.14,165.60,134.88,122.45,65.69,60.99,32.19,30.93,12.30.HRMSm/z:256.0677(M+H+,calcd for C10H15N2O4S,259.0676)mp:200.3-201.8℃

2-(4-(5-甲基噻唑-2-氨基)-4-氧代丁酰氧基)乙酸(2q)

1HNMR(300MHz,DMSO-d6)δ14.42(s,1H),δ11.32(s,1H),7.46(s,1H),4.64(s,2H),2.60–2.43(m,4H),2.32(s,3H).13C NMR(75MHz,DMSO-d6)δ173.85,172.68,170.90,165.60,134.88,122.45,63.77,32.19,30.93,12.30.HRMSm/z:273.0487(M+H+,calcd for C10H13N2O5S,273.0483)mp:252.7-253.9℃

2-(4-(5-甲基噻唑-2-氨基)-4-氧代丁酰氧基)乙酸甲酯(2r)

1HNMR(300MHz,DMSO-d6)δ11.36(s,1H),δ7.45(s,1H),4.66(s,2H),3.72(s,3H),2.60–2.43(m,4H),2.31(s,3H).13C NMR(75MHz,DMSO-d6)δ173.85,172.68,169.48,165.60,134.88,122.45,64.41,52.24,32.19,30.93,12.30.HRMSm/z:286.0654(M+H+,calcd for C11H15N2O5S,286.0656)mp:212.7-214.5℃

4-(5-乙基噻唑-2-氨基)-4-氧代丁酸乙酯(2s)

1H NMR(300MHz,DMSO-d6)δ12.36(s,1H),δ7.47(s,1H),3.98(q,J=8.0Hz,2H),2.68–2.43(m,6H),1.27(t,J=8.0Hz,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,167.10,135.38,134.31,60.86,32.19,30.93,24.69,14.77,14.21.HRMSm/z:256.0881(M+H+,calcd for C11H17N2O3S,256.0880)mp:172.6-173.9℃

4-(5-异丙基噻唑-2-氨基)-4-氧代丁酸乙酯(2t)

1H NMR(300MHz,DMSO-d6)δ11.83(s,1H),δ7.57(s,1H),3.98(q,J=8.0Hz,2H),3.23(p,J=6.8Hz,1H),2.60–2.43(m,4H),1.25(d,J=6.8Hz,6H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,163.85,140.79,132.66,60.86,35.07,32.19,30.93,19.14,14.21.HRMSm/z:270.1033(M+H+,calcd for C12H19N2O3S,270.1030)mp:167.3-168.6℃

4-(5-环丙基噻唑-2-氨基)-4-氧代丁酸乙酯(2u)

1H NMR(300MHz,DMSO-d6)δ12.09(s,1H),7.22(s,1H),3.98(q,J=8.0Hz,2H),2.61–2.42(m,3H),1.50(p,J=7.0Hz,1H),1.07(t,J=8.0Hz,3H),0.93–0.74(m,2H),0.71(tdd,J=7.2,6.0,3.9Hz,2H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,163.85,137.96,129.53,60.86,32.19,30.93,16.35,14.21,10.12.HRMSm/z:270.0884(M+H+,calcd for C12H17N2O3S,270.0884)mp:200.1-201.8℃

4-(5-氯甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2v)

1H NMR(300MHz,DMSO-d6)δ12.03(s,1H),δ7.57(s,1H),4.64(s,2H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,167.10,145.11,124.87,60.86,42.58,32.19,30.93,14.21.HRMSm/z:276.0332(M+H+,calcd for C10H14ClN2O3S,276.0331)mp:190.2.4-192.0℃

4-(5-二氯甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2w)

1H NMR(300MHz,DMSO-d6)δ12.18(s,1H),δ7.83(s,1H),7.50(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,163.85,151.97,122.66,64.59,60.86,32.19,30.93,14.21.HRMSm/z:309.9942(M+H+,calcd for C10H13Cl2N2O3S,309.9941)mp:204.6.4-206.3℃

4-(5-三氯甲基噻唑-2-氨基)-4-氧代丁酸乙酯(2x)

1H NMR(300MHz,DMSO-d6)δ12.29(s,1H),δ7.97(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,165.59,144.54,126.64,101.80,60.86,32.19,30.93,14.21.HRMSm/z:343.9556(M+H+,calcd for C10H12Cl3N2O3S,343.9558)mp:248.6-250.1℃

4-(5-乙酰基噻唑-2-氨基)-4-氧代丁酸乙酯(2y)

1H NMR(300MHz,DMSO-d6)δ8.74(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),2.36(s,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ193.79,173.85,173.03,164.80,138.77,131.98,60.86,32.19,30.93,25.77,14.21.HRMSm/z:270.0680(M+H+,calcd for C11H15N2O4S,270.0678)mp:193.1-194.8℃

4-(5-丙酰基噻唑-2-氨基)-4-氧代丁酸乙酯(2z)

1H NMR(300MHz,DMSO-d6)δ12.65(s,1H),8.79(s,1H),3.98(q,J=8.0Hz,2H),3.26(q,J=8.0Hz,2H),2.60–2.43(m,4H),1.27(t,J=8.0Hz,3H),1.07(t,J=8.0Hz,3H). 13C NMR(75MHz,DMSO-d6)δ195.43,173.85,173.03,164.80,137.52,126.55,60.86,32.28,32.19,30.93,14.21,8.35.HRMSm/z:284.0860(M+H+,calcd for C12H17N2O4S,284.0864)mp:216.1-218.0℃

4-(5-甲氧酰基噻唑-2-氨基)-4-氧代丁酸乙酯(2A)

1H NMR(300MHz,DMSO-d6)δ12.57(s,1H),δ8.70(s,1H),3.98(q,J=8.0Hz,2H),3.83(s,3H),2.60–2.43(m,4H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,164.80,164.14,133.41,126.03,60.86,52.70,32.19,30.93,14.21.HRMSm/z:286.0652(M+H+,calcd for C11H15N2O5S,286.0650)mp:210.0-211.5℃

4-(5-乙酰氧基噻唑-2-氨基)-4-氧代丁酸乙酯(2B)

1H NMR(300MHz,DMSO-d6)δ14.17(s,1H),δ7.28(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),2.08(s,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,167.61,157.25,155.83,122.26,60.86,32.19,30.93,20.83,14.21.HRMSm/z:286.0645(M+H+,calcd for C11H15N2O5S,286.0644)mp:212.1-214.0℃

4-(5-二甲氨基噻唑-2-氨基)-4-氧代丁酸乙酯(2C)

1H NMR(300MHz,DMSO-d6)δ11.43(s,1H),δ6.75(s,1H),3.98(q,J=8.0Hz,2H),2.98(s,6H),2.60–2.43(m,4H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,167.54,142.78,130.13,60.86,42.42,32.19,30.93,14.21.HRMSm/z:271.0910(M+H+,calcd for C11H18N3O3S,271.0912)mp:200.1-201.8℃

4-(5-乙酰氨基噻唑-2-氨基)-4-氧代丁酸乙酯(2D)

1H NMR(300MHz,DMSO-d6)δ11.58(s,2H),8.58(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),2.27(s,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,169.16,165.99,140.12,137.07,60.86,32.19,30.93,23.07,14.21.HRMSm/z:285.0785(M+H+,calcd for C11H16N3O4S,285.0785)mp:284.3-285.6℃

4-(5-甲氧基噻唑-2-氨基)-4-氧代丁酸乙酯(2E)

1H NMR(300MHz,DMSO-d6)δ12.28(s,1H),δ7.20(s,1H),3.98(q,J=8.0Hz,2H),3.81(s,3H),2.60–2.43(m,4H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,155.83,150.42,109.89,60.86,59.57,32.19,30.93,14.21.HRMSm/z: 258.0670(M+H+,calcd for C10H15N2O4S,258.0670)mp:190.7-191.8℃

4-(5-乙氧基噻唑-2-氨基)-4-氧代丁酸乙酯(2F)

1H NMR(300MHz,DMSO-d6)δ12.30(s,1H),δ7.21(s,1H),4.05(dq,J=39.0,8.0Hz,4H),2.60–2.43(m,4H),1.24(t,J=8.0Hz,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,155.83,148.85,109.67,66.70,60.86,32.19,30.93,14.21,14.03.HRMSm/z:272.0876(M+H+,calcd for C11H17N2O4S,272.0877)mp:188.7-189.5℃

4-(5-甲硫基噻唑-2-氨基)-4-氧代丁酸乙酯(2G)

1H NMR(300MHz,DMSO-d6)δ12.67(s,1H),δ8.12(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),2.37(s,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,162.89,148.97,126.74,60.86,32.19,30.93,17.66,14.21.HRMSm/z:274.0467(M+H+,calcd for C10H15N2O3S2,274.0467)mp:190.9.1-192.3℃

4-(5-甲二硫基噻唑-2-氨基)-4-氧代丁酸乙酯(2H)

1H NMR(300MHz,DMSO-d6)δ12.71(s,1H),δ8.13(s,1H),3.98(q,J=8.0Hz,2H),2.60–2.43(m,4H),2.00(s,3H),1.07(t,J=8.0Hz,3H).13C NMR(75MHz,DMSO-d6)δ173.85,173.03,162.89,153.67,135.24,60.86,32.19,30.93,22.67,14.21.HRMSm/z:306.0644(M+H+,calcd for C10H15N2O3S3,306.0645)mp:215.6-217.3℃

4-(5-硝基噻唑-2-氨基)-4-氧代丁酸乙酯(2I)

1H NMR(300 MHz,DMSO-d6)δ12.94(s,1H),9.11(s,1H),3.98(q,J=8.0 Hz,2H),2.62–2.41(m,4H),1.07(t,J=8.0 Hz,3H).13C NMR(75 MHz,DMSO-d6)δ173.85,173.03,166.28,146.28,136.45,60.86,32.19,30.93,14.21.HRMSm/z:273.0423(M+H+,calcd for C9H12N3O4S,273.0423)mp:243.6-245.3℃。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1