掺杂稀土元素的氮化镓粉体材料的制备方法及装置的制作方法

文档序号:3750913阅读:338来源:国知局
专利名称:掺杂稀土元素的氮化镓粉体材料的制备方法及装置的制作方法
技术领域
本发明涉及半导体材料领域,尤其涉及掺杂稀土元素的氮化镓粉体材料的制备方
法及装置。
背景技术
第三代半导体材料GaN (Gallium Nitride,氮化镓)及其相关器件,由于在光显示、光存储、激光打印、光照明、军事以及医疗等领域有着广阔的应用前景,因此以GaN为代表的第三代半导体材料被誉为IT产业新的发动机。
GaN是ー种宽禁带半导体,其禁带宽度达3. 4eV,因此在GaN中可以掺入各种稀土离子,而不会发生发光猝灭。稀土离子的发光波段可以覆盖从紫外到红外的区域,而且稀土离子的发光跃迁主要产生于部分填满的4f能级之间跃迁,受晶体场环境影响较少,发光峰尖鋭,其色纯度较高。目前,采用Ga金属和稀土体系氮化合成掺稀土的GaN粉体材料是一种简单有效的方法。如Huaqiang Wu等用Ga (Gallium,镓)金属、Er (Erbium,铒)金属、Bi (Bismuth,秘)金属以及氨气合成了掺Er的GaN粉体,对其结构和发光等做了研^1Huaqiang ffu, Carl B. Poitras, Michal Lipson, and Michael G. Spencer, Greenemission from Er-doped GaN powder, APPLIED PHYSICS LETTERS 86, 191918, 2005)。该GaN粉体作为活性发光材料,在电致发光器件、平板显示、激光二极管等领域都有重要的应用。但是这种方法本身存在很大的缺陷。一般情况下Ga金属和稀土体系氮化时需要添加催化剂Bi,是为了避免氮化过程中形成GaN硬壳,阻止反应的进行。因此原料中出现了第二相Bi,需要后续的退火处理才能去除,而这会影响稀土离子的有效掺入量。所以如果能从根本上避免GaN硬壳的形成,那么合成过程就不用添加催化剂Bi 了,同时也避免了后续的退火处理过程。其次,稀土离子在掺入GaN时一般取代的是Ga3+的晶格格位,而稀土离子的半径普遍比Ga3+的半径要大,Ga3+的半径为62 pm,而稀土离子半径处于84. 8 pm (Lu3+)和103. 4Pm (Ce3+)之间,从离子半径匹配的角度来看,稀土离子掺入后会引起较大的晶格畸变,而这种晶格畸变的产生又会引入较多的点缺陷,从而降低了 GaN粉体的发光性能。再者所合成的掺稀土 GaN粉体大小不一,发光均匀性很差,影响了 GaN粉体材料的实用性。

发明内容
本发明所要解决的技术问题是,提供掺杂稀土元素的氮化镓粉体材料的制备方法
及装置。为了解决上述问题,本发明提供了一种掺杂稀土元素的氮化镓粉体材料的制备方法,包括
步骤一,将含有镓元素的原料装入反应室的底部,至覆盖位于反应室底部的磁子;
步骤ニ,通入氮气或惰性气体吹扫反应室并保持气流;步骤三,升高反应室内的温度至第一温度,启动磁力搅拌器以搅拌原料;
步骤四,继续升高反应室内的温度至第二温度,切换气流入ロ处的气体为氨气;
步骤五,继续升高反应室内的温度至第三温度,并保持第三温度;
步骤六,关闭磁力搅拌器,并快速冷却反应室。所述含有镓元素的原料包括镓元素、稀土元素与III族元素,所述稀土元素为Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb中的ー种或多种,所述III族元素为硼或铝。所述镓元素、稀土元素和III族元素的原子数目配比为(1-x-y) x y,O. 1% = X = 5. 0%, O. Ix = y = X。所述第一温度的范围为200 V至400 V,所述第二温度的范围为500 V至700 V,所述第三温度的范围为900°C至1100°C。所述步骤ニ中通入氮气或惰性气体吹扫反应室的时间范围为ー小时至两小时,所述吹扫的气体的流量范围为200标况晕升姆分至400标况晕升姆分。所述步骤四中氨气的流量范围为200标况毫升毎分至400标况毫升毎分。所述步骤五中保持第三温度的时间范围为2小时至4小吋。为了解决上述问题,本发明还提供了一种采用上述的制备方法以制备掺杂稀土元素的氮化镓粉体材料的装置,包括一反应室,所述反应室还包括ー磁子,位于所述反应室的底部,所述装置还包括一磁力搅拌器,位于所述反应室底部的外部,且与所述磁子位置相对,用于配合磁子搅拌反应室内的原料。所述装置还包括ー炉体,位于所述反应室的外围,用于调节反应室的温度,所述炉体进ー步包括加热设备,当需要増加反应室内的温度吋,则启动炉体的加热设备,当需要降低反应室内的温度时候,则关闭炉体的加热设备,采用炉体外部空气冷却反应室的温度。所述装置还包括ー热电偶,通过所述反应室的顶部与反应室外部相连,用于测量反应室内的温度。本发明的优点在于,首先,采用磁力搅拌器对原料充分搅拌,大大増加了原料在反应过程中的流动性,从而避免了 GaN硬壳的形成,省去了添加催化剂Bi的环节,能在很大程度上改善掺稀土 GaN粉体材料发光均匀性差的问题,从而提高了材料的实用性;其次,采用了 III族元素B或Al与稀土元素按一定配比进行共掺的方法,从而能在很大程度上改善因为稀土离子和Ga3+之间较大的半径失配而造成的GaN粉体晶格畸变,从而提高GaN粉体的发光性能。


图I是本发明提供的制备掺杂稀土元素的氮化镓粉体材料的装置第一具体实施方式
的结构示意 图2是本发明提供的制备掺杂稀土元素的氮化镓粉体材料的方法第二具体实施方式
的步骤流程图。
具体实施例方式下面结合附图对本发明提供的制备掺杂稀土元素的氮化镓粉体材料的方法及装置的具体实施方式
做详细说明。
第一
具体实施例方式 图I所示为本发明提供的制备掺杂稀土元素的氮化镓粉体材料的装置第一具体实施方式
的结构示意图。本具体实施方式
提供一种制备掺杂稀土元素的氮化镓粉体材料的装置,包括ー炉体18和一反应室14,所述反应室14位于炉体18内部,所述炉体18用于调节反应室14的温度。所述反应室14包括ー带孔的法兰19,所述法兰19位于反应室14的顶端,用于密封装置,以防止反应室14中的气体泄漏。所述反应室14的气路包括ー气流入ロ 12和ー气流出ロ 13,所述气流入ロ 12和气流出ロ 13分别通过法兰19中不同的孔与反应室14外部相连,所述气流入ロ 12和气流出ロ 13分别用于将反应室14外部的气体导入至反应室14内部以及将反应室14内部的空气排出至反应室14外部,例如将反应室14外部的氨气通过气流入ロ 12导入至反应室14内部參与反应,以及将反应室14内部的氧气通过气流出ロ 13排出至反应室14外部。 所述反应室14还包括一耐高温的磁子16,位于所述反应室14的底部,所述装置还包括一磁力搅拌器17,位于所述反应室14的外部,且与所述磁子16位置相对,用于配合磁子16搅拌反应室14内的原料15。磁力搅拌器17是通过变化磁场的方向使得磁子16作出相应的转动,从而实现搅拌原料15。作为可选的实施方式,所述耐高温的磁子16可采用将ー磁子密封至一石英管中,进一步提闻磁子16的耐闻温能力。作为可选的实施方式,法兰19的材料为不锈钢,本实施方式的法兰19的材料不限
于此,还可选用铸铁等。作为可选的实施方式,还包括一热电偶11,通过所述反应室14的顶部与反应室14外部相连,用于测量反应室14内的温度。作为可选的实施方式,所述热电偶11可以通过法兰19的孔与反应室14外部相连,以实现測量反应室14内的温度。所述热电偶11对应的法兰19的孔区别于所述气流入ロ 12和气流出ロ 13所对应的法兰19的孔。所述炉体18具有加热设备,当需要增加反应室14内的温度时,则启动炉体18的加热设备,当需要降低反应室14内的温度时候,则关闭炉体18的加热设备,采用炉体18外部空气冷却反应室14的温度。第二
具体实施例方式 图2所示为本发明提供的制备掺杂稀土元素的氮化镓粉体材料的方法第二具体实施方式
的步骤流程图。一种制备掺杂稀土元素的氮化镓粉体材料的方法,包括步骤
S101,将含有镓元素的原料装入反应室的底部至覆盖位于反应室底部的磁子;
S102,从气流入ロ处通入氮气或惰性气体吹扫反应室并保持气流;
S103,利用炉体升高反应室内的温度至第一温度,启动磁力搅拌器以搅拌原料;
S104,继续利用炉体升高反应室内的温度至第二温度,切换气流入ロ处的气体为氨
气;
S105,继续利用炉体升高反应室内的温度至第三温度,并保持第三温度;
S106,关闭磁力搅拌器,并利用炉体快速冷却反应室。步骤SlOl中,所述含有镓元素的原料包括镓元素、稀土元素与III族元素,所述稀土元素为 Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm 和 Yb 中的ー种或多种,所述 III 族
元素为硼或招。所述镓元素、稀土元素和III族元素的原子数目配比为(1-x-y) x y,O. 1% = X = 5. 0%,0. Ix 刍 y 刍 X。B3+和Al3+的半径分别为20 pm和50 pm,所以如果在GaN粉体中按照适当的配比共掺B3+(或Al3+)和稀土离子,将能在一定程度上改善晶格畸变的影响。而且因为B3+(或Al3+)是ー种中性组分,所以掺入少量的B3+(或Al3+)不会对GaN粉体的发光性能有副作用。本实施例采用了 III族元素B或Al与稀土元素按一定配比进行共掺的方法,从而能在很大程度上改善因为稀土离子和Ga3+之间较大的半径失配而造成的GaN粉体晶格畸变,从而提高GaN粉体的发光性能。作为可选的实施方式,步骤SlOl中,所述原料装入装置的底部除了要覆盖位于装置底部的磁子,进ー步可尽量靠近热电偶。 所述步骤S102中通入氮气或惰性气体吹扫反应室的时间范围为ー小时至两小时,所述吹扫的气体的流量范围为200 sccm (standard-state cubic centimeter perminute,标况毫升姆分)至400 sccm。步骤S102的目的在于除去反应室内的杂质气体,尤其是氧气,防止原料被氧化。步骤S103至步骤S105中利用炉体升高反应室内的温度的方式是采用启动炉体内的加热设备。其中,所述步骤中S103中第一温度的范围为200°C至400°C,在上述温度范围内,根据Ga和多数稀土金属的相图,此温度区间下原料可形成共熔ニ元体系。开启磁力搅拌器,可以实现进ー步排除氧气。所述步骤S104中第二温度的范围为500°C至700°C,在上述温度区间内,反应室内的氧气基本排净,氨气逐步被分解为NH、NH2, N2, H和H2。此时通入氨气可集中氮化反应。所述步骤S104中氨气的流量范围为200 sccm至400 sccm。所述步骤S105中,所述第三温度的范围为900°C至1100°C,所述第三温度根据稀土金属的不同而进行调节。所述步骤S105中,采用氨气在第三温度下恒温氮化,且保持第三温度的时间范围为2小时至4小时。由于Ga熔点29. 78°C,和稀土金属形成共熔体系,在整个氮化过程中都是以液态存在。可以考虑使共熔体系的原料在反应过程中处于流动状态,使得所有原料都与氨气充分接触,这样一方面可以阻止GaN硬壳的形成,而ー方面也使得产物更加均匀。所述步骤S106中的快速冷却是通过关闭炉体的加热设备,采用炉体外部空气冷却反应室的温度,即采用空冷法。快速冷却后即可取出稀土离子和III族元素离子共掺的GaN粉体。得到的GaN粉体颗粒尺寸均匀,发光均匀性好。本实施方式中采用磁力搅拌器对原料充分搅拌,大大増加了原料在反应室内反应过程中的流动性,从而避免了 GaN硬壳的形成,省去了添加催化剂Bi的环节,能在很大程度上改善掺稀土 GaN粉体材料发光均匀性差的问题,从而提高了材料的实用性。接下来给出本发明的几个实施例 实施例一
在本实施例中,x = 0. 1%, y = O. 01%,稀土元素为Er, III族元素为硼B。将上述称量好的原料混合装入装置反应器底部,使之覆盖磁子,此时磁力搅拌器处于关闭状态。通入高纯氮气(流量为400 sccm)吹扫反应器一小时后升温,保持氮气流,体系温度高于300°C时打开磁力搅拌器。继续升温至600°C时气体切換为氨气(流量为200 sccm)。体系升温至1000°C时恒温氮化,保温时 间4个小吋。反应完成后关闭磁力搅拌器,快速冷却后即可取出Er3+和B3+共掺的GaN粉体。较之不共掺B3+的同浓度掺Er3+的GaN粉体,荧光强度增强5%至 20%。实施例ニ
在本实施例中,X = 2. 5%, y = O. 25%,稀土元素为Er, III族元素为硼B。将上述称量好的原料混合装入装置反应器底部,使之覆盖磁子,此时磁力搅拌器处于关闭状态。通入高纯氩气(流量为300 sccm)吹扫反应器一个小时二十分钟后升温,保持氩气流,体系温度高于200°C时打开磁力搅拌器。继续升温至650°C时气体切换为氨气(流量为300 sccm)。体系升温至1050°C时恒温氮化,保温时间4个小吋。反应完成后关闭磁力搅拌器,快速冷却后即可取出Er3+和B3+共掺的GaN粉体。较之不共掺B3+的同浓度掺Er3+的GaN粉体,荧光强度增强5%至20%。实施例三
在本实施例中,X = 5%, y = O. 5%,稀土元素为Er, III族元素为硼B。将上述称量好的原料混合装入装置反应器底部,使之覆盖磁子,此时磁力搅拌器处于关闭状态。通入高纯氮气(流量为400 sccm)吹扫反应器两个小时后升温,保持氮气流,体系温度高于400°C时打开磁力搅拌器。继续升温至700°C时气体切換为氨气(流量为400 sccm)。体系升温至1100°C时恒温氮化,保温时间4个小吋。反应完成后关闭磁力搅拌器,快速冷却后即可取出Er3+和B3+共掺的GaN粉体。较之不共掺B3+的同浓度掺Er3+的GaN粉体,荧光强度增强5%至 20%。实施例四
在本实施例中,X = 5%,y = O. 5%,稀土元素为Tm, III族元素为金属招Al。将上述称量好的原料混合装入装置反应器底部,使之覆盖磁子,此时磁力搅拌器处于关闭状态。通入高纯氩气(流量为200 sccm)吹扫反应器一个小时后升温,保持氩气流,体系温度高于300°C时打开磁力搅拌器。继续升温至600°C时气体切換为氨气(流量为200 sccm)。体系升温至900°C时恒温氮化,保温时间4个小吋。反应完成后关闭磁力搅拌器,快速冷却后即可取出Tm3+和III族元素Al3+共掺的GaN粉体。较之不共掺III族元素Al3+的同浓度掺Tm3+的GaN粉体,荧光强度增强5%至20%。实施例五
在本实施例中,X = 1%, y = O. 1%,稀土元素为Eu, III族元素为金属招Al。将上述称量好的原料混合装入装置反应器底部,使之覆盖磁子,此时磁力搅拌器处于关闭状态。通入高纯氮气(流量为300 sccm)吹扫反应器一个小时后升温,保持氮气流,体系温度高于300°C时打开磁力搅拌器。继续升温至600°C时气体切換为氨气(流量为300 sccm)。体系升温至950°C时恒温氮化,保温时间4个小吋。反应完成后关闭磁力搅拌器,快速冷却后即可取出Eu3+和III族元素Al3+共掺的GaN粉体。较之不共掺III族元素Al3+的同浓度掺Eu3+的GaN粉体,荧光强度增强5%至20%。实施例六在本实施例中,X = 5%, y = O. 5%,稀土元素为Eu, III族元素为金属招Al。将上述称量好的原料混合装入装置反应器底部,使之覆盖磁子,此时磁力搅拌器处于关闭状态。通入高纯氮气(流量为400 sccm)吹扫反应器一个小时后升温,保持氮气流,体系温度高于300°C时打开磁力搅拌器。继续升温至600°C时气体切換为氨气(流量为400 sccm)。体系升温至1000°C时恒温氮化,保温时间4个小吋。反应完成后关闭磁力搅拌器,快速冷却后即可取出Eu3+和III族元素Al3+共掺的GaN粉体。较之不共掺III族元素Al3+的同浓度掺Eu3+的GaN粉体,荧光强度增强5%至20%。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和 润饰,这些改进和润饰也应视为本发明的保护范围。
权利要求
1.一种掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于,包括步骤一,将含有镓元素的原料装入反应室的底部,至覆盖位于反应室底部的磁子;步骤二,通入氮气或惰性气体吹扫反应室并保持气流;步骤三,升高反应室内的温度至第一温度,启动磁力搅拌器以搅拌原料;步骤四,继续利升高反应室内的温度至第二温度,切换通入的气体为氨气;步骤五,继续升高反应室内的温度至第三温度,并保持第三温度;步骤六,关闭磁力搅拌器,并冷却反应室。
2.根据权利要求I所述的掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于,所述含有镓元素的原料包括镓元素、稀土元素与III族元素,所述稀土元素为Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb中的一种或多种,所述III族元素为硼或铝。
3.根据权利要求2所述的掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于,所述镓元素、稀土元素和III族元素的原子数目配比为(1-x-y) xy,0. 1% ^ x ^ 5. 0%,O. I χ — y — χ ο
4.根据权利要求I所述的掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于,所述第一温度的范围为200 0C至400 0C,所述第二温度的范围为500 °C至700 °C,所述第三温度的范围为9oo°c至iioo°c。
5.根据权利要求I所述的掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于,所述步骤二中通入氮气或惰性气体吹扫反应室的时间范围为一小时至两小时,所述吹扫的气体的流量范围为200标况晕升每分至400标况晕升每分。
6.根据权利要求I所述的掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于,所述步骤四中氨气的流量范围为200标况晕升每分至400标况晕升每分。
7.根据权利要求I所述的掺杂稀土元素的氮化镓粉体材料的制备方法,其特征在于, 所述步骤五中保持第三温度的时间范围为2小时至4小时。
8.一种采用如权利要求I所述的制备方法以制备掺杂稀土元素的氮化镓粉体材料的装置,包括一反应室,其特征在于,所述反应室还包括一磁子,位于所述反应室的底部,所述装置还包括一磁力搅拌器,位于所述反应室底部的外部,且与所述磁子位置相对,用于配合磁子搅拌反应室内的原料。
9.根据权利要求8所述的装置,其特征在于,还包括一炉体,位于所述反应室的外围,用于调节反应室的温度,所述炉体进一步包括加热设备,当需要增加反应室内的温度时,则启动炉体的加热设备,当需要降低反应室内的温度时候,则关闭炉体的加热设备,采用炉体外部空气冷却反应室的温度。
10.根据权利要求9所述的装置,其特征在于,还包括一热电偶,通过所述反应室的顶部与反应室外部相连,用于测量反应室内的温度。
全文摘要
本发明提供一种掺杂稀土元素的氮化镓粉体材料的制备方法,包括步骤将含有镓元素的原料装入装置的底部至覆盖位于装置底部的磁子;从气流入口处通入氮气或惰性气体吹扫反应室并保持气流;利用炉体升高反应室内的温度至第一温度,启动磁力搅拌器;继续利用炉体升高反应室内的温度至第二温度,切换气流入口处的气体为氨气;继续利用炉体升高反应室内的温度至第三温度,并保持第三温度;关闭磁力搅拌器,并利用炉体快速冷却反应室。本发明还提供一种装置,包括一反应室,反应室包括一位于所述反应室的底部的磁子和一位于反应室底部的外部的磁力搅拌器,磁力搅拌器与磁子位置相对,用于配合磁子搅拌反应室内的原料。
文档编号C09K11/80GK102660282SQ20121007941
公开日2012年9月12日 申请日期2012年3月23日 优先权日2012年3月23日
发明者任国强, 史建平, 徐科, 曾雄辉, 朱钰, 王建峰, 韩佰祥 申请人:中国科学院苏州纳米技术与纳米仿生研究所, 苏州纳维科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1