本发明涉及固体发光材料技术领域,具体的说是一种近红外量子剪裁下转换发光的Eu-Nd-Yb共掺SrAl2O4的高效宽谱量子剪裁发光材料。
背景技术:
近年来,由于全球性的能源危机及严重环境污染,以太阳能为代表的可再生清洁能源成为新一代能源体系发展的方向。晶硅太阳能电池是目前最合理、有效利用太阳能的装置而得以广泛应用。然而,在实际生产中其光电转换效率最高仅达19.0%,远低于31%的最大理论值。
光谱错配是导致晶硅太阳能电池效率低下的一个重要原因。在照射到地面的太阳光谱中(300~2500 nm),仅900~1100 nm部分才能被电池充分吸收利用,而对于能量较高的紫外-可见光子除有效激发电池中的电子-空穴对外,大部分能量以晶格热振动而损耗。因此,解决该问题的一个行之有效的方法是量子剪裁,即通过稀土离子把一个高能的紫外-可见光子转化为两个近红外光子而被电池充分吸收利用,最终达到提高电池光电转换效率的目的。
因为Yb3+能级结构简单且发射谱位于900~1100 nm,恰与单晶硅的禁带宽度匹配,所以可采用RE3+-Yb3+(RE3+=Ce3+、Eu2+、Pr3+、Nd3+、Er3+)共掺来对太阳光谱进行量子剪裁,将一个高能的紫外-可见光子转换成两个900~1100 nm的近红外光子,从而提高电池的光谱响应效率。但上述工作仍存在以下缺点:(一)大部分的稀土离子对量子剪裁机理属于合作能量传递,致使能量传递效率较低且易发生浓度猝灭,从而对太阳光的转换效率较低。(二)部分稀土离子对可进行两步能量传递(Nd3+-Yb3+、Er3+-Yb3+、Pr3+-Yb3+),从而有效提高能量转换效率,但这些离子由于4f→4f跃迁,导致吸收截面较窄,对太阳光谱的实际利用率较低。
因此,研究开发一种高效、宽谱近红外量子剪裁材料以对太阳光进行充分利用,进而提高晶硅电池的转换效率成为该领域亟需解决的技术问题。
技术实现要素:
为了解决上述技术问题,本发明提供了一种Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料,该发光材料体系中的Eu2+通过其敏化作用,能够有效拓宽Nd3+的吸收截面,对太阳光进行宽带吸收,进而实现高效、宽谱转换的近红外量子剪裁。从而实现对太阳光的充分利用,提高晶硅太阳能电池的转换效率。
本发明为解决上述技术问题,所采用的技术方案是:一种Eu-Nd-Yb共掺杂SrAl2O4高效宽谱量子剪裁发光材料,该发光材料以SrAl2O4为基质,所述发光材料的组成通式为SrAl2O4:x Eu2+,y Nd3+,z Yb3+,其中,0.5×10-2≤x≤1×10-2,0.5×10-2≤y≤2×10-2,1×10-2≤z≤10×10-2。
一种Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料的制备方法,包括以下步骤:
步骤一、按照共掺杂SrAl2O4发光材料组成通式中Sr、Al、Eu、Nd和Yb的摩尔配比,依次称取SrCO3、Al2O3、Eu2O3、Nd2O3和Yb2O3置于玛瑙研钵中,进行混合研磨1~3h,得到粒径为1~3μm的原料药粉末,之后,将研磨得到的原料药粉末转置于刚玉坩埚中,备用;
步骤二、将步骤一中装有原料药粉末的刚玉坩埚放入管式炉内,并抽真空至炉内压强≤0.01MPa,之后,向炉内通入氩气,待稳定后再通入氢气,氩气和氢气体积比为95:5,控制炉内温度以1~5℃/min的升温速率升温至100℃,进行保温除水处理30min,然后,再以2~5℃/min的升温速率升温至1200℃,并在此温度下进行保温反应2~5h,之后,控制炉内温度以1~3℃/min的降温速率降温至600℃,并在此温度下进行保温20~50min,然后,再以2~5℃/min的降温速率控制炉内温度降低至室温,关闭氩气,制得烧结产物,备用;
步骤三、将步骤二制得的烧结产物转置于玛瑙研钵中,进行研磨粉碎5~10min,即得成品Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料。
优选的,在步骤一中,所述混合研磨后,所得原料药粉末的粒径为A~B目。所述的SrCO3、Al2O3、Eu2O3、Nd2O3和Yb2O3均为分析纯试剂。
本发明的发光材料功能实现的技术原理为:
(1)SrAl2O4 是一种铝酸盐氧化物基质,它具有荧光寿命长且荧光强度大、物理及化学特性稳定、机械强度大等优点而得以广泛应用;
(2)根据Dieke能级图可知,Nd3+:2G9/2→4I11/2能级间隙约为Yb3+:2F5/2→2F7/2的两倍,这为Nd3+→Yb3+之间的量子剪裁提供了理论支持;此外,Nd3+:4F3/2作为2G9/2→4I11/2的中间能级,为两步能量传递进一步提供理论可行性;
(3)Eu2+的激发及发射光谱均为宽谱,其激发光谱范围为250~425 nm,能吸收太阳光谱中能量较高、强度较大的部分;发射光谱位于400~700 nm,与Nd3+的激发峰发生重合(425 nm, 475 nm, 525 nm, 575 nm);Eu2+的光谱特性决定了其对Nd3+→Yb3+离子对具有良好的敏化作用,能有效拓宽吸收截面,从而实现对太阳光的高效、宽谱转化利用。
本发明的有益效果:
本发明提供的一种Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料,通过宽谱激发及发射的Eu2+对于Nd3+的敏化作用,可有效拓宽Nd3+的吸收截面,对太阳光进行宽带吸收,实现稀土离子对Nd3+-Yb3+的两步能量传递式高效、宽谱转换的近红外量子剪裁。从而实现对太阳光的充分利用,提高晶硅太阳能电池的转换效率。成品Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料可吸收高能的紫外~可见光子,并将其量子剪裁为两个900~1100 nm的近红外光子而被晶硅太阳能电池充分吸收利用,减少光谱错配引起的热损耗,从而增强了晶硅电池对太阳光的利用率,并进一步提高了其光电转换效率。
附图说明
图1为Eu2+、Nd3+和Yb3+的Dieke能级图;
图2为本发明实施例制备的Eu-Nd-Yb共掺杂SrAl2O4粉末的激发光谱;
图3为Eu-Nd双掺及Eu-Nd-Yb三掺SrAl2O4材料的发射光谱对比图(λex=370 nm)。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
下述各实施例中所述实验方法和检测方法,如无特殊说明,均为常规方法;所述的实验过程若未加指明均是在常温常压条件下进行;所述试剂和材料,如无特殊说明,均可在市场上购买得到。
一种Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料,该发光材料以SrAl2O4为基质,所述发光材料的组成通式为SrAl2O4:x Eu2+,y Nd3+,z Yb3+,其中,0.5×10-2≤x≤1×10-2,0.5×10-2≤y≤2×10-2,1×10-2≤z≤10×10-2。
该Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料的制备方法,包括以下步骤:
步骤一、按一定摩尔百分比分别称取SrCO3(A.R.)、Al2O3(A.R.)、Eu2O3(99.9%)、Nd2O3(99.9%)、Yb2O3(99.9%),之后,将称量好的药品置于玛瑙研钵中研磨1~3小时使混合均匀,后置于刚玉坩埚中待烧结;
步骤二、将盛装样品的刚玉坩埚放入管式炉中,抽真空1~3次将炉腔内压强降至0.01MPa之下,通氩气至稳定后通入氢气,调节气体流量使两种气体比例为:95%<氩气<100%,1%<氢气<5%,使样品处于还原性气氛下;
步骤三、打开管式炉以每分钟1℃~5℃的升温速率均匀升至100℃保温半小时,以排除样品中残存的水分,然后,以每分钟2℃~5℃的速率均匀升温至1200℃,在此条件下保温2~5小时,使混合后的药品通过晶格振动而充分反应,最后,以每分钟1℃~3℃的速率均匀降温至500℃,保温20~50分钟后再以每分钟2℃~5℃的速率均匀降至室温;
步骤四、关闭氩气和氢气后从管式炉中取出烧结所得样品,在玛瑙研钵中研磨5~10分钟即得本发明所制备的Eu2+-Nd3+-Yb3+共掺SrAl2O4量子剪裁发光材料。
本发明实现的技术原理:
(1)SrAl2O4是一种铝酸盐氧化物基质,它具有荧光寿命长且荧光强度大、物理及化学特性稳定、机械强度大等优点而得以广泛应用。
(2)根据附图1的Dieke能级图可知:Nd3+:2G9/2→4I11/2能级间隙约为Yb3+:2F5/2→2F7/2的两倍,这为Nd3+→Yb3+之间的量子剪裁提供了理论支持。此外,Nd3+:4F3/2作为2G9/2→4I11/2的中间能级,为两步能量传递进一步提供理论可行性。同时,Eu2+:5d能级较宽且略高于Nd3+:2G9/2能级,因此,Eu2+对太阳光进行宽谱吸收后发生Eu2+:5d→Nd3+:2G9/2的有效能量传递,从而对Nd3+起到良好的敏化作用,完成Eu2+→Nd3+→Yb3+体系对太阳光的宽谱吸收及三者之间的高效能量传递和量子剪裁过程;
(3)附图2为制得的Eu2+→Nd3+→Yb3+三掺样品的激发光谱,采用英国Edinburgh公司的FLSP920型荧光光谱仪,分别对Eu2+ 515 nm、Nd3+ 525 nm、Yb3+ 980 nm的发射光谱进行监测可知,三者的激发光谱吻合良好。附图3是在370 nm的激发光谱监测下,采用英国Edinburgh公司的FLSP920型荧光光谱仪,分别对Eu2+→Nd3+双掺、Eu2+→Nd3+→Yb3+三掺样品进行测试所得发射光谱。其中实线为Eu2+→Nd3+双掺的发射光谱,虚线为Eu2+→Nd3+→Yb3+三掺的发射光谱。由附图2和附图3可知:Eu2+、Nd3+及Yb3+的激发吻合良好,均为250~425 nm的宽谱吸收,且对应于Eu2+:4f→5d激发(λex=370 nm),说明发生了Eu2+→Nd3+→Yb3+ 之间的有效能量传递;此外,与Eu2+-Nd3+双掺体系相比,Eu2+-Nd3+-Yb3+三掺体系中出现了Yb3+:980 nm的强发射峰,且Eu2+和Nd3+的发射峰强度大幅降低,进一步证明发生了Nd3+→Yb3+之间的量子剪裁及Eu2+对Nd3+-Yb3+的敏化作用;同时,Eu2+的激发及发射光谱均为宽谱,其激发光谱范围为250~425 nm,能吸收太阳光谱中能量较高、强度较大的部分;发射光谱位于400~600 nm,与Nd3+的激发峰发生重合(425 nm, 475 nm, 525 nm, 575 nm)。测试证明:Eu2+的光谱特性决定了其对Nd3+→Yb3+离子对具有良好的敏化作用,能有效拓宽吸收截面,从而实现对太阳光的高效、宽谱转化利用。
本发明制得的Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料具有能量转换效率高、吸收截面宽的优点,从而更大程度的减少光电转换过程中的能量损耗。其可吸收高能的紫外~可见光子,并将其量子剪裁为两个900~1100 nm的近红外光子而被晶硅太阳能电池充分吸收利用,减少光谱错配引起的热损耗,从而增强电池对太阳光的利用率,并进一步提高其光电转换效率。
实施例1
一种Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料,其组成通式为SrAl2O4:0.5mol% Eu2+,0.5mol% Nd3+,5.0mol% Yb3+。
具体制备步骤如下:
步骤一、采用电子天平准确称取碳酸锶[SrCO3] 5.4994g、氧化铝 [Al2O3] 4.0423g、氧化铕 [Eu2O3] 0.0349g、氧化钕 [Nd2O3] 0.0310 g、氧化镱 [Yb2O3] 0.3904 g,置于玛瑙研钵中研磨1.5小时混合均匀后,将研磨得到的原料药粉末转置于刚玉坩埚中,备用;所述混合药品研磨后,经检测该混合药品粉末的平均粒径为2μm;然后装入50 mL刚玉坩埚中待烧结;
步骤二、将步骤一中装有原料药粉末的刚玉坩埚放入管式炉内,并抽真空至炉内压强0.01MPa,之后,通入氩气至流量稳定,再通入氢气,氩气和氢气的体积比为95:5,使得待烧结样品处于还原性气氛中;控制炉内温度以1℃/min的升温速率升温至100℃,进行保温除水处理30min,然后,再以2℃/min的升温速率升温至1200℃,并在此温度下进行保温反应3h,之后,控制炉内温度以2℃/min的降温速率降温至600℃,并在此温度下进行保温30min,然后,再以3℃/min的降温速率控制炉内温度降低至室温,关闭氩气及氢气,制得烧结产物,备用;
步骤三、将步骤二制得的烧结产物转置于玛瑙研钵中,进行研磨粉碎5min,即得成品Eu-Nd-Yb共掺杂SrAl2O4量子剪裁发光材料材料。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。