盘式制动器的双向制动方法及其制动机构与应用的制作方法

文档序号:3942492阅读:580来源:国知局
专利名称:盘式制动器的双向制动方法及其制动机构与应用的制作方法
技术领域
本发明涉及汽车、列车等各种机动轮式交通运输工具制动与安全控制技术领域,也涉及飞机起降机轮制动与安全控制技术领域。
背景技术
在各种机动轮式交通运输工具中,汽车最具代表性,也是目前人类陆地上使用的最主要交通运输工具之一。与汽车行驶制动安全相关的应用技术及产品主要有三类第一类是机械摩擦式制动器。按其结构和原理划分,可主要分为盘式、鼓式制动器两种。盘式制动器为开放式结构,是利用静止摩擦片与圆周旋转摩擦圆盘面之间摩擦作用工作;鼓式制动器为封闭式结构,是利用静止摩擦蹄片与圆周旋转制动鼓圆柱面之间摩擦作用工作。盘式、鼓式制动器均以良好耐磨性和耐热性的金属、半金属、少金属或粉末冶金复合摩擦材料等作为摩擦工作介质。第二类是汽车轮胎技术。轮胎技术性能指标,主要体现在轮胎的附着性能、承载能力、耐磨性能和行驶噪声等方面;其中,优选轮胎合成橡胶材料、宽胎、纹路规划等方法,都是为了提高轮胎的附着能力(俗称为抓地性能),以实现汽车行驶与制动安全稳定性为主要目的;宽胎,可提高轮胎附着能力和承载能力,但也增加了车轮的转动惯量和滚动摩擦力,因而会增加汽车的油耗。第三类是汽车现有电子安全制动控制技术。主要典型应用技术有=ABS (刹车防车轮抱死系统)、EBD (电子制动力分配)和ESP (电子稳定程序)三大规范化应用技术;它们均属于利用现有传统机械摩擦式反向制动器在车轮轮胎与路面之间产生的附着摩擦制动力,或发动机驱动车轮在车轮轮胎与路面之间产生的附着摩擦牵引力实现的电子安全控制方法,都以提高汽车在各种复杂路况上行驶与制动安全稳定性为核心控制目的,上述也正是目前汽车电子主动安全控制技术应用与研究的主要发展方向。盘式制动器,按结构的摩擦运动类型划分,可分为现有的静止工作部件制动卡钳摩擦片与运动工作部件同心轴上摩擦圆盘面之间的圆周旋转摩擦和本发明创新的静止工作部件制动卡钳摩擦片与运动工作部件两偏心轴上摩擦圆盘面之间以及两偏心轴上摩擦圆盘面与同心轴上摩擦盘环之间同时的平动旋转摩擦两种类型;按能量类型划分,只有机械摩擦转换热能一种类型;按制动器制动力矩作用方向的制动方法划分,可分为现有的仅有反向制动力矩的反向制动方法和本发明创新的反向制动力矩与同向制动力矩共生的双向制动方法两种方法。无论现有反向制动器,还是本发明双向制动器,摩擦工作部件之间的工作压力、摩擦系数、摩擦接触面积、相对运动速度、磨损率和工作温度等,都是决定它们工作性能、工作稳定性、耐磨性能和使用寿命的决定性参数。盘式制动器,由静止工作部件摩擦片与运动工作部件摩擦圆盘面之间接触摩擦至少构成一对摩擦副;工作时,每对摩擦副使摩擦圆盘至少产生一个与车轮旋转方向相反的反向制动力矩,且产生反向制动力矩的摩擦力大小,与每对摩擦副之间的相对摩擦运动速度无关,与每对摩擦副之间的工作正压力和摩擦系数大小有直接关系;在每对摩擦副摩擦系数不变的工作条件下,每对摩擦副的工作摩擦力大小与其工作正压力成正比。
摩擦圆盘面上的相对摩擦运动,是盘式制动器充分必要特征,摩擦圆盘面上的摩擦运动方式决定了盘式制动器的结构、原理、原理性功能和应用,是盘式制动器的原理性特征。盘式、鼓式制动器,广泛应用于各种机动轮式交通运输工具和飞机领域,是人类社会生产和生活中最主要交通运输工具汽车、列车和飞机的必备核心安全工作部件。全球每天数以亿辆汽车、万列列车的高速行驶和万架次飞机的起降,都有盘式(或鼓式)制动器在不时地工作,确保着汽车、列车行驶和飞机起降的安全,其重要性关乎人的生命。在汽车、列车和飞机三大交通运输工具中,汽车车轮轮胎附着路面的行驶路况,最为复杂多变。汽车基于车轮轮胎与路面之间附着力的制动力学原理,决定了盘式、鼓式制动器与汽车车轮及轮胎之间的密切作用关系。从摩擦学角度理解,车轮轮胎与路面之间的附着力,就是车轮轮胎与路面之间的摩擦力,其大小均可通过摩擦力公式(即阿蒙顿定律)计算说明f=Ny ;其中,f表示轮胎与路面之间的摩擦力(即轮胎附着力),N表示轮胎与路面之间的正压力,μ表示轮胎与路面之间的摩擦系数(即轮胎附着系数)。车轮轮胎与路面之间的摩擦系数主要有三种滚动摩擦系数μ r、动摩擦系数μ d、静摩擦系数μ s ;与摩擦系数相对应的摩擦力也有三种滚动摩擦力fr、动摩擦力fd、静摩擦力fs ;由于μ r〈 μ d〈 μ S,因此,当N为定值时,上述三种摩擦力之间的关系应是fr〈fd〈fs。对于轮胎附着路面的摩擦工作原理,似乎并不难理解,世界各汽车工业强国也容易达成共识,但在技术实现方法和途径上,各国的表现不尽相同。以轿车为例,在行驶安全性、平稳性和舒适性方面,美国轿车多偏好于采用沉重底盘的技术风格(即增加上述N值),而德国、法国、英国、意大利等国轿车多惯于采用宽胎、轮胎纹路规划技术(即增加上述P s值)。无论何种技术风格,上述各国轿车都会采用优质合成橡胶轮胎增加与路面之间静摩擦附着力(即增加上述fs值)的方法,实现轿车行驶与制动的安全稳定性。而向来注重轿车经济使用性的日本,针对上述欧美产轿车的“技术通病”,通过降低车重、减小轮胎宽度等技术手段,在上世纪七十年代全球石油危机爆发之时,适时推出了以省油为主要目的的经济型轿车,并一举占领了世界最大的美国汽车市场及部分欧洲汽车市场,而成功地跨入了世界汽车工业强国之列。但就轿车安全性而言,日本轿车的上述经济性做法并非完全可取。

从牛顿力学、能量守恒定律和摩擦学角度进一步探究,也不难理解汽车现行反向制动技术的轮胎制动力学原理汽车安全制动性能的高低,主要由汽车反向制动器制动力矩大小和车轮轮胎与路面之间摩擦附着力大小共同决定;车轮轮胎与路面之间摩擦附着力愈大,汽车刹车距离和时间愈短;反之,汽车刹车距离和时间就会愈长。由于车轮轮胎与路面之间存在最大摩擦附着力的限制,因此,汽车利用现行反向制动器技术制动时,车轮轮胎与路面之间只有处在一定滑移率百分比以下的临界滚滑动摩擦工作条件下,汽车才能利用轮胎的最大摩擦附着力进行安全制动;汽车紧急制动时,若现行反向制动器的反向制动力矩过大,车轮将会被抱死,则将会引起车轮轮胎与路面之间产生滑移率百分比过大的滑动摩擦现象,导致橡胶轮胎出现急剧升温、严重损伤、老化加速而缩短轮胎的使用寿命,且易埋下十分危险的爆胎隐患;由于轮胎与路面之间在滑移率过大条件下的滑动摩擦附着力小于其间最大摩擦附着力,因此,车轮刹车被抱死将会造成汽车制动性能的下降,使刹车距离和时间变长。不仅如此,而且,汽车紧急制动时,若左、右两侧车轮轮胎与路面之间的摩擦附着情况不同,车轮刹车被抱死,则还会导致左、右两侧轮胎与路面之间产生纵向滑动,并使轮胎侧向摩擦附着力严重下降,使车体出现跑偏、甩尾,甚至侧翻等危险情况,十分容易造成严重的汽车交通事故。基于上述轮胎制动力学原理的认识,德国博世BOSCH公司于上世纪三十年代,推出了著名的ABS (刹车防车轮抱死系统)汽车安全制动发明专利技术。实际上,ABS是一种自动控制反向制动器最大制动力矩、防止刹车时车轮被抱死的电子安全制动控制功能。ABS系统通过“抱死-松开-再抱死-再松开”脉冲循环控制方式,使车轮轮胎在与路面制动过程中能始终处于临界抱死的间隙摩擦附着状态,可有效利用轮胎与路面之间的最大摩擦附着力进行制动。ABS后经EBD (电子制动力分配)技术的进一步补充和完善,有效地解决了汽车紧急制动时左、右两侧车轮制动力分配不均而容易出现的车体跑偏、甩尾等失稳问题,大大提高了汽车紧急制动时的安全稳定性。随着数字计算机和液压调节器等主要关键技术的进步发展、产品可靠性的提高、生产成本的降低,ABS+EBD制动技术于上世纪八十年代从欧洲开始,并逐渐在世界范围内得到了广泛应用。即使包括德国的博世BOSCH公司和宝马BMW公司于上世纪九十年代中期正式推出的、以行车主动安全稳定性为核心控制目的的高级ESP (电子稳定程序)技术在内,也都是主要地利用了基于车轮轮胎与路面之间摩擦附着力的汽车现行反向制动技术原理。火车、汽车和飞机,自从先后问世的两百多年以来,随着相关设计制造技术的不断进步,均已发展成为庞大规模的产业,尤其是汽车产业的发展速度最为迅猛。由于汽车零部件及整车制造技术的进步、生产经营规模的壮大、生产制造成本的降低、行驶安全稳定性的提高,汽车已成为人类最重要的日常交通工具之一,让人类步入了汽车文明时代。与此同时,汽车也给人类带来了一个重大的交通安全问题。尽管众多先进成熟、安全可靠的汽车行驶与制动电子安全控制技术已得到了十分广泛的应用,但各类汽车交通事故仍处处可见、不绝于耳,给人类带来了数不尽的灾难和泪水。究其根本原因,主要还是在于汽车现有反向制动技术及产品的刹车距离和时间过长,无法完全满足汽车在各种复杂行驶路况上高速行驶时安全紧急制动的应用要求,这也是导致目前汽车交通事故发生率居高不下的主要原因之一 O与汽车交通安全相比,虽然目前列车和飞机交通事故发生率相对较低,但由于它们所采用的也都是具有同样制动力学原理和安全制动性能的现有反向制动技术,因此,列车和飞机交通也都存在类似的制动安全隐患。革新现有各种机动轮式交通运输工具安全制动技术,是一项特别有意义的工作,它关系到人类的生命、财产安全等一系列重大社会问题。挽救人类生命、减少财产损失,解决汽车交通事故率过高这一重大问题的希望,或许就在本发明的创新之中。

发明内容
本发明提供的一种盘式制动器的双向制动方法及其制动机构与应用,旨在大幅提高汽车安全制动性能,承接汽车现有规范化应用的电子安全制动控制技术,解决事故发生率过高的汽车交通安全问题,亦可在列车等其它各种机动轮式交通运输工具以及飞机起降的制动与安全控制中应用。本发明所述的一种盘式制动器的双向制动方法,包括结构组成、摩擦运动方式、力学原理、功能性能的设定及应用在内,制动器由一个有三同轴心轴段和两偏轴心轴段的曲轴轮轴、两个摩擦盘、一个摩擦盘环和至少一副制动卡钳四种核心工作部件组成,所述两偏轴心轴段以互相错相180度角设置在所述三同轴心轴段的两两轴段之间,所述两摩擦盘分别位于所述两偏轴心轴段上,所述摩擦盘环设置在所述两偏轴心轴段之间的同轴心轴段上并被夹压在两摩擦盘之间,所述每副制动卡钳上设有一对工作面相向的摩擦片,制动器的目标功能通过两摩擦盘内外盘面分别与摩擦盘环、每副制动卡钳摩擦片对工作面之间的同时相互摩擦并在同轴心轴段上同时形成双向制动力矩的方式实现,制动器不工作时,在两摩擦盘与每副制动卡钳上摩擦片对的工作面之间不发生接触摩擦,两摩擦盘和摩擦盘环仅通过相互之间的旋转静摩擦作用,跟随曲轴轮轴绕其同轴心轴段轴线同步旋转,制动器工作时,通过每副制动卡钳上摩擦片对同时对两摩擦盘和摩擦盘环工作面的轴向相向压力作用,使两摩擦盘绕曲轴轮轴同轴心轴段轴线产生同步公转,同时又分别相对于曲轴轮轴两偏轴心轴段轴线产生与两摩擦盘同步公转方向相反的同步逆向自转,同时又使摩擦盘环相对于同轴心轴段轴线产生与两摩擦盘同步公转方向相反的同步逆向旋转,因此,在两摩擦盘、每副制动卡钳上摩擦片对和摩擦盘环的工作面之间形成同步平动旋转摩擦,并建立两摩擦盘同步平动旋转摩擦的角速度和力矩约束机制,从而使曲轴轮轴同轴心轴段同时分别产生与其转动方向相反的反向制动力矩、与其转动方向相同的同向制动力矩,且当反向制动力矩是同向制动力矩的两倍时,在同比工作条件下,制动器可产生三倍于汽车现有反向制动器制动性能的双向制动期望性能。本发明所述的一种盘式制动器的双向制动方法所采用的制动机构,包括制动卡钳,其设有一个由三同轴心轴段和两偏轴心轴段构成的曲轴轮轴、两个摩擦盘、一个摩擦盘环、一个车轮固定法兰盘和至少一副制动卡钳及相对应的卡钳安装支架;所述两偏轴心轴段以互相错相180度角方式,设置在所述三同轴心轴段的两两轴段之间,使三同轴心轴段中的两段同轴心轴段处于所述曲轴轮轴的两端,三同轴心轴段中的一段同轴心轴段处于两偏轴心轴段之间;所述两摩擦盘分别位于所述两偏轴心轴段上,所述摩擦盘环设置在位于所述两偏轴心轴段之间的同轴心轴段上并被夹压在两摩擦盘之间,使两摩擦盘面在两偏轴心轴段轴向上获得等工作压力承载能力,同时在同轴心轴段转动方向上形成双向制动力矩工作能力;位于所述曲轴轮轴两端的两同轴心轴段,分别用于所述车轮固定法兰盘的固定安装、与车轮转轴轴承的旋转连接;在所述每副制动卡钳上,均设有一对工作面相向的摩擦片和至少一个液压分泵,液压分泵为每副制动卡钳摩擦片对提供相向工作压力,以确保处于工作状态时的每副制动卡钳摩擦片对工作面均能与两摩擦盘面发生接触摩擦;所述的所有卡钳安装支架,与车轮转轴静止轴套部分固定连接或成一体;所述每副制动卡钳固定安装在所述对应的卡钳安装支架上,使所述的每副制动卡钳液压分泵和摩擦片对可同时为所述的两摩擦盘与摩擦盘环之间工作面提供轴向工作压力;制动机构不工作、处于所述的非工作回位状态时,在所述的两摩擦盘与每副制动卡钳上摩擦片对工作面之间不发生接触摩擦,两摩擦盘和所述摩擦盘环仅通过相互之间的旋转静摩擦作用,将跟随所述曲轴轮轴绕其同轴心轴段轴线同步旋转,在同轴心轴段上不产生制动力矩;制动机构工作开始时,对应所述曲轴轮轴同轴心轴段的即时转速,首先由所述每副制动卡钳上液压分泵同步产生一个“上升斜率波压力”,相向推动所述每副制动卡钳摩擦片对工作面与所述两摩擦盘面同时接触并产生轴向工作压力,并在该轴向工作压力的作用下,两摩擦盘开始绕所述曲轴轮轴同轴心轴段轴线产生同步公转,同时又分别相对于所述曲轴轮轴两偏轴心轴段轴线产生与两摩擦盘同步公转方向相反的同步逆向自转,同时又使所述摩擦盘环相对于其所在同轴心轴段轴线产生与两摩擦盘同步公转方向相反的逆向旋转,因此,在两摩擦盘与每副制动卡钳摩擦片对、摩擦盘环的工作面之间,同步形成机构工作开始时所固有的平动旋转摩擦瞬态冲激过程,在两摩擦盘平动旋转摩擦瞬态冲激过程完成并迅速进入平动旋转摩擦稳态工作过程之后,由每副制动卡钳液压分泵同步产生的“上升斜率波压力”立刻结束,并立刻产生任意波形的工作压力作用于每副制动卡钳摩擦片对、两摩擦盘、摩擦盘环的工作面之间,以保持两摩擦盘的平动旋转摩擦稳态工作,使曲轴轮轴同轴心轴段同时分别产生与其转动方向相反的反向制动力矩、与其转动方向相同的同向制动力矩,且当反向制动力矩是同向制动力矩的两倍时,在同比工作条件下,制动机构可产生三倍于汽车现有反向制动器制动性能的双向制动期望性能;制动机构工作结束后,对应所述曲轴轮轴同轴心轴段的即时转速,所述每副制动卡钳上液压分泵同步产生一斜率可变的“下降斜率波压力”,使所述的每副制动卡钳摩擦片对、两摩擦盘、摩擦盘环工作面之间快速完成制动机构工作结束时所固有的平动旋转摩擦瞬态冲激过程,每副制动卡钳摩擦片对与两摩擦盘之间工作面产生同步分离,两摩擦盘和摩擦盘环同时停止相对于所述曲轴轮轴的逆向旋转,自动返回所述的非工作回位状态。如上所述的本发明盘式制动器的双向制动方法所采用的制动机构,在所述的两摩擦盘与其曲轴轮轴两偏轴心轴段之间,在所述的摩擦盘环与其曲轴轮轴同轴心轴段之间,均应采用滚动轴承安装方式连接,以减小两摩擦盘、摩擦盘环分别与其偏轴心轴段之间、同轴心轴段之间的旋转摩擦,以便通过两摩擦盘与摩擦盘环之间工作面的平动旋转摩擦作用和两偏轴心轴段力矩作用,在同轴心轴段上同时形成双向制动力矩。如上所述的本发明盘式制动器的双向制动方法所采用的制动机构,为发挥其双向制动期望性能,并承接汽车现有规范化应用的ABS刹车防车轮抱死系统、EBD电子制动力分配、ESP电子稳定程序等电子安全控制技术,设计有一种汽车双向制动系统,其主要系统组成是在每个车轮轮毂内部空间各安装一个所述的双向制动机构,每个车轮并各设有一个轮速传感器;在所述汽车双向制动系统中,设有一个主要由微处理器构成的电子控制装置,并为该电子控制装置分别设有一个方向盘转角传感器、一个横摆角速度传感器、一个侧向加速度传感器、一个机械电子式制动踏板等主要电子检测工作部件;在所述汽车双向制动系统中,采用若干个限压阀、比例阀等液压调节部件,并以现有先进、成熟的ESP汽车电子稳定程序制动液压控制器技术为基础,设计安装一套可在所述电子控制装置控制下产生“斜率波压力”且其上升和下降压力斜率可变的制动液压装置,以便为所述每个双向制动机构上的每副制动卡钳液压分泵提供工作压力;在所述电子控制装置中,为所述的每个轮速传感器、方向盘转角传感器、横摆角速度传感器、侧向加速度传感器、机械电子式制动踏板等,分别设有相应数量的电子检测输入接口,为所述制动液压装置设有相应数量的电子控制输出接口,并设有一个标准通信总线接口,以满足所述汽车双向制动系统各种实时输入检测、输出与通信控制的应用要求。当所述汽车双向制动系统运行在汽车行驶状态时,当所述电子控制装置通过所述电子检测输入接口检测到机械电子式制动踏板动作电压信号时,基于所述每个轮速传感器及其电子检测输入接口实时检测的车轮即时轮速,电子控制装置自动控制所述制动液压装置为所述每个双向制动机构上的制动卡钳液压分泵同步产生一个“上升斜率波压力”,以引导控制每个双向制动机构工作开始时所固有的平动旋转摩擦瞬态冲激过程的响应时间和冲激强度,使每个双向制动机构能够同步快速地进入所述的平动旋转摩擦稳态工作过程;一旦所述每个双向制动机构同步完成所述的平动旋转摩擦瞬态冲激过程,并进入所述的平动旋转摩擦稳态工作过程后,所述电子控制装置将通过所述的控制输出接口,自动控制所述制动液压装置中限压阀、比例阀的开度大小,立刻结束所述“上升斜率波压力”的引导作用,同时再控制制动液压装置立刻为每个双向制动机构同步产生大小可随所述机械电子式制动踏板动作行程大小实时变化、任意波形的工作压力,以实现每个双向制动机构工作压力的增压、减压或保压,使每个双向制动机构的平动旋转摩擦稳态工作过程能够产生相应大小的反向、同向制动力矩及双向制动功效,直至所述机械电子式制动踏板动作电压信号取消为止;当所述电子控制装置通过所述电子检测输入接口检测到机械电子式制动踏板动作电压信号取消时,电子控制装置基于所述电子输入检测接口及轮速传感器实时检测的车轮转速,通过所述电子控制装置的电子输出控制接口,控制所述制动液压装置产生一个斜率与车轮即时转速成比例的“下降斜率波压力”,使所述每个双向制动机构快速完成工作结束时所固有的平动旋转摩擦瞬态冲激过程,同步自动返回所述的非工作回位状态。当所述汽车双向制动系统中的每个双向制动机构处于所述的同步平动旋转摩擦稳态工作过程时,所述电子控制装置,基于所述每个车轮上轮速传感器的实时检测以及每个车轮轮胎与路面滑移率的实时计算判断和所述每个双向制动机构的双向制动力矩大小等一系列实时自动检测、计算、判断和控制,可实现每个车轮的DABS双向制动防车轮抱死系统和DEBD双向电子制动力分配的控制功能,以避免紧急制动时因每个车轮轮胎超过路面最大摩擦附着力、每个车轮双向制动力分配不均而产生滑动摩擦,汽车车身出现转向失控跑偏、横摆侧滑甩尾等危险工况,进一步提高汽车双向制动系统工作的安全可靠性。当所述汽车双向制动系统运行在汽车行驶状态时,所述电子控制装置,通过所述的轮速传感器、方向盘转角传感器、横摆角速度传感器、侧向加速度传感器及其电子检测输入接口的实时检测和车身行驶稳定性的实时高速计算分析,当自动检测到汽车前轮转向过度或不足,一旦发现汽车车身行驶不稳定的预兆时,电子控制装置将立刻通过对所述的制动液压装置、每个车轮双向制动机构工作开始时的平动旋转摩擦瞬态冲激过程、稳态工作过程所需工作压力的自动控制,并基于所述DABS双向制动防车轮抱死系统和DEBD双向电子制动力分配的自动控制功能,利用每个双向制动机构宽动态范围的双向制动性能,对每个双向制动机构和车轮双向制动力矩大小实时自动制动控制的方法,并结合可通过所述标准通信总线接口与现有汽车发动机管理系统实时通信所能实现的TCS牵引力控制系统或ASR防滑驱动控制系统等车轮驱动扭矩控制方法,对汽车转向失控跑偏、横摆侧滑甩尾现象等行驶姿态给予实时修正,因此,可实现DESP双向制动电子稳定程序主动安全控制功能,更进一步提高汽车行驶的安全稳定性。本发明所述的盘式制动器的双向制动方法及其制动机构,基于车轮轮胎与路面之间的摩擦作用,同比汽车现有反向制动方法的反向制动器,制动功效可提高二倍、制动减速度可提高二倍、制动距离和时间可缩短三分之二,但车轮轮胎与路面之间的制动摩擦负荷不变。本发明所述的汽车双向制动系统,可实现双向制动机构开始工作时和工作结束时固有的平动旋转摩擦瞬态冲激过程、DABS双向制动防车轮抱死系统、DEBD双向电子制动力分配、DESP双向制动电子稳定程序等电子安全控制功能,可大幅提高汽车交通的主动安全性、降低汽车交通事故发生率。本发明双向制动机构及汽车双向制动系统,亦可用于解决列车、飞机起降等各种机动轮式交通运输工具制动控制应用中的安全隐患。


图1为本发明双向制动机构实施例总体装配结构的俯视轴向剖视示意图。图2为本发明双向制动机构实施例总体装配结构的轴向平面示意图。图3为本发明双向制动机构实施例两摩擦盘结构的轴向平面示意图。图4为本发明双向制动机构实施例摩擦盘环结构的轴向平面示意图。图5为汽车现有反向制动方法的制动力学原理、车轮轮胎摩擦受力及物理运动过程分析说明示意图。图6为本发明双向制动方法的制动力学原理、车轮轮胎摩擦受力及物理运动过程分析说明示意图。图7为本发明双向制动机构实施例处于非工作回位状态时的分析说明示意图。图8为本发明双向制动机构实施例开始工作时的平动旋转摩擦瞬态冲激过程分析说明示意图。图9为本发明双向制动机构实施例平动旋转摩擦稳态工作过程的分析说明示意图。图10为基于本发明双向制动机构设计的一种DBS汽车双向制动系统组成说明方框简图。
具体实施例方式为便于本发明所述双向制动方法及其制动机构与应用的具体实施和理解,在此,将本发明应用在汽车上的双向制动机构实施例的结构组成示意图,首先简要介绍如下参照图1,关于本发明双向制动机构实施例总体装配结构(处于非工作回位状态时)的俯视轴向剖视示意图的说明7、8、9分别为曲轴轮轴上的三段主轴,10、11分别为曲轴轮轴上互相错相180度的两偏心轴,由此构成曲轴轮轴。1、2分别为两完全相同的摩擦盘,分别安装在10、11两偏心轴上;5、6分别两摩擦盘的内盘面、外盘面;3为摩擦盘环,安装在主轴8上,4为摩擦盘环两侧盘面上一体设置的两对称圆柱环式摩擦环,摩擦盘环3被夹压在两摩擦盘1、2之间,使两摩擦盘在轴向上具备工作压力承载能力,并在主轴上具备产生双向制动力矩工作能力;14、16分别为两摩擦盘和摩擦盘环的滚动轴承,15、17分别为两摩擦盘和摩擦盘环的两半圆柱环组合式轴套,用于两摩擦盘和摩擦盘环分别与两偏心轴10、11和主轴8之间的可旋转、可拆装连接。12为车轮固定法兰盘,顾名思义,专为车轮轮毂安装固定而设置;23为曲轴轮轴外端主轴7和车轮固定法兰盘12之间在轴径向上的紧固螺栓及安装螺纹孔,用于车轮固定法兰盘与曲轴轮轴外端主轴之间的固定安装限位;24为车轮固定法兰盘在主轴7轴向上的安装螺纹孔,用于车轮轮毂的固定安装。13为卡钳安装支架,与曲轴轮轴内端主轴9的轴承外轴套构成一体式刚性安装部件,用于制动卡钳的固定安装;18为水平对称设置的两副制动卡钳,19为两副制动卡钳上的摩擦片对,21、20分别为摩擦片的钢基强度金属材料层和摩擦材料层;22为两副制动卡钳上的单液压分泵,也可在制动卡钳一侧卡钳上设置双液压分泵,以便可为两摩擦盘提供更大和均匀的轴向工作压力;25为制动卡钳与卡钳安装支架之间的紧固螺栓及螺帽;26、27分别为两摩擦盘和摩擦盘环的轴向通风减重通孔;28为车轮曲轴轮轴主轴9的滚动轴承。在本发明实施例结构示意图中,制动卡钳及摩擦片对的详细结构部分没有画出,可完全参考汽车现用盘式制动器中制动卡钳的实际结构进一步详细了解。参照图2,关于本发明双向制动机构实施例总体装配结构的轴向平面示意图的说明(由车轮外侧沿轴向向内看)1、2为两摩擦盘;3、4分别为摩擦盘环及其两侧盘面上的两对称圆柱环式摩擦环;7为曲轴轮轴的外端主轴,12为车轮固定法兰盘,23为曲轴轮轴主轴和车轮固定法兰盘之间在轴径向上的紧固螺栓及安装螺纹孔,24为车轮固定法兰盘的轴向车轮安装螺纹孔;18为以水平对称方式设置的两副制动卡钳,用于内、外摩擦副工作面之间产生均匀而满足工作需要的轴向工作压力;13为卡钳安装支架,19为制动卡钳上的摩擦片对,22为制动卡钳上的液压分泵;25为制动卡钳的紧固螺栓及螺帽,用于制动卡钳与卡钳安装支架之间的紧固安装;26为两摩擦盘之一摩擦盘的轴向通风减重通孔。参照图3,关于本发明双向制动机构实施例两摩擦盘结构的轴向平面示意图的说明1、2为完全相同的两摩擦盘;10、11表示两偏心轴转轴的安装位置;14为摩擦盘的滚动轴承,15为两摩擦盘的两半圆柱环组合式轴套,用于两摩擦盘分别与两偏心轴10、11之间的可旋转、可拆装连接;26为两摩擦盘的轴向通风减重通孔。两摩擦盘的对称结构设计方式主要优点有一、可保证两摩擦盘良好的动平衡特性;二、可减少工作部件的种类,工作部件具有良好的通用性和互换性,便于批量生产和质量控制,有利于降低生产、仓储、管理、运输、维护成本等。参照图4,关于本发明双向制动机构实施例摩擦盘环结构的轴向平面示意图的说明3为摩擦盘环,4为摩擦盘环两侧盘面上的两对称圆柱环式摩擦环;8表示摩擦盘环的主轴安装位置;16为摩擦盘环的滚动轴承,17为摩擦盘环的两半圆柱环组合式轴套,用于摩擦盘环与主轴8之间的可旋转、可拆装连接;27为摩擦盘环的轴向通风减重通孔。 继续参照图1、2、3、4,将本发明双向制动机构实施例的结构设计、材料选择、制备工艺方法等简要说明如下通过上述本发明双向制动机构实施例结构示意图的简要介绍,并与汽车现有盘式制动器开放式结构相比可知,两种盘式制动器结构外形,虽有些相似,但本质区别在于现有盘式制动器摩擦圆盘以车轮轴线为轴线进行圆周旋转摩擦工作,而本发明双向制动机构两摩擦圆盘分别以互相错相180度两偏心轴轴线为轴线进行同步平动旋转摩擦工作。两摩擦盘、摩擦盘环、曲轴轮轴和两副制动卡钳及摩擦片对,是本发明双向制动机构实施例的四种核心关键工作部件。由两摩擦盘外盘面分别与两副制动卡钳两对摩擦片工作面构成四对外摩擦副,由两摩擦盘内盘面分别与摩擦盘环两侧盘面上对称圆柱环式摩擦环工作面构成两对内摩擦副,总计有六对摩擦副共同承担双向制动机构的机械摩擦热能转换工作,且六对摩擦副皆有较大的工作摩擦面积。通过上述大致说明可知,本发明双向制动机构实施例这种多摩擦副的对称分布式、大面积摩擦工作面的结构设计形式,使六对摩擦副具有很高的摩擦工作负荷能力、耐热性、耐磨性等。两副制动卡钳以水平对称方式设置,可为六对摩擦副之间工作面的平动旋转摩擦提供均匀、充足的轴向工作压力。关于内、外摩擦副的摩擦材料及制备工艺方法的主要设计考虑。在内、外摩擦副摩擦材料设计选用上,不仅应考虑抗热衰退性、浸水恢复性、耐磨性,而且,还应具有密度适中、对偶摩擦材料相互攻击性小、耐腐蚀性好、摩擦系数大、价格适宜等特性。虽然选择摩擦系数较大的摩擦材料,将有利于提高摩擦副的工作摩擦力,但摩擦系数大的摩擦材料一般又常有磨损率偏大、易产生制动噪音问题。上述均为机械摩擦式制动器设计中的主要共性问题,因此,将本发明双向制动机构实施例中六对摩擦副对偶摩擦材料的设计实施方案,可暂时确定为两完全等同的摩擦盘,可选择标号G3000 (美国标准)或HT250 (中国标准)、抗拉强度大于220Mpa的灰铸铁材料,或耐磨性、热容性、耐热性、屈服性更好的合金铸铁材料等其它更合适的金属材料,并采用汽车现有盘式制动器中制动盘所常用的铸造及机加工方法制备而成。两副制动卡钳摩擦片对和摩擦盘环钢基强度金属材料及摩擦材料的选用、设计、加工,也可参照汽车现有盘式制动器制动卡钳摩擦片对的材料选择、设计、加工方法进行,即它们的钢基强度金属材料部分,可采用锻钢等综合性能好的金属材料设计加工,它们的摩擦材料部分,可选用满足双向制动机构摩擦工作机械强度要求的粉末冶金、少金属(NAO)或其它更合适的复合摩擦材料等,例如可选用新型轻质的炭炭(C-C)和碳娃(SiC)高性能摩擦材料,它们相应的加工方法,也可采用汽车现有制动卡钳摩擦片对的模压烧结或其它更经济、成熟的制备工艺方法,根据双向制动机构的使用设计寿命和机械设计强度要求等,分别在以足够轴向厚度的钢基强度金属材料上,加工有一定轴向厚度的摩擦材料,由此可与两摩擦盘内、外盘面之间构成动摩擦系数皆为O. 32-0. 42的六对摩擦副。摩擦盘环摩擦环内、外柱面半径应合理设计,使摩擦盘环两侧对称圆柱式摩擦环能尽量远离两摩擦盘的轴承,满足两摩擦盘轴向上的工作压力承载要求,并在两摩擦盘和摩擦盘环轴向上可开设更多的通风减重通孔。曲轴轮轴、制动卡钳、卡钳安装支架、车轮固定法兰盘等工作部件,也均可参照汽车现有汽车盘式制动器设计生产方法,选用机械强度好、耐腐蚀性好的锻钢或合适钢材等,采用锻压、铸造、车、铣、刨、磨、线切割等常规经济机加工方法制成。其中,制动卡钳除可考虑采用现有盘式制动器中使用的制动卡钳外,也可通过修改其摩擦片对相向工作面间距和摩擦工作面中心位置的方法,重新设计生产。关于两摩擦盘和摩擦盘环滚动轴承的选用设计考虑。以使用数量最大的轿车或轻型客车为例,其最高设计时速多数在185Km/h上下,车轮和曲轴轮轴主轴对应的最高工作转速约为1500rpm,两摩擦盘和摩擦盘环平动旋转摩擦时的相对逆向自转工作转速也在此转速数值上,这就是双向制动机构高速紧急制动工作时两摩擦盘轴承所要承受最恶劣的高温、高压、高转速极限工作条件。由于受世界各国交通法规的强制,汽车几乎难有在最高设计时速上行驶并紧急制动的机会和条件,因此,两摩擦盘轴承也难遇上述最恶劣的极限工作条件。无论在市区、郊区还是在高速公路上,汽车速度一般都被限制在120Km/h以下(两摩擦盘轴承约为970rpm),而低于80Km/h是汽车的一般常态行驶速度(两摩擦盘轴承约为650rpm)。汽车正常速度行驶时,虽然双向制动机构可能工作较为频繁,但每次工作的时间通常较短,且紧急制动使用极少;即使汽车偶遇突发情况紧急制动时,两摩擦盘轴承所承受的工作压力会很大,但其工作转速和温度一般都不会很高,因此,可令两摩擦盘滚动轴承长期处于较低负荷条件下工作。相比平坦道路行驶制动,汽车长坡道行驶制动是两摩擦盘轴承将要承受的另一种较恶劣的工作条件;在长坡道上行驶制动时,虽然两摩擦盘轴承有长时间工作的需求,所承受的是长时间高温工作条件,但有经验的司机可利用发动机和变速器控制、放慢行车速度方法,可使两摩擦盘轴承在较低的工作压力和转速上间歇工作,减轻其在长坡道上的实际工作负荷。通过上述简要分析可知,两摩擦盘轴承的工作温度和径向上的压力负荷,将是影响双向制动机构工作可靠性和使用寿命的主要因素。根据本发明双向制动机构实施例的实际结构和工作环境要求,双向制动机构处于平动旋转摩擦稳态工作时,由于摩擦盘环轴承径向上的工作压力基本处于受力平衡状态,工作负荷很小,因此,其轴承选用压力负荷指标较小的薄壁型深沟滚动轴承即可;双向制动机构的工作负荷,主要由两摩擦盘在两偏心轴上的轴承共同分担,但考虑两轴承在两小偏轴半径径向上工作压力负荷很大,因此,应选择内径大、径向动载荷、噪声、转速和温度等综合指标好,并带密封免维护的深沟球轴承或薄壁型深沟球轴承作为两摩擦盘的滚动轴承,可采用400°C左右的耐高温润滑脂,作为两摩擦盘滚动轴承工作润滑剂,使两摩擦盘滚动轴承可承载很大的负荷工作;如经济可行,还可考虑选用综合性能优良的深沟陶瓷球轴承,作为两摩擦盘的滚动轴承。除了应重点考虑两摩擦盘滚动轴承的径向动载荷外,还应适当考虑其轴向上的载荷能力,以应对两副制动卡钳同时相向施加作用可能偶尔对两摩擦盘和摩擦盘环滚动轴承产生小量、非平衡的轴向作用力,这也是考虑选用深沟球轴承的主要原因之一。关于两摩擦盘和摩擦盘环通风散热、减重的主要设计考虑。由于使用灰铸铁或合金铸铁材料制成的两摩擦盘,由锻钢等综合性能好的钢基强度金属材料和摩擦材料制成的摩擦盘环,都有一定的质量,且它们金属材料的导热系数都较大,两摩擦盘面的散热面积也较大,所以,两摩擦盘和摩擦盘环均具有一定的热容能力,内、外摩擦副摩擦工作产生的热量,可被两摩擦盘和摩擦盘环大量吸收,并通过两摩擦盘面的热辐射、空气热对流方式,及时将热量释逸其周围大气之中。摩擦盘环轴向厚度使两摩擦盘之间形成更优于现有盘式制动器通风制动盘的内部通风散热结构,也将会增强两摩擦盘和摩擦盘环的通风散热能力。在结构强度许可的前提下,可采用在两摩擦盘和摩擦盘环轴向非摩擦工作面上开设尽量多的通风减重通孔的方法,进一步改善两摩擦盘和摩擦盘环的通风散热条件,同时还可有效增加两摩擦盘和摩擦盘环上工作摩擦热量向其轴承方向传递的热阻。另外,在本发明双向制动机构实施例的设计、生产中,还可考虑采用经济、轻质的金属强度及摩擦材料,以达到降低两摩擦盘和摩擦盘环的无用质量、转动惯量和制动响应时间之目的。总之,上述两摩擦盘和摩擦盘环通风减重结构设计,可有效控制两摩擦盘和摩擦盘环滚动轴承的实际工作温度,这不仅可减小内、外摩擦副工作温度过高对其摩擦材料摩擦系数工作稳定性的影响,而且,还可为两摩擦盘和摩擦盘环滚动轴承工作润滑防护,提供有利的实施条件。通过上述简要分析说明可知,内、外摩擦副摩擦材料的选择及加工和两摩擦盘滚动轴承的选型,将是本发明双向制动机构实施例在具体实施过程中两个关键的设计环节。为此,需要摩擦材料生产提供商,通过采用以高分子化合物作为粘结剂、以无机或有机类纤维作为增强成分、以矿物粉体和有机粉体作为摩擦性能调节剂等合适的改性及配方技术,更加成熟、经济和先进的模压烧结等合适工艺方法,制备出可满足本发明应用要求的优质摩擦材料;同时,也需要轴承生产提供商,采用先进的加工材料、工艺方法和设计制造技术,提供满足本发明应用要求的耐高温、耐高压、高可靠性滚动轴承产品。为便于本发明的具体实施,以上述简要说明内容为基础,结合后续附图,将本发明双向制动方法及其制动机构实施例的工作原理及其一些主要相关分析设计方法等,做下述进一步的分析说明。参照图5,将汽车现有反向制动方法的制动力学原理、车轮轮胎制动摩擦受力及物理运动过程分析说明如下汽车现有反向制动系统工作时,由制动液压主泵产生的工作压力,通过盘式(鼓式)制动器上的液压分泵作用于静止摩擦片(制动蹄片)和与车轮转轴同轴连接的圆周旋转制动盘(制动鼓)工作面之间,经其圆周旋转摩擦作用,使制动盘(制动鼓)仅产生与其旋转方向相反的反向制动力矩,这就是本发明将汽车现有制动方法定义为反向制动方法的主要理由。制动器制动盘(制动鼓)产生的反向制动力矩M1,以车轮转轴为力矩作用转轴,在车轮轮胎周缘面上等效产生大小为F的反向制动力(力矩为M1=FR,R为车轮轮胎周缘面半径)。以路面(地球)作为汽车运动参考系,则Ml=FR就是汽车运动惯性系内唯一的车轮反向制动力矩。在Ml作用下,车轮轮胎(施力方)相对于路面(受力方)产生一个前向作用力F,使车轮轮胎对路面产生前向摩擦力P,且F=f',该前向摩擦力Γ,就是汽车运动惯性系内的车轮反向制动力矩Ml=FR使汽车在运动方向上产生的前向运动惯性力大小,根据牛顿第三运动定律(作用力与反作用力)可知,路面将对车轮轮胎的前向作用力F产生大小相等、方向相反的后向反冲制动力 ,该后向反冲制动力大小,就是路面对车轮轮胎摩擦反作用时产生的后向摩擦力f,即f=f =F。因此,汽车运动惯性系内唯一的车轮反向制动力矩M1=FR,通过车轮轮胎(汽车运动惯性系)与路面(汽车运动参考系)之间f,与f的相互摩擦作用,仅能让汽车在其行驶方向上产生前向摩擦力P大小的前向运动惯性力Fi=f',同时在行驶反方向上产生后向摩擦力f大小的后向反冲制动力。车轮轮胎后向摩擦力f对车轮产生的力矩为一同向力矩fR。在上述反向制动器工作中,若继续维持车轮旋转,设f与Γ的最大摩擦力为fmax,根据车轮力矩平衡原理可知,力矩平衡方程fR=FR和如下关系式必须成立f=F=f/ ( fmax------------------------(a)在现有反向制动方法中,当汽车车轮不产生反向制动力矩Ml=FR时,根据牛顿第一运动定律(惯性定律)可知,汽车将保持直线运动,即运动惯性系内的汽车前向运动惯性力将不会在运动位移方向上显现、做功、消耗汽车的运动动能,这是汽车运动惯性存在的一种表现形式。但是,当汽车车轮产生反向制动力矩Ml=FR,使车轮轮胎与路面之间同时产生f大小的反冲制动力和f'大小的前向运动惯性力时,由于运动惯性系内f,大小的汽车前向运动惯性力在运动位移方向上的显现、做功,必将消耗汽车的运动动能,汽车运动状态(即运动速度)必然发生变化,这是汽车运动惯性存在的另一种表现形式。正确掌握上述汽车运动惯性系与运动参考系的系统分析方法及相互作用力的概念,对于领悟汽车轮胎制动力学的本质和后续本发明双向制动方法的分析说明,具有特别重要的意义!
此时,若设汽车质量为M,汽车制动减速度为a,根据牛顿第二运动定律(基本表述形式)可得a=-f/M--------------------------------(b)当汽车产生车轮轮胎后向摩擦力f的后向反冲制动力时,汽车运动速度将按照上(b)式的制动减速度开始匀减速运动。若设f与f'相互作用的作用时间为AT (即制动时间),开始制动时汽车的运动速度为V,制动结束时汽车的速度为0,再根据牛顿第二运动定律的另一种表述形式(即动量定理)可得-f Δ T=-MV由上式可得Δ T=MV/f---------------------------( c )上述汽车前向运动惯性力的制动产生过程,从能量转换角度理解,就是汽车运动动能通过前向运动惯性力Fi=f'在汽车运动位移上做功、反向制动器的机械摩擦转换热能,热能被制动盘(制动鼓)和制动片(制动蹄片)吸收,最终通过空气热对流、热辐射方式,释放到空气中的一个能量转换消耗过程。若设S为制动距离,汽车运动动能为O. 5MV2,根据能量守恒定律可得FiS=O. 5MV2-0由上式可得S=O. 5MV2/f' =0. 5MV2/f---------------(d)通过上述(b)、(C)、(d)三式,可分别计算得到当现有反向制动器制动力F恒定时汽车制动的减速度、距离和时间结果,但轮胎与路面的摩擦力f,、f大小会受其最大值fmax的限制。当F〈fmax制动时 ,车轮轮胎与路面之间仅能产生大小可随制动力F变化的后向滚动摩擦附着力f。当紧急制动F=fmax时,在车轮轮胎与路面之间滑移率不大的条件下,车轮轮胎的后向摩擦力f可达到其最大值fmax,因此,制动车轮在保持旋转、抱死的临界状态下,汽车可获得安全稳定的最短刹车距离S=O. 5MV2/fmax和最短制动时间AT=MV/fmax。但当紧急制动F>fmax时,车轮会被反向制动器过大的反向制动力矩抱死,将导致车轮轮胎与路面之间产生纵向滑动摩擦力fd,因为fd小于fmax,所以,汽车制动性能将会下降,刹车距离和时间会变长;不仅如此,由于轮胎在产生纵向滑动摩擦的同时,其侧向摩擦附着力也会随之大幅减小,因此,十分容易出现车体跑偏、甩尾等危险工况,而引发严重的交通事故;车轮被反向制动器抱死时,反向制动器将彻底丧失其滑动摩擦消耗汽车运动动能的热能转换能力,其能量转换工作将全部由轮胎与路面之间以剧烈的滑动摩擦发热方式承担,还将会导致合成橡胶轮胎出现急剧升温、严重损伤现象,使其发生提前老化、使用寿命缩短,且易埋下更危险的爆胎隐患。由于现有反向制动器反向制动力F最大值受车轮轮胎与路面之间最大附着力fmax的限制,因此,汽车每次制动时,必须对其反向制动器的反向制动力F大小进行严格控制,以防止车轮出现严重、危险的抱死现象。汽车现有ABS技术,也正是为此控制目的设计并被广泛应用的一种电子安全制动控制技术。关于汽车现有ABS电子安全制动控制技术的主要工作原理和应用设计方法等,还会有后续进一步的说明。参照图6,将本发明双向制动方法的制动力学原理、车轮轮胎制动摩擦受力及物理运动过程分析说明如下本部分分析说明内容,对于理解本发明双向制动方法具有特别重要的意义,是理解本发明的第一道难关!只有在对牛顿三定律有深刻的领悟、对车轮轮胎与路面之间制动摩擦力产生机理和汽车轮胎制动力学原理有本质上的正确认识,并弄清本发明双向制动机构与车轮之间双向制动力矩关系的前提下,才能真正理解、接受本发明双向制动方法。与汽车现有反向制动方法相比,本发明双向制动方法及其制动机构也是基于车轮轮胎与路面之间的相互摩擦工作。不过,本发明双向制动方法与汽车现有反向制动方法之间的区别是本发明制动方法引发车轮轮胎与路面之间产生制动摩擦的双向制动机构,经车轮力矩作用,在车轮轮胎周缘面上,除了可产生与车轮旋转方向相反的反向制动力矩Ml=FlR外,同时还可产生与车轮旋转方向相同的同向制动力矩M2=F2R,且Ml与M2相互作用产生,M1=2M2、F1=2F2。反向、同向制动力矩Ml与M2,是本发明双向制动方法的核心力学思想,是本发明的制动力学灵魂!也正因为反向、同向制动力矩Ml与M2的同时作用,才会使本发明双向制动方法产生特别不可思议的制动功效。但是,当本发明制动功效指标第一次提出时,首先会被稍有点物理常识的人士不加任何思索地给予否定,或根本不肖一顾,因为上述言论显然与现有反向制动技术理论的经典摩擦力计算公式f=Ny极值限制和百年业内所公认的定论相矛盾。由于车轮作用力矩为代数量,作用力矩的作用力为矢量,所以,本发明双向制动机构工作使上述车轮产生的等效制动力矩,可通过Ml与M2的代数和得到若设与车轮旋转方向相同的制动力矩为正,双向制动机构使车轮产生的等效制动力矩应为(-Μ1)+M2=-M2=-F2R,即Ml与M2共同作用的结果,使车轮轮胎产生的制动力矩,仍为一个大小为F2R的等效反向制动力矩。本发明双向制动机构以F2R大小的等效反向制动力矩工作时,车轮轮胎(施力方)将对路面(受力方)产生一个与汽车运动方向相同的前向摩擦作用力Γ,根据牛顿第三运动定律(作用力与反作用力定律)可知,路面也必将对车轮轮胎产生一个与P大小相等、方向相反的反作用力f,即路面对车轮轮胎产生的轮胎后向摩擦力f,f=f"。此时,由于路面对车轮轮胎产生的后向摩擦力f 的力矩fR为一个同向力矩,因此,在本发明双向制动机构工作中,根据车轮力矩平衡原理可知,若车轮能维持旋转,设f=f"的最大摩擦力为fmax,则车轮的力矩平衡方程fR=F2R和如下关系式必须同时成立Γ =f=F2=0. 5F1 ^ fmax---------------Caf )在附图分析说明中,车轮轮胎(包括汽车车身和制动机构在内)为汽车运动惯性系,选择路面(地球)作为汽车运动参考系,F2、F1皆为汽车运动惯性系内的双向制动机构制动力矩使车轮轮胎产生的制动力,更准确地说,在车轮轮胎周缘面上的等效制动力Fl、F2,均属汽车运动惯性系内部的运动惯性(力)作用产生,而f,、f 分别为车轮轮胎(汽车运动惯性系)与路面(汽车运动参考系)之间的相互摩擦力。汽车运动惯性系内部产生的车轮反向制动力矩F1R,将使车轮轮胎(施力方)相对于路面(汽车运动参考系)以Fl大小施加前向作用力,该前向作用力就是汽车在运动方向上实际产生的一个前向运动惯性力(大小为Fi' =Fl=2f/ ),根据牛顿第三运动定律可知,路面(受力方)将相对于车轮轮胎的作用力Fl产生一个后向反作用力(大小为Fl=2f),该后向反作用力就是汽车在运动反方向上实际产生的一个后向反冲制动力(大小为Fl=2f);与此同时,汽车运动惯性系内部产生的车轮同向制动力矩F2R,将使车轮轮胎相对于路面以F2大小施加后向作用力,该后向作用力也就是汽车在运动反方向上实际产生的另一个后向反冲制动力(大小为F2=f),再根据牛顿第三运动定律可知,路面将相对于车轮轮胎的后向作用力F2产生一个前向反作用力(大小为F2=f,),而该前向反作用力也就是汽车在运动方向上实际产生的另一个前向运动惯性力(大小为Fi" =F2=f/ )。在上述车轮轮胎(汽车运动惯性系)与路面(汽车运动参考系)之间相互摩擦的作用、反作用过程中,车轮轮胎相对于路面产生的前向作用力Fl=2f'与后向作用力F2=f之间同时相互平衡作用的结果,仅在路面(汽车运动参考系)与车轮轮胎(汽车运动惯性系)之间实际表现为附图6中车轮轮胎对路面的前向摩擦力f',即f' =F1-F2;与此同时,路面相对于车轮轮胎前向作用力Fl=2f的后向反作用力与后向作用力F2=f的前向反作用力之间同时相互平衡作用的结果,仅在路面(汽车运动参考系)与车轮轮胎(汽车运动惯性系)之间表现为路面对车轮轮胎的后向摩擦力f,即f=Fl-F2 ;而上述车轮轮胎与路面之间摩擦力平衡作用的分析推理,则是本发明的另一个核心力学思想!通过上述分析可知,仅经上述车轮轮胎(汽车运动惯性系)与路面(汽车运动参考系)之间f,与f的相互摩擦作用,汽车(运动惯性系)在运动反方向上总共可实际产生的后向反冲制动力大小为2f+f=3f,汽车(运动惯性系)在运动方向上总共可实际产生的前向惯性力大小为Fi=Fi' +Fi" =3f'。上述本发明双向制动方法前向运动惯性力的制动产生过程,从能量转换角度理解,也是汽车运动动能通过前向运动惯性力Fi=3f'在汽车运动位移上做功、双向制动机构机械平动旋转摩擦产生热能,而被两摩擦盘、摩擦盘环和制动卡钳摩擦片所吸收,最终通过空气热对流、热辐射方式,释放到空气中的一个能量转换消耗过程。在此,若仍设AT为汽车制动时间,V仍为汽车开始制动时的运动速度,汽车制动结束时的速度为0,汽车质量为M,汽车制动减速度为a,根据牛顿第二运动定律(两种表述方式)分别可得a=-3f/M-----------------------------(b')-3f Δ T=-MV由上式可得AT=MV/3f---------------------------(c')若仍设S为汽车制动距离,再根据能量守恒定律可得FiS=O. 5MV2-0由上式可得S=O. 5MV2/3f-------------------------(d/ )通过上述(b' )、(c' )、(d')三式,可分别计算得到本发明双向制动方法制动力F1=2F2恒定时汽车制动的减速度、距离和时间结果,车轮轮胎与路面之间的摩擦力f,、f大小,也同样会受其最大值fmax的限制。在上述分析中,上述(a') 式是本发明双向制动方法可获得理想双向制动性能的双向制动期望性能条件。若双向制动机构的双向制动期望性能条件不成立,即当F1〈2F2或FD2F2时,本发明双向制动方法的制动机构将不能获得理想的双向制动性能,但与汽车现有反向制动方法相比,即使双向制动性能期望条件不完全成立,Fl与2F2之间差值不大时,本发明双向制动方法仍可产生十分优异的双向制动功效。双向制动性能的大幅提升,结合汽车现有标配的被动式安全带装置,可对人体实施安全保护;而其强烈的制动前冲惯性力,可能对人体器官和汽车车身结构造成的冲击损伤和影响等,可依据人体运动生理学有关人体正常坐姿下可承受的最大安全和极限制动减速度科学数据,以及汽车车身结构强度设计指标等,对本发明实施的可行性和必要性进行综合评估论证。与汽车现有反向制动方法相比,由于本发明双向制动方法基于车轮轮胎与路面之间的制动摩擦力大小完全相同,所以,不会因其双向制动性能的大幅提升而增加车轮轮胎的制动摩擦负荷。当O. 5Fl=F2<fmax制动时,车轮轮胎与路面之间将会产生大小可随制动力F1=2F2变化的后向摩擦附着力f,但汽车制动距离为S=O. 5MV2/3f,制动时间为AT=MV/3f。当F2=fmax紧急制动时,在车轮轮胎与路面之间滑移率不大的条件下,车轮轮胎与路面之间可产生最大后向摩擦附着力fmax,因此,制动车轮在保持旋转、抱死的临界状态下,可获得安全稳定的最短刹车距离S=O. 5MV2/3fmax和最短制动时间AT=MV/3fmax。当紧急制动O. 5Fl=F2>fmax时,车轮也将会被双向制动机构抱死、双向制动机构平动旋转摩擦停止,也将会发生与汽车现有反向制动方法相类似的危险制动工况。由于本发明双向制动机构同样受到车轮轮胎与路面之间最大摩擦附着力fmax的限制,因此,汽车双向制动器每次工作时,也必须对其最大制动力O. 5F1=2F2进行严格控制,以防止车轮出现严重、危险的抱死现象。本发明后续汽车双向制动系统中的DABS(双向制动防车轮抱死系统)功能,也是为实现双向制动机构最大制动力O. 5F1=2F2控制目的而设计的一种电子安全制动控制技术,并可与汽车现有反向制动方法中ABS/EBD技术之间形成良好的技术应用承接关系。通过上述对比分析说明,可得如下重要结论同比汽车现有反向制动器的反向制动方法,本发明双向制动方法及其制动机构的制动功效可提高二倍、刹车距离和制动时间可缩短三分之二、制动减速度可提高二倍,但车轮轮胎与路面之间的制动摩擦负荷不变,可大幅提高汽车交通安全、降低交通事故发生率。因制动力学原理完全相同,故上述对比分析方法及结论也将完全适用于现有列车轮轨制动和飞机起降机轮跑道制动的类似对比分析,在此不再赘述。自从火车、汽车和飞机问世以来,一直无人提出本双向制动方法的主要原因有一、人们面对如此高度复杂、抽象的力学难题,普遍存在概念层次和系统分析方法问题;二、对于汽车等各种机动轮式交通运输工具制动力学本质严重缺乏正确的认识,尤其是在利用牛顿三定律进行车轮制动摩擦力学及物理运动过程分析时,不是无法判定车轮与路面之间的施力方、受力方关系,就是经常犯一些特别致命性的力学概念错误。上述应是本发明推出之前全人类的一个共性问题,绝非偶然,历史客观地说,这应是一种必然!即使包括本技术发明人在内,因深受传统思维定势和习惯的强烈影响,也曾经反复思考,纠结了很长的时间。本发明双向制动方法,尽管也是利用与汽车现有反向制动方法完全相同的车轮轮胎与路面的摩擦力工作,但其制动机构的制动力学原理与汽车现有反向制动机构之间存在着本质区别。因此,出于对科学的理解和感悟,本技术发明人将该创新的制动方法定义为双向制动方法,并将制动机构同向力矩有违常识地定义成为同向制动力矩,将其作用力定义为同向制动力,以突显其在本发明双向制动方法中的重要作用和杰出贡献。参照图1、2、7、8、9,针对本发明双向制动机构实施例工作原理及主要设计方法的分析说明
(I)关于本发明双向制动机构实施例工作原理及其主要设计方法分析说明的统一假设图7、8、9分别为本发明双向制动机构实施例结构示意图1、2处于非工作回位状态、开始工作时的平动旋转摩擦瞬态冲激过程、平动旋转摩擦稳态工作过程的分析说明示意图,并有相应制动卡钳液压分泵的工作压力示意波形。为便于系统的分析说明,首先针对图1、2中主要工作部件的关键几何尺寸及几何位置关系、设计参数和物理量等,作如下一些必要性的统一假设(表不有关物理矢量的字母仅有大小含义)OX、OY分别为过O点的水平、垂直平面参考坐标线。O点为曲轴轮轴主轴轴线的轴向垂直平面投影,也是摩擦盘环转轴轴线的轴向垂直平面投影;01、02两点分别为曲轴轮轴上互相错相180度两偏心轴轴线的轴向垂直平面投影。01'、02'两点分别为两副制动卡钳上摩擦片对摩擦工作面中心的轴向垂直平面投影,也可看作是两副制动卡钳上摩擦片对与两摩擦盘面之间平动旋转摩擦等效摩擦力作用点的轴向垂直平面投影。DU D2所在两圆及其内部圆面分别为两摩擦盘面的轴向垂直平面投影,将它们一同记为D1-D2 ;Z1、Z2所在两小圆及其内部圆面分别为曲轴轮轴上两偏心轴的轴向垂直平面投影;Z所在圆及其内部圆面为曲轴轮轴外端主轴上车轮固定法兰盘的轴向垂直平面投
影。 R2为两摩擦盘圆盘面的半径,rl为曲轴轮轴主轴轴线与曲轴轮轴两偏心轴轴线之间的垂直距离(即偏轴半径)。P1、P2所在两圆及其内部圆环面为摩擦盘环两侧盘面上圆柱环式摩擦环工作面的轴向垂直平面重叠投影,将它们一同记为P1-P2 ;R3、R4分别为摩擦盘环两侧盘面上圆柱环式摩擦环内、外柱面的旋转半径。BI' > B2 '所在两小圆及其内部圆面分别为两副制动卡甜上液压分栗活塞体在曲轴轮轴主轴轴线垂直平面上的投影,也可看作是两副制动卡钳上摩擦片对的示意重叠投影,将两副制动卡钳上液压分泵活塞体投影一同记为BI' -B2',将两副制动卡钳上摩擦片对示意重叠投影一同记为B1-B2 ;图中,图形“Θ “表示每副制动卡钳上一摩擦片由内向外的轴向施压方向,图形“ ”表示每副制动卡钳上另摩擦片由外向内的轴向施压方向,以表示两副制动卡钳上摩擦片对的同步相向施压作用;R1为两副制动卡钳上摩擦片对工作面中心点到曲轴轮轴主轴轴线的垂直距离。ωο为曲轴轮轴主轴(即车轮和车轮固定法兰盘)旋转的角速度;ω I为两摩擦盘和摩擦盘环同步跟随主轴轴线旋转的角速度。Ω为两摩擦盘分别相对于两偏心轴轴线产生的同步逆向自转角速度,也是摩擦盘环相对于主轴轴线产生的同步逆向自转角速度。GU Gli所在两小圆为摩擦盘Dl处于同步平动旋转摩擦稳态工作时,其两侧盘面上任意两对称质点Α1、Α1'均以rl为半径、Ω为角速度顺时针旋转圆周轨迹的轴向垂直平面投影;G2、G2'所在两小圆为摩擦盘D2处于同步平动旋转摩擦稳态工作时,其内、外盘面上任意两对称质点A2、A2'均以rl为半径、Ω为角速度顺时针旋转圆周轨迹的轴向垂直平面投影;且AlAl'、A2A2'两连线皆平行于01002连线。
N1、N2为两副制动卡钳摩擦片对工作面分别对两摩擦盘外盘面、摩擦盘环的工作正压力,且N1=N2,N(t)为两副制动卡钳液压分泵活塞工作压力的时间函数,即NI (t) =N2 (t) =N (t) οNO'为两摩擦盘内盘面与摩擦盘环两侧盘面对称摩擦环之间的结构常态夹压压力,用于产生禁止摩擦盘环非工作旋转的盘环止动静摩擦力。μ Id、μ Is分别为两副制动卡钳上摩擦片对工作面与两摩擦盘外盘面之间的动摩擦系数、静摩擦系数,μ 2d、μ 2s分别为两摩擦盘内盘面与摩擦盘环工作面之间的动摩擦系数、静摩擦系数,且μ 2d= μ Id。Hs为两副制动卡钳摩擦片对工作面与两摩擦盘外盘面之间同步平动旋转瞬态摩擦冲激过程在半径Rl上产生的静摩擦力,Hs的最大静摩擦力为flsmax,fls随工作压力Nl(t)变化的时间函数为fls (t);fId为两副制动卡钳摩擦片对工作面与两摩擦盘外盘面之间同步稳态平动旋转摩擦工作时,在半径Rl上产生的动摩擦力,fid随工作压力NI (t)变化的时间函数为fid (t) ;F1为两副制动卡钳摩擦片对工作面、两摩擦盘外盘面、摩擦盘环两侧对称摩擦环工作面之间同步稳态平动旋转摩擦工作时,由摩擦盘环在主轴上产生的作用力,且Fl=2N2(t) y2d,其中fld、Fl作用方向始终与01002连线垂直,并随01、02两点旋转位置变化而改变。f2d为两摩擦盘内盘面与摩擦盘环两侧对称摩擦环工作面之间同步稳态平动旋转摩擦工作时,在两偏心轴偏轴半径rl上产生的动摩擦力(即反向制动力之一);F2为两摩擦盘内盘面与摩擦盘环两侧对称摩擦环工作面之间同步稳态平动旋转摩擦工作时,在两偏心轴偏轴半径rl上产生的作用力(即同向制动力),且F2=Fl=2f2d=2N2(t) μ 2d,其中f2d、F2作用方向始终与01002连线垂直,并随01、02两点旋转位置变化而改变。f为路面对车论轮胎的后向摩擦力通过车轮和主轴力矩作用于半径rl上的作用力,其作用方向始终与01002连线垂直,并随01、02两点旋转位置变化而改变。
`
Ml为双向制动机构平动旋转摩擦稳态工作时,内、外摩擦副同时在主轴上产生的反向制动力矩;M2为双向制动机构平动旋转摩擦稳态工作时,内、外摩擦副同时在主轴上产生的同向制动力矩,且M1=2M2,即M1=2M2是双向制动机构产生理想双向制动性能的期望工作条件,可通过rl、Rl、R2、R3、R4、μ Id、μ 2d六个参数设计实现;M3为车轮轮胎的后向摩擦力通过车轮和主轴的力矩作用在双向制动机构上产生的作用力矩。Ql为两摩擦盘(含滚动轴承)相对于曲轴轮轴主轴轴线产生的动量矩,Q2为摩擦盘环相对于曲轴轮轴主轴轴线产生的动量矩,它们在不同工作时刻的动量矩可分别表示为Ql(t)、Q2 ⑴。P I为两摩擦盘金属摩擦材料的密度,Hl为两摩擦盘的轴向柱高。P 2为摩擦盘环钢基强度金属材料的密度,H2为摩擦盘环钢基强度金属材料的轴向柱高;P 2'为摩擦盘环两侧盘面上对称圆柱环式摩擦环摩擦材料的密度,H2'为摩擦盘环每侧盘面上对称圆柱环式摩擦环摩擦材料的轴向柱高。基于上述统一假设,将本发明双向制动机构实施例的工作原理及其主要分析与设计方法等分别说明如下(2)关于本发明双向制动机构实施例工作原理的分析说明双向制动机构每次正向行车工作时,主要包括如下三个连续阶段
第一阶段、开始工作时固有的平动旋转摩擦瞬态冲激过程。该阶段是从两副制动卡钳摩擦片对与两摩擦盘外盘面同时接触产生摩擦开始,直至两摩擦盘刚进入平动旋转摩擦稳态工作状态为止的一个固有瞬间过渡性过程;在该过程中,仅会产生微弱的制动效果。第二阶段、平动旋转摩擦稳态工作过程。在该工作过程中,双向制动机构的反向制动力矩是其同时作用产生的同向制动力矩的两倍,双向制动机构因此可产生理想的双向制动功效。第三阶段、工作结束时固有的平动旋转摩擦瞬态冲激过程。该阶段是从两副制动卡钳摩擦片对与两摩擦盘外盘面之间工作压力快速下降开始,直至彼此工作面之间完全分离为止的一个固有瞬间过渡性过程;此阶段结束后,两副制动卡钳摩擦片对将同步自动返回其非工作回位状态。双向制动机构每次倒车工作时,同样包括上述三个阶段,但与正向行车工作相比,通常倒车工作的频率较低,每次倒车工作时的行驶速度都很小,制动强度需求也较小,可见,双向制动机构倒车工作并非汽车安全制动的核心关键,其核心关键在于正向行车工作。双向制动机构每次驻车工作时,在两副水平对称制动卡钳摩擦片对与两摩擦盘外盘面之间,因无平动旋转摩擦发生,故将不会产生上述第一、三阶段的平动旋转摩擦瞬态冲激过程,仅产生双向制动静摩擦力。参照图7,双向制动机构处于行车非工作回位状态时,两副制动卡钳液压分泵BI' -B2'仅有小值的预存压力,两副制动卡钳摩擦片对B1-B2工作面与两摩擦盘D1-D2盘面之间,将处于附图2所示彼此分离的非工作回位状态,彼此不会产生相对旋转摩擦,设此时为O时亥IJ,则工作压力Nl(O)=O, N2 (O) =NO',因此,两摩擦盘D1-D2、01和02两点、Zl和Z2两小圆,将共同以ω 1=ω0角速度绕主轴轴线O点作整体顺时针旋转,不会分别相对于两偏心轴轴线01、02两点同步产生逆时针旋转,即自转角速度Ω=0;此时,摩擦盘Dl内外盘面上的任意两对称质点Α1/Α1'、摩擦盘D2内外盘面上的任意两对称质点Α2/Α2',也将跟随两摩擦盘D1-D2共同以ω 1=ω O角速度绕主轴轴线O点作整体顺时针旋转。

摩擦盘环Ρ1-Ρ2,在结构常态夹压压力NCV作用产生的盘环止动静摩擦力作用下,将与两摩擦盘D1-D2 —起,酷似汽车现有盘式制动器制动盘一样地同步跟随主轴旋转,不会对主轴产生任何的制动力矩。参照图7、8,双向制动机构开始工作时,首先由两副制动卡钳液压分泵BI' -Β2,同步定时产生一个固定斜率为Kl的“上升斜率波压力” N(t),以此作为双向制动机构每次开始工作时的引导作用压力。在上述“上升斜率波压力"N(t)升压作用下,当两副制动卡钳摩擦片对B1-B2工作面刚刚与两摩擦盘D1-D2外盘面同步发生接触之时,设此时刻为tl,则NI (tl) =0,在包含tl时刻之前,两摩擦盘D1-D2和摩擦盘环P1-P2如同处于上述非工作回位状态一样,还会继续共同以ω 1=ω0绕主轴轴线O点作整体顺时针旋转。从上述tl时刻起,在“上升斜率波压力"N(t)连续升压作用下,两副制动卡钳摩擦片对B1-B2工作面与两摩擦盘D1-D2盘面之间的工作压力,开始从NI (tl)=0同步增加,因此,将在两副制动卡钳摩擦片对B1-B2工作面与两摩擦盘D1-D2盘面之间产生相对摩擦,使两摩擦盘D1-D2和两偏心轴Z1、Z2及其轴心01、02两点,在继续以ω O角速度绕主轴轴线O点顺时针同步公转的同时,将又分别相对于两偏心轴轴线01、02两点产生小值角速度为Ω的同步逆时针自转,即两摩擦盘D1-D2此时处于弱的平动旋转状态,因此,会使两摩擦盘D1-D2盘面上的所有质点相对于其tl时刻降低运动线速度,两摩擦盘D1-D2内外盘面和摩擦盘环P1-P2两侧盘面摩擦环绕主轴轴线O点顺时针旋转的角速度ω I快速下降。随着“上升斜率波压力"N(t)的继续升压作用,当两摩擦盘D1-D2在继续以ω0绕主轴轴线O点顺时针同步公转,同时又分别相对于两偏心轴轴线01、02两点产生的同步逆时针自转角速度为Ω ^ ωΟ时(设此时刻为tl+tO),两摩擦盘D1-D2外盘面与两副制动卡钳上摩擦片对B1-B2工作面,在01'、02'两点附近相互接触摩擦工作面之间的相对运动线速度瞬间变为极小或为O,由于两摩擦盘D1、D2外盘面与两副制动卡钳摩擦片对B1-B2工作面之间静摩擦力Hs、最大静摩擦力f2smax的作用,因此,必将在它们之间同步产生一个瞬间静摩擦冲激作用过程。若上述瞬间静摩擦冲激过程对两摩擦盘D1-D2产生的反向冲量矩大小得不到有效控制,将会使上述冲激过程响应时间过长,无法令两摩擦盘D1-D2内、外盘面分别与两副制动卡钳上摩擦片对B1-B2、摩擦盘环P1-P2工作面之间快速进入随后的同步平动旋转摩擦稳态工作过程,而滞后其产生理想双向制动性能的时间。关于上述双向制动机构开始工作时以及后续工作结束时所固有的平动旋转瞬间静摩擦冲激过程的定量分析方法,将会在后续平动旋转摩擦瞬态冲激过程机构动力学及其S函数建模分析和“上升斜率波压力” N (t)引导上升斜率计算方法中,做进一步详细的分析说明。继续参考图8、9,上述tl、tl+tO期间的平动旋转瞬间静摩擦冲激作用过后,两副制动卡钳液压分泵ΒΓ -B2'立刻结束固定斜率为Kl的“上升斜率波压力”N(t)定时引导作用(设此时刻为tl+Λ tO),至此,双向制动机构开始工作时的平动旋转瞬间静摩擦冲激过程全部结束;与此同时,通过两摩擦盘D1-D2外盘面与两副制动卡钳摩擦片对B1-B2工作面之间仅以在半径Rl上产生的动摩擦力Hd和两摩擦盘D1-D2内盘面与摩擦盘环P1-P2摩擦环工作面之间在两偏心轴半径rl上产生的动摩擦作用力f2d的共同作用下,两摩擦盘D1-D2以ω O绕主轴轴线O点 作顺时针同步公转,同时又相对于两偏心轴轴线01、02两点以Ω ω O产生逆时针同步自转,双向制动机构正式进入平动旋转摩擦稳态工作过程。在平动旋转摩擦稳态工作过程中《I 0,而两摩擦盘D1-D2盘面圆周的线速度均为coOrl。在此应特别注意在平动旋转摩擦稳态工作过程中,不仅摩擦盘Dl内、外盘面上任意两对称质点Α1、ΑΓ都会在半径为rl的G1、GP两小圆上以Ω ^ ω0产生顺时针同步旋转,而且,摩擦盘Dl内、外盘面上任意两对称质点的AlAl'连线,也都会处在一种平动旋转或近似平动的旋转状态;同时,摩擦盘D2内、外盘面上任意两对称质点Α2、Α2'也都会在半径为rl的G2、G2'两小圆上以Ω ^ ω O产生顺时针同步旋转,摩擦盘D2内、外盘面上任意两对称质点的Α2Α2'连线,也都会处在一种平动旋转或近似平动的旋转状态。这种创新的平动旋转摩擦运动方式,具有十分重要的摩擦运动与力学特性,是本发明双向制动方法可成功产业化实施的核心关键!上述摩擦运动特性,可通过简单的几何方法得到证明。从上述tl+Λ t0时刻起,通过两摩擦盘D1-D2外、内盘面分别与两副制动卡钳摩擦片对B1-B2、摩擦盘环P1-P2摩擦环工作面之间的同步稳态平动旋转摩擦,可在主轴上分别同时产生与其旋转方向相反的反向制动力矩M1,与其旋转方向相同的同向制动力矩M2。根据上述稳态平动旋转摩擦的运动与力学特性可知,当两偏心轴轴线01、02两点处于附图9所示位置时,两摩擦盘D1-D2外盘面与两副制动卡钳摩擦片对B1-B2工作面之间,在0Γ、02'两点位置的半径Rl上等效产生的动摩擦力为4fld=4Nl(t) μ ld,两摩擦盘D1-D2内盘面与摩擦盘环P1-P2两侧对称摩擦环之间产生的动摩擦力为4f2d=4N2(t)μ 2d,因此,车轮和主轴作为施力方,通过在两偏心轴偏轴半径rl上的同时作用,在主轴上产生的反向制动力矩为Ml=(4fld+4f2d)rl。与此同时,两摩擦盘D1-D2内盘面与摩擦盘环P1-P2摩擦环工作面之间的同步稳态平动旋转摩擦,在过主轴O点的两个方向上同时产生作用力F1,且Fl=2f2d=2N2(t) μ 2d ;车轮和主轴作为施力方,在附图9过01、02两点的两个方向上,将同时产生作用力F2 (即同向制动力),且F2=Fl=2f2d=2N2(t) μ 2d,通过两作用力Fl过主轴O点和两作用力F2在两偏心轴偏轴半径rl上的同时作用,因此,在主轴上产生的同向制动力矩为 M2=2F2rl=4f2drl。因为 NI (t) =N2 (t)、yld=y2d,所以,F1=2N1 (t)μ ld=2N2(t) μ 2d=F2,由上述 Ml、M2 结果可知,M1=2M2。上述仅是当两偏心轴轴线01、02两点处于附图9所示位置上时,在主轴上同时产生反向、同向制动力矩的分析说明。实际上,当两偏心轴轴线01、02两点旋转到任何其它位置上时,其中fid、f2d、F1、F2的作用方向都会随之改变,均会与直线01002保持垂直状态,包括路面对车论轮胎的后向摩擦力通过车轮和主轴力矩作用于半径rl上的作用力f的作用方向也将如此,且摩擦盘环在主轴轴径方向上处于受力平衡状态;也就是说,无论两偏心轴轴线01、02两点旋转到任何位置上,处于稳态平动旋转摩擦的双向制动机构,都将会一直保持M1=2M2制动力矩关系成立。若设与主轴ω O旋转方向相同的制动力矩为正,通过内、外摩擦副的同步稳态平动旋转摩擦作用,在主轴上同时产生的反向、同向制动力矩代数和应为-Μ1+Μ2=-2Μ2+Μ2=-Μ2,所以,路面与车轮轮胎之间的相互摩擦作用,仅须产生M3=frl=M2大小的同向作用力矩,便可维持车轮旋转和双向制动机构平动旋转摩擦工作。通过上述分析说明并结合前述本发明双向制动方法的专门分析说明可知,从上述tl+AtO时刻起,在M1=2M2制动力矩关系成立条件下,再由两副制动卡钳液压分泵BI' -B2'同步产生可随时间变化、任意波形的工作压力N(t)彡N(tl+A t0),可使双向制动机构产生相应大小的双向制动功效,在同比条件下,可产生三倍于汽车现有反向制动器最大制动功效的双向制动 最大功效。继续参照图9,双向制动机构本次行车工作结束时,设此时刻为t2,并将本次工作导致ω0减速后的角速度设为ω0',两副制动卡钳液压分泵BI' -Β2'对应主轴不同转速产生一下降斜率Κ2可变的“下降斜率波压力”N(t)工作结束压力,使两副制动卡钳摩擦片对B1-B2工作面与两摩擦盘D1-D2外盘面之间的工作压力迅速下降、消失;若本次双向制动机构为停车工作,则ωΟ' =0,将不会产生下述工作结束时的平动旋转瞬间静摩擦冲激过程;若为一次非停车的减速工作,则ωΟ' <ω0,在“下降斜率波压力”NI (t)快速下降过程中,两副制动卡钳摩擦片对B1-B2工作面与两摩擦盘D1-D2外盘面之间,在t3_ Λ tO'、t3-t0/、t3时间区间内,将按照附图8所示工作开始时的平动旋转瞬间静摩擦冲激逆向过程,而再次出现工作结束时的平动旋转瞬间静摩擦冲激过程;在此冲激过程产生的冲量矩作用下并于t3时刻结束时,两摩擦盘D1-D2和摩擦盘环P1-P2,将会一起从ω O瞬间加速到ω ωΟ',以本次工作结束时的ωΟ'角速度绕主轴轴线O点作顺时针同步圆周旋转,此时Nl(t3)=0,两副制动卡钳摩擦片对ΒΓ -B2'工作面将与两摩擦盘D1-D2外盘面产生快速同步分离之后,在t4时刻同步自动返回图2所示的非工作回位状态;最终,随着两摩擦盘D1-D2和摩擦盘环P1-P2同步平动旋转状态的彻底停止,本发明双向制动机构一次完整的平动旋转摩擦过程全部结束。即使上述本次工作结束时的平动旋转瞬间静摩擦冲激过程还没有彻底结束,或者,两副制动卡钳摩擦片对BI' -B2'工作面与两摩擦盘D1-D2外盘面已经同步分离,且两摩擦盘D1-D2和摩擦盘环P1-P2平动旋转还没有完全停止时,双向制动机构仍可随时立刻开始下一次的工作过程。考虑双向制动机构倒车时的工作原理与上述正向行车工作原理之间,除了在ω 、ω0、Ω角速度旋转方向、相关作用力及其制动力矩作用方向上相反外,其余部分完全一样,因此,不再专门说明。(3)关于本发明双向制动机构实施例平动旋转摩擦瞬态冲激过程定量分析及其控制方法的主要说明在前述双向制动机构实施例工作原理分析说明中有关双向制动机构平动旋转摩擦瞬态冲激过程的定性分析说明基础上,在此,将重点利用δ函数建模方法,继续展开双向制动机构动力学的定量分析说明,以便针对前述双向制动机构开始工作时和工作结束时的平动旋转瞬态静摩擦冲激过程,能够设计一种安全可靠、经济可行的控制方法,以有效控制冲激过程的响应时间。继续参照图8,作为均有一定质量的两摩擦盘D1-D2 (包括滚动轴承)和摩擦盘环Ρ1-Ρ2,在前述tl一 tl+ Λ tO时间区间内的平动旋转瞬态静摩擦冲激过程中,经两副制动卡钳摩擦片对B1-B2工作面与两摩擦盘D1-D2外盘面之间共同的相对摩擦作用,只有对两摩擦盘D1-D2和摩擦盘环P1-P2产生相应大小的反向冲量矩作用,使它们产生相应等量大小的动量矩减量,才能使两摩擦盘D1-D2和摩擦盘环P1-P2从以ω O角速度绕主轴轴线O点的同步整体旋转状态,迅速地进入以ω O角速度绕主轴轴线O点产生顺时针同步公转,同时又相对于两偏心轴轴线01、0 2两点产生角速度为Ω ^ ω0的逆时针同步自转的平动旋转摩擦稳态工作过程。通过前述分析说明可知,在固定斜率为Kl的“上升斜率波压力”引导作用下,对于两摩擦盘D1-D2和摩擦盘环Ρ1-Ρ2以初始ω O角速度绕主轴轴线O点开始的平动旋转瞬态静摩擦冲激过程而言,两副制动卡钳摩擦片对Β1-Β2工作面对两摩擦盘Dl、D2外盘面的瞬态静摩擦冲激作用,会对两摩擦盘Dl、D2和摩擦盘环Ρ1-Ρ2同时产生一定量值的反向冲量矩。在此,将该反向冲量矩的累积作用数值设为Cf!。为便于下述计算分析说明,将前述tl时刻设为上述平动旋转摩擦瞬态冲激过程的起始作用O'点(零点),因此,上述tl一 tl+tO — tl+Δ tO时间区间,可简写成为O '—to- AtO时间区间。根据前述统一假设和定性分析说明可知,由于双向制动机构中有四对外摩擦副同时工作,因此,两副制动卡钳摩擦片对B1-B2工作面对两摩擦盘D1-D2外盘面在半径Rl上等效产生的瞬间静摩擦冲激作用力的时间函数为4fls(t)=4Nl(t) μ ls,其中Nl(t)=N(t)为前述双向制动机构开始工作时由固定斜率为Kl的“上升斜率波压力"N(t)引导作用所产生的工作压力。在…一 tO — AtO时间区间内,当t=0' Bi, fls(0/ )=N1(0' ) μ ls=0,因为 N(0' )=N0, N1(0/ )=0当t=t0 时,fls (tO) =flsmax (tO) =Nl (tO) μ Is在利用下述δ函数建模分析方法计算上述反向冲量矩累积作用数值Cfl的过程中,将会用到如下四个δ函数性质
性质I (挑选性)、f fls(t) δ (t-t0)dt=fls(t0)(积分区间为-c 一 + m )性质2、fls ⑴ δ (t-tO) =fIs (tO) δ (t_tO)性质3、(t-tO) δ (t-tO) =0性质4 (对称性 / 偶函数)、δ (t-tO) = δ (t0-t)注上述符号“ f ”为积分运算符号,积分运算区间为(-c —+ ^)。在(-c 一 + m)时间区间内,利用上述δ函数性质I可得/ 4f Is (t) δ (t-tO) dt=4f Is (tO) =4N1 (tO) μ Is-----------(I)由上述(I)式可知,在上述0' — AtO时间区间内,两副制动卡钳摩擦片对Β1-Β2工作面同时对两摩擦盘D1-D2外盘面的最大静摩擦冲激作用力4nSmax (tO),在数学上,可利用S(t-t0)函数参与对fls(t)在(-C —+m)时间区间内的积分运算得到4f lsmax (tO) =4N1 (tO) μ ls,对应的物理学意义,就是4f lsmax (tO)可被在O' — AtO时间区间内产生的瞬间静摩擦冲激过程挑选出来,并作用于它们摩擦工作面之间。利用上述δ函数性质2,其确切含义是在等式fls(t) δ (t_t0)=fls(t0)δ (t-tO)的左、右两边同时乘以一个时间连续函数W(t)=t/t0之后(其中tO为O' -AtO时间区间内的tO时间数值),左、右两边分别同时对时间变量t在(_ c —+ °°)时间区间内的积分运算结果也相等,即/ Ψ (t) fls (t) δ (t-tO) dt= f Ψ (t) fls (tO) δ (t_t0) dt代入Ψ (t) =t/t0后,上述积分等式可变为/ (t/tO) fls (t) δ (t-tO) dt= f (t/tO) fls (tO) δ (t_t0) dt---(2)通过对上述积分等式(2)右边做如下变换、整理,并利用上述δ函数性质3、(t_t0) δ (t—tO ) =0 可得f (t/tO) fls (tO) δ (t-tO) dt=f Is (tO) / tO / t δ (t_t0) dt=fIs(tO)/tO f [(t-tO)+tO] δ (t_t0)dt=fIs(tO)/tO f [(t-tO) δ (t-tO)+tO δ (t_t0) ]dt=f Is (tO) /tO) tO f δ (t-tO) dt---------(3)根据δ函数定义可知,因为在t关tO时,δ (t_t0)=0,所以,/ S(t_t0)dt=l左边的积分运算,无须在(-时间区间进行,仅须在一个包含to时刻在内一个很小的a、b时间区间内进行 积分,即/ δ (t-tO) dt=l (左边积分时间区间为a — b,当a〈t0〈b时)/ δ (t-tO) dt=0 (左边积分时间区间为a — b,当a>t0、t0>b时)其中,a、b为微小的时间数值。根据δ函数上述定义,因此,可将上述(3)式在时间区间(-C —+m)内的积分运算,选在包含to时刻在内的O' — Ato时间区间内进行,其积分运算结果,即上述积分等式(2)左边的积分运算结果为/ (t/tO) fls (t) δ (t_t0) dt=[fls (tO)/tO] tO----------------(4)而上述(3)式在时间区间(-c —+内的积分运算,在不包含tO时刻在内的O' - AtO时间区间内,其积分运算结果,即上述积分等式(2)左边的积分运算结果为/ (t/tO) fls (t) δ (t-tO) dt=0---------------------------(5)通过上述(I)、(2)、(4)、(5)式,可计算得到,在前述制动液压分泵以固定斜率为Kl的“上升斜率波压力” N(t)引导作用下,在上述包括to在内的O' — Ato时间区间内,两副制动卡钳摩擦片对B1-B2工作面在半径Rl上对两摩擦盘D1-D2外盘面同时产生的瞬间静摩擦冲激过程的反向冲量矩累积作用数值Cfl,即Cfl= / 4 (t/tO) fls (t) δ (t_t0) dt=4Kl μ IsRltO------------(6)而在上述不包括tO在内的(V — AtO时间区间内,在前述制动液压分泵以固定斜率为Kl的“斜率波压力”N(t)引导作用下,两副制动卡钳摩擦片对B1-B2工作面对两摩擦盘D1-D2外盘面产生的瞬间静摩擦冲激过程的反向冲量矩累积作用数值Cfl,即Cfl=0。在上述O' — AtO时间区间内,上述平动旋转瞬间静摩擦冲激过程的反向冲量矩累积作用数值Cf!,将同时作用于有一定质量(即转动惯量)的两摩擦盘D1-D2和摩擦盘环P1-P2的整个瞬态平动旋转过程,使它们产生等量大小的动量矩减量。两摩擦盘D1-D2和摩擦盘环P1-P2在上述O' — Λ tO时间区间内的动量矩变化,可通过下述微积分方法计算得到根据前述统一假设和分析说明可知,两摩擦盘D1-D2和摩擦盘环P1-P2在上述O'时刻(圆周旋转)绕主轴轴线O点旋转的角速度为ω1=ω0,此时两摩擦盘D1-D2动量矩的微分为2 (ω OrDrl P I (2 Ji rHl) dr,摩擦盘环P1-P2动量矩的微分分别为钢基强度金属材料部分和圆柱环式摩擦环部分动量矩的微分分别为(ω Or) r P 2 (2 rH2) dr、2 (ω Or)rp2' (2πτΕ2' ) dr,两摩擦盘D1-D2和摩擦盘环P1-P2在上述0'时刻(圆周旋转)的动量矩分别为Ql (O' ) = / 2 (ω Or)r P I (2 31 rHl) dr=3 Ji ω O P 1H1R23R2Q2(0' )=/ (ω Or) r P 2 (2 3i rH2) dr+ / 2 (ω Or) r P 2; (2 π rH2; ) dr=1. 5 3i ω0[ρ 2H2R43R4+2 P 2' H2' (R43R4_R33R3)]
上述Ql (O')的r积分区间应为(0、R2),而上述Q2(0')积分结果应为r分别在(0、R4)、(0、R3)两区间的积分之差,再与r在(0、R4)区间的积分之和。两摩擦盘D1-D2在上述tO时刻(平动旋转)绕主轴轴线O点旋转盘面圆周的线速度为ω0ι·1,摩擦盘环Ρ1-Ρ2在上述tO时刻(平动旋转)绕主轴轴线O点旋转的角速度为ω I ^ 0,两摩擦盘D1-D2在上述O'时刻(圆周旋转)动量矩的微分为2(co0rl)rlp 1(2 31洲1)(11',两摩擦盘01-02和摩擦盘环P1-P2在上述tO时刻(平动旋转)的动量矩分别为Ql (to) = / 2 (ω OrI) rI P I (2 31 rHl) dr=2 Ji ω O P lHlrl2R22Q2(t0)=0上述Ql (tO)的r积分区间应为(0、R2)。通过上述微积分计算,可得到两摩擦盘D1-D2和摩擦盘环P1-P2在上述(V时刻(圆周旋转)的总动量矩为Ql ((V ) +Q2 (O ;),可得到两摩擦盘D1-D2和摩擦盘环P1-P2在上述tO时刻(平动旋转)的总动量矩为Ql (tO)+Q2 (tO)。在上述动量矩积分运算中,由于没有将两摩擦盘D1-D2、摩擦盘环P1-P2的滚动轴承和通风减重通孔考虑在内,因此,上述动量矩积分运算结果存在一定的计算误差,其精确运算结果,可将两摩擦盘D1-D2、摩擦盘环P1-P2的滚动轴承和通风减重通孔考虑在内,并参考上述微积分方法,进一步通过不同区间的积分运算得到。由上述(6)式δ函数积分运算得到的反向冲量矩累计作用数值Cf 1,并根据角动量矩定理可得-4Κ1 μ IsRltO= [Q1 (tO) +Q2 (tO) ] - [Ql (O; )+Q2(0' )]— (7)
通过上述两副制动卡钳上摩擦片对B1-B2工作面与两摩擦盘D1-D2盘面之间的平动旋转瞬态静摩擦冲激过程的S函数建模定量分析积分运算和上述等式(7)可知只要双向制动机构的 K1、yls、Rl、R2、pl、Hl、R3、R4、p2、H2、rl、P 2'、H2'设计参数已知确定,且在ω O角速度数值也为已知(可通过轮速传感器实时检测)的条件下,双向制动机构在固定斜率为Kl的“上升斜率波压力"N(t)引导作用的时间tO数值,完全可通过上述等式
(7)计算得到;也就是说,双向制动机构每次开始工作时所固有的平动旋转瞬态静摩擦冲激过程,不仅其响应时间可通过上述S函数建模及微积分方法计算得到,而且,还可以采用轮速传感器实时检测《O角速度数值与固定斜率Kl为“上升斜率波压力%(t)引导作用主动计时相结合的电子测量控制方法,对平动旋转瞬态静摩擦冲激过程实施安全可靠、经济可行的有效控制。这也正是前述双向制动机构每次开始工作时,两副制动卡钳上液压分泵BI' -B2'以固定斜率Kl的“上升斜率波压力”N(t)引导两副制动卡钳上摩擦片对B1-B2工作面与两摩擦盘D1-D2盘面之间产生平动旋转瞬态静摩擦冲激过程的主要原因!上述t0〈 Δ tO时间条件,也是为确保两副制动卡钳上摩擦片对B1-B2工作面与两摩擦盘D1-D2盘面之间的平动旋转瞬态静摩擦冲激过程按时顺利完成,所专设的一个保护时间。即使因长期正常工作磨损将导致两偏轴心盘D1-D2和摩擦盘环P1-P2质量及相应的动量矩减小,但通过上述平动旋转瞬态静摩擦冲激作用,仍可令双向制动机构在所希望的最短时间内,快速地进入其理想的平动旋转摩擦稳态工作状态,从而为两摩擦盘D1-D2准备好自转角速度Ω ^ ω0的稳定工作条件,以便曲轴轮轴主轴同时快速形成反向制动力矩Ml、同向制动力矩M2,并确保M1=2M2制动力矩关系成立。继续参照图9,针对前述双向制动机构工作结束时在t3_Λ t(V、t3时间区间内产生的固有平动旋转瞬态静摩擦冲激过程,两副制动卡钳摩擦片对B1-B2工作面对两摩擦盘D1-D2外盘面产生的冲量矩累计作用数值Cf2以及两摩擦盘D1-D2和摩擦盘环P1-P2相应产生的动量矩增量数值,也可完全参照上述双向制动机构工作开始时平动旋转瞬态静摩擦冲激过程的S函数建模积分运算方法进行分析计算。由于两副制 动卡钳上摩擦片对B1-B2工作面与两摩擦盘D1-D2外盘面之间,在前述t3_At(V、t3时间区间内工作结束时所发生瞬间静摩擦冲激作用的接触、分离顺序上,刚好与前述工作开始时在tl、tl+AtO时间区间内的平动旋转瞬间静摩擦冲激过程相反,因此,利用上述δ函数性质4 (对称性/偶函数),可将工作结束时的平动旋转瞬间静摩擦冲激过程在(+ c 一 -⑴)时间区间内的积分运算变换成为(-C 一 +⑴)时间区间内的积分运算,并参照上述(1)、(2)、(3)、(4)、(5)式完全相同的δ函数积分运算与变换方法,可计算得到,在前述制动液压分泵BI' -Β2'以斜率为Κ2且可根据ωΟ'大小变化的“下降斜率波压力” N(t)引导作用下,在包括t3-t(V在内的t3-AtO'、t3时间区间内,两副制动卡钳摩擦片对B1-B2工作面在半径Rl上对两摩擦盘D1-D2外盘面同时产生的瞬间静摩擦冲激过程的冲量矩累积作用数值Cf2,即Cf2= / (t/tO' ) f Is (t) δ (tO' -t) dt=4K2 μ IsRltO; ----------(8)而在不包括t3_t(V在内的t3_ Λ tO'、t3时间区间内,在前述制动液压分泵BI' -B2'产生的“下降斜率波压力”N(t)引导作用下,两副制动卡钳摩擦片对B1-B2工作面对两摩擦盘D1-D2外盘面同时产生的瞬间静摩擦冲激过程的冲量矩累积作用数值Cf2,即Cf2=O0
最后,参照前述(6)、(7)式,利用上述(8)式,可得到相应有效的控制算法,再根据ωΟ'大小,通过控制两副制动卡钳摩擦片对Β1-Β2工作面与两摩擦盘D1-D2外盘面之间产生斜率Κ2可变的“下降斜率波压力” NI (t)工作压力和tO'作用时间的方法,达到上述冲量矩累积作用数值Cf2控制目的,即利用上述Cf2冲量矩累积作用,可使两摩擦盘D1-D2和摩擦盘环P1-P2—起从ω ^ O瞬间加速到ω ^ ωΟ',以工作结束时的ωΟ'角速度绕主轴轴线O点作顺时针同步圆周旋转,缩短双向制动机构每次工作结束的响应时间。(4)关于本发明双向制动机构实施例“上升斜率波压力”引导斜率设计方法的简要说明基于前述分析计算说明,将以双向制动机构液压分泵产生定时固定斜率Kl的“上升斜率波压力” N (t)的控制算法为例,简要说明如下第一步、计算车轮最高转谏coOmax根据汽车最高行驶设计速度V (单位Km/h)、车轮轮胎直径D (单位m)的已知设计数值,可计算出车轮的最高转速oOmax值(单位rpm)co0max=1000V/(60 D)-------------------------(9) 第二步、确定对应coOmax的双向制动机构“上升斜率波压力"N(t)固定斜率Kl数值、最大引导作用tOmax数值、tl和AtO时间数值以汽车对双向制动机构工作响应时间的指标要求作为tl+Λ tO时间数值,并合理确定瞬间静摩擦冲激过程的有效保护时间AtOIO数值大小,根据双向制动机构已知的μ ls、Rl、R2、P 1、H1、R3、R4、P 2、H2、rl 设计参数,利用上述等式(7)并以 co0=co0max,设此时的tO为tOmax,可得到如下以K1、tOmax为未知数的联立方程组-4Κ1μ IsRltOmax= [Q1 (tO)+Q2 (tO)]-[Ql (O' )+Q2(0')]tOmax=(tl+ΔtO)- (Δt0_t0)------------------------------------------------(10)在上述联立方程组(10)中,由于tl+Λ tO和Λ t0-t0数值均可设定为已知,因此,通过求解上述方程组,即可计算得到车轮最高转速ω Omax的“上升斜率波压力” N(t)引导作用固定斜率Kl和tOmax设计数值,同时计算出相应的tl和Δ tO时间数值。第三步、确定双向制动机构在任意ω O角速度上以固定斜率为Kl的“上升斜率波压力”N(t)引导作用时间[tl+At0] I ω0的计算控制方法当双向制动机构开始工作时,基于车轮轮速传感器的ω0角速度实时检测数值,按照如下(11)式时间定时方法[tl+ Δ tO] I ω 0=tl_t0max (ω Omax-ω 0) / ω Omax+Δ tO------------------------------------------------(11)控制制动卡钳液压分泵产生固定斜率为Kl的“上升斜率波压力”N(t),可使双向制动机构都能在所希望和有效控制的tl+At0时间内迅速完成每次工作开始时的平动旋转摩擦瞬态冲激过程。关于工作结束时“下降斜率波压力"N(t)可变斜率K2的设计计算及相应的控制方法,可参照上述“上升斜率波压力”N(t)的计算方法及相应的控制方法进行,在此不再专门说明。对于双向制动机构开始工作时和结束时的平动旋转摩擦瞬态冲激过程的有效控制,将是本发明的核心设计任务之一。上述δ函数建模分析方法,是本发明的数学灵魂!
(5)、关于本发明汽车双向制动系统主要组成、原理、功能和设计方法的简要说明参照图10,根据本发明所述盘式制动器的双向制动方法所采用的制动机构,为发挥其双向制动期望性能,并承接汽车现有规范化应用的ABS刹车防车轮抱死系统、EBD电子制动力分配、ESP电子稳定程序等电子安全控制技术,本发明专门设计有一种汽车双向制动系统,其主要系统组成是在每个车轮轮毂内部空间各安装一个所述的双向制动机构,每个车轮并各设有一个轮速传感器;在所述汽车双向制动系统中,设有一个主要由微处理器构成的电子控制装置,并为该电子控制装置分别设有一个方向盘转角传感器、一个横摆角速度传感器、一个侧向加速度传感器、一个机械电子式制动踏板等主要电子检测工作部件;在所述汽车双向制动系统中,采用若干个限压阀、比例阀等液压调节部件,并以现有先进、成熟的ESP汽车电子稳定程序制动液压控制器技术为基础,设计安装一套可在所述电子控制装置控制下产生“斜率波压力”且其上升和下降压力斜率可变的制动液压装置,以便为所述每个双向制动机构上的每副制动卡钳液压分泵提供工作压力;在所述电子控制装置中,为所述的每个轮速传感器、方向盘转角传感器、横摆角速度传感器、侧向加速度传感器、机械电子式制动踏板等,分别设有相应数量的电子检测输入接口,为所述制动液压装置设有相应数量的电子控制输出接口,并设有一个标准通信总线接口,以满足所述汽车双向制动系统各种实时输入检测、输出与通信控制的应用要求。当所述汽车双向制动系统运行在汽车行驶状态时,当所述电子控制装置通过所述电子检测输入接口检测到机械电子式制动踏板动作电压信号时,基于所述每个轮速传感器及其电子检测输入接口实时检测的车轮即时轮速,电子控制装置自动控制所述制动液压装置为所述每个双向制动机构上的制动卡钳液压分泵同步产生一个“上升斜率波压力”,以引导控制每个双向制动机构工作开始时所固有的平动旋转摩擦瞬态冲激过程的响应时间和冲激强度,使每个双向制动机构能够同步快速地进入所述的平动旋转摩擦稳态工作过程;一旦所述每个双向制动机构同步完成所述的平动旋转摩擦瞬态冲激过程,并进入所述的平动旋转摩擦稳态工作过程后,所述电子控制装置将通过所述的控制输出接口,自动控制所述制动液压装置中限压阀、比例阀的开度大小,立刻结束所述“上升斜率波压力”的引导作用,同时再控制制动液压装置立刻为每个双向制动机构同步产生大小可随所述机械电子式制动踏板动作行程大小实时变化、任意波形的工作压力,以实现每个双向制动机构工作压力的增压、减压或保压,使每个双向制动机构的平动旋转摩擦稳态工作过程能够产生相应大小的反向、同向制动力矩及双向制动功效,直至所述机械电子式制动踏板动作电压信号取消为止;当所述电子控制装置通过所述电子检测输入接口检测到机械电子式制动踏板动作电压信号取消时,电子控制装置基于所述电子输入检测接口及轮速传感器实时检测的车轮转速,通过所述电子控制装置的电子输出控制接口,控制所述制动液压装置产生一个斜率与车轮即时转速成比例的“下降斜率波压力”,使所述每个双向制动机构快速完成工作结束时所固有的平动旋转摩擦瞬态冲激过程,同步自动返回所述的非工作回位状态。当所述汽车双向制动系统中的每个双向制动机构处于所述的同步平动旋转摩擦稳态工作过程时,所述电子控制装置,基于所述每个车轮上轮速传感器的实时检测以及每个车轮轮胎与路面滑移率的实时计算判断和所述每个双向制动机构的双向制动力矩大小等一系列实时自动检测、计算、判断和控制,可实现每个车轮的DABS双向制动防车轮抱死系统和DEBD双向电子制动力分配的控制功能,以避免紧急制动时因每个车轮轮胎超过路面最大摩擦附着力、每个车轮双向制动力分配不均而产生滑动摩擦,汽车车身出现转向失控跑偏、横摆侧滑甩尾等危险工况,进一步提高汽车双向制动系统工作的安全可靠性。当所述汽车双向制动系统运行在汽车行驶状态时,所述电子控制装置,通过所述的轮速传感器、方向盘转角传感器、横摆角速度传感器、侧向加速度传感器及其电子检测输入接口的实时检测和车身行驶稳定性的实时高速计算分析,当自动检测到汽车前轮转向过度或不足,一旦发现汽车车身行驶不稳定的预兆时,电子控制装置将立刻通过对所述的制动液压装置、每个车轮双向制动机构工作开始时的平动旋转摩擦瞬态冲激过程、稳态工作过程所需工作压力的自动控制,并基于所述DABS双向制动防车轮抱死系统和DEBD双向电子制动力分配的自动控制功能,利用每个双向制动机构宽动态范围的双向制动性能,对每个双向制动机构和车轮双向制动力矩大小实时自动制动控制的方法,并结合可通过所述标准通信总线接口与现有汽车发动机管理系统实时通信所能实现的TCS牵引力控制系统或ASR防滑驱动控制系统等车轮驱动扭矩控制方法,对汽车转向失控跑偏、横摆侧滑甩尾现象等行驶姿态给予实时修正,因此,可实现DESP双向制动电子稳定程序主动安全控制功能,更进一步提高汽车行驶的安全稳定性。在本发明双向制动机构平动旋转摩擦瞬态冲激过程有效控制实现基础上,本发明DBS汽车双向制动系统,可分为如下两个主要层次的安全制动应用一是实现双向制动防车轮抱死系统(DABS)和双向电子制动力分配(DEBD)控制功能的安全制动应用;二是基于DABS和DEBD功能,实现双向制动电子稳定程序(DESP)控制功能的主动安全制动应用。将上述具有DABS、DEBD, DESP电子安全控制功能的本发明汽车双向制动系统的主要实施方法,以四轮轿车和轻型客车为例,大致说明如下本发明DBS汽车双向制动系统,是基于本发明双向制动方法及其制动机构实现的一种汽车电子安全制动控制应用创新技术,而汽车现有反向制动系统,是基于汽车现有反向制动方法及其传统盘式或鼓式制动器实现的汽车电子安全制动控制应用传统技术。尽管上述两种汽车制动系统在制动方法及其制动机构上存在着本质的区别,但在除须产生“斜率波压力”引导控制不同以外的其它应用设计方面,本发明汽车双向制动系统与汽车现有反向制动系统仍可形成良好的技术承接关系。良好技术承接关系的主要表现是承接一、在系统组成上,本发明DBS汽车双向制动系统主要由车轮双向制动器、制动液压装置、电子控制器三大部分组成。在基本功能上,可实现行车制动、临时停车制动、紧急制动和驻车制动功能,具有刹车距离短、制动方向稳定性好、轮胎磨损少等优点。制动液压装置的主要作用是为双向制动机构液压分泵提供工作液压压力的增压、减压、保压功能。此外,为实现双向制动机构平动旋转摩擦冲激过程控制,还应具有“斜率波压力”引导控制功能。汽车现有反向制动系统,主要也是由传统盘式或鼓式制动器、制动液压装置、电子控制器三大部分组成;其主要功能,存在与本发明DBS汽车双向制动系统完全相同的应用需求,仅在制动性能指标上存在很大的差异。承接二、本发明DBS汽车双向制动系统中的DABS、DEBD、DESP三种电子安全制动控制功能的应用设计需求和控制实现方法,与汽车现有反向制动系统中的如下三大规范化应用设计电子安全控制技术完全相同(I)ABS刹车防车轮抱死系统控制功能
ABS为英文“Ant1-Lock Brake System”三个字母缩写。在紧急制动过程中,通常会因车轮轮胎抱死,轮胎与路面产生滑动摩擦,所以,会使汽车制动距离变长。并且,若兼有转向功能的前车轮被抱死,与路面产生滑动,因前轮与路面附着力的减小而失去前轮转向力,则车体头部容易出现跑偏;若后轮被抱死与路面产生滑动,因后轮与路面侧向附着力的下降,则车体尾部容易出现甩尾。而汽车紧急制动过程中的车体跑偏和甩尾现象,十分容易引发严重的交通事故。尤其在积水、积雪或砂石等劣质路面上,汽车紧急制动更容易发生上述危险情况。为此,在现行汽车后向制动系统中,广泛采用了 ABS控制技术。ABS主要工作原理是通过自动控制汽车现行反向制动系统的制动力大小和“抱死-松开-再抱死-再松开”脉冲循环控制方式,可防止车轮抱死情况发生,使车轮在制动时处于临界抱死的间隙摩擦附着状态,因此,可使汽车获得最大可能的轮胎与路面最大摩擦附着制动力,达到尽量缩短汽车刹车距离和时间的安全控制目的。(2) EBD电子制动力分配控制功能EBD 为英文“£lectric Brake force^istribution”三个字母缩写。EBD 电子制动力分配控制技术,就是为解决汽车制动时容易出现车体跑偏、甩尾问题而专门设计的一种现行汽车安全电子控制技术。汽车制动系统工作时容易产生跑偏、甩尾的原因是左、右两侧车轮与路面接触条件不同,一侧车轮路面湿滑,另一侧车轮路面干燥,汽车制动时,左、右两侧车轮附着力不同,容易发生单边车轮打滑、侧翻危险情况。EBD主要工作原理是在汽车制动瞬间,由汽车反向制动控制系统中的微处理器通过四个车轮转速传感器完成每个车轮的实时转速检测,利用车轮转速滑移率算法等高速推算出四个车轮的附着力数值,实时控制制动装置,使之按设定控制程序调整,达到四个车轮制动器制动力与轮胎附着力(牵引力)的匹配,以保证运动车体的制动安全稳定;在紧急制动过程中,一旦车轮被抱死,EBD将在ABS动作之前就已经平衡了每个车轮轮胎与路面之间的摩擦制动力,可防止车体发生跑偏、甩尾现象,并缩短汽车制动距离。因此,也可将EBD可看作是上述ABS的一种辅助功能,它能进一步改善提高ABS的制动功效。

(3) ESP电子稳定程序主动安全控制功能ESP 为英文“Electronic Stability program” 三个字母缩写。ESP 可对 ABS、ASR(驱动防滑系统)或TCS (牵引力控制系统)功能实施有力的支援,可使它们的控制功效得以更充分发挥。ESP通常由检测控制模块及相应电子检测控制通信接口、车轮轮速传感器、方向盘转角传感器、车体横摆角速度传感器、侧向加速度传感器等构成。ESP主要工作原理是ESP检测控制模块通过各传感器实时检测,可获得车辆行驶状态数据,由ESP检测控制模块的微处理器对其进行高速计算分析,并通过控制通信接口不断地向ABS和ASR或TCS控制系统发出含有修正控制参数的纠偏控制指令,最终由ABS和ASR或TCS控制系统按照纠偏控制指令要求自动向每个车轮制动器施加相应大小的制动力或驱动力,在个别极端情况下可以进行每秒上百次的制动,通过控制车轮轮胎与路面之间摩擦附着力大小,可使车体在各种状况下保持最佳的行驶稳定性;在汽车前轮转向过度或不足的情形下,上述车体行驶稳定性的控制效果将更为显著。目前,ESP主要有三种应用类型一是可对汽车四个车轮制动器独立施加制动力的四通道四轮系统;二是可对两个汽车转向前轮制动器独立施加制动力和对两个后轮制动器同时施加制动力的三通道系统;三是可对汽车两个转向前轮制动器独立施加制动力的双通道系统。就主动安全控制性能而言,一般ESP可独立控制的通道数和车轮数愈多,相应的控制算法愈合理,其车体运动稳定性的控制效果会愈好。可见,与上述ABS功能在汽车反向制动系统人为制动过程中的被动作出安全控制反应相比,ESP最重要的特点就是它的安全控制主动性,因此,ESP无须人为操控便可自动地做到防患于未然。考虑上述汽车现有反向制动系统中的三大规范化电子安全控制应用技术,都已是量产配置的实用成熟技术,在现有反向制动系统力学状态的实时过程控制上,都已尽可能地实现了优化设计,并经长期应用证明,且本发明DBS汽车双向制动系统与汽车现有反向制动系统及其电子安全控制应用技术,存在上述良好的技术承接关系,因此,本发明DBS汽车双向制动系统的应用设计,在上述汽车现有反向制动系统及其三大电子安全控制技术基础上,可大致按如下步骤展开首先,在汽车现有反向制动系统中,直接采用本发明双向制动器,以替代现有传统的盘式或鼓式制动器;然后,在汽车现有反向制动控制系统中,按照本发明前述双向制动机构平动旋转摩擦瞬态冲激过程及其控制方法,增加有关“斜率波压力”引导控制功能设计;最后,采用集成控制设计方法,对电子控制器或控制模块中的微处理器软件控制逻辑、参数、检测控制算法等进行相应必要的修改和优化调整,即可实现本发明DBS汽车双向制动系统的上述全部电子安全控制功能。若采用合适的制动液压方案设计,还可实现先进的四通道、四轮、机械电子式制动踏板制动液压控制功能。比如,电子控制器的微处理器(MCU),可选用德国英飞凌科技公司(Infineon Technologies)设计生产的16位嵌入式微处理器(XC164)和高度集成化的4通道PWM电磁阀闭环专用数字控制集成芯片(TLE-7242),也可采用支持ESP控制功能的高级集成芯片方案进行设计。上述集成芯片组设计方案,具有标准灵活的数字化特点和出色的电磁兼容抗干扰性能,可在恶劣的车载环境下长期安全、可靠地工作。由于本发明双向制动器可在汽车行驶方向上大幅提升汽车的制动性能,同时也可相应地提高车轮轮胎的抗侧滑能力,因此,基于本发明双向制动器设计的DBS汽车双向制动系统,无论在刹车距离和时间上,还是在DABS、DEBD, DESP电子安全控制的控制能力上,都将会超过汽车现有反向制动系统及其电子安全控制技术,可进一步大幅提高汽车行驶的安全稳定性。通过上述大致简要说明可知,本发明DBS汽车双向制动系统的应用设计,可承接并涵盖汽车现有反向制动系统及其三大电子安全控制技术的全部规范化应用设计内容。汽车产业界凭借在人员、技术、资金、研发和试验测试条件等方面的强大综合实力,完成本发明汽车双向制动机构及系统的全部应用设计和产业化工作,应不会遇到太大的困难。与汽车安全制动应用技术相比,飞机在跑道起降滑行过程中的机轮制动应用情形完全一样,也是采用合成橡胶轮胎进行制动,两者之间的主要区别是飞机重量较大、机轮承载负荷较大、跑道滑行速度较高。尽管列车车轮为钢轮、路面为钢轨,列车轮轨之间的粘着摩擦系数(约O. 25)—般较小,但与汽车、飞机基于车轮或机轮轮胎、路面或跑道之间摩擦的制动力学原理也完全相同。汽车所采用盘式或鼓式制动器的主要应用结构形式,基本上也都是目前飞机和列车所采用的结构形式,仅是在个别结构上略有不同。与汽车复杂多变的实际交通路况相比,列车、飞机均分别设有专用封闭的钢轨、跑道,且车轮、机轮分别与钢轨、跑道之间的实际摩擦附着情况相对稳定,因此,列车、飞机所通常采用的电子安全制动控制应用技术及功能,相对于汽车应用要简单或各有侧重,汽车现有三大规范化电子安全控制应用技术,已涵盖了列车、飞机相关制动应用的全部电子安全控制功能及需求。有关本发明双向制动方法及其制动机构,在列车轮轨制动、飞机起降轮胎跑道制动的具体实施应用方面,不再另外专门说明,可参照上述汽车双向制动机构具体实施方法及其相关技术设计分析内容展开。综上所述,本发明彻底打破了现有机动轮式交通运输工具反向制动技术理论的百年束缚,可大幅提升其安全制动性能。本发明既有意义重大的科学推理发现,又有对现有反向制动技术理论在车轮与路面之间制动摩擦认识上的重大纠偏,实属各种机动轮式交通运输工具安全制动与主动安全控制技术,在制动力学应用基础研究领域取得的一次重大技术突破,为开创崭新的“DBT现代双向制动技术理论”奠定了基础,因此,必将推动世界三大交通运输工具一汽车、列车和飞机起降安全制动与电子主动安全控制应用技术的创新发展,给人类交通安全带来一特大福音!本发明不仅具有高度的发明原创性、理论完备性和现有反向制动技术无法比肩的卓越双向制动性能,而且,在相应技术产品的生产、系统应用上,具有完备的设计考虑,并与汽车现有轮胎应用技术和规范化电子安全制动控制应用技术形成良好的承接关系,具有规模产业化的可实施性。因此,有理由相信接产实施方若按本发明说明书所阐述的具体实施方式
,完成相应的技术优化设计、产品试制、可靠性试验、工艺完善、小批量生产、规模化生产等技术产业化应用工作,从中获得一次升级淘汰汽车现有主动安全制动控制应用技术及产品,占领这一巨大市场的良机,取得巨大的经济和社会效益,将是完全可能的。同时,也可针对列车轮轨、飞机机轮起降制动与安全控制应用,开展具有同样重大意义的产业化研究与推广工作。本发明的意义和价值,须在人文、历史和哲学高度上并结合多交叉学科知识等进行综合分析判断,但其中最为复杂、微妙的,莫过于人文因素的困扰和阻碍。人的生命,只有一次。缤纷斑斓的世界,能给予人生命记忆的并不多。本发明人值此发明完成之际,向曾养育、呵护、教诲、帮助或影响过我,并给予我深刻记忆的每一个人,表示衷心感谢!同时,也希望本发明能给人类和世界带来平安、幸福!本发明的名词定义曲轴轮轴、主轴、偏心轴、偏轴半径一将设有三段同轴心轴段和两段偏轴心轴段且两偏轴心轴段以互相错相180度方式设置在三段同轴心轴段两两轴段之间的车轮转轴用曲轴,定义为曲轴轮轴,将其中三段同轴心轴段定义为主轴,将其中两段偏轴心轴段定义为偏心轴,将两偏轴心轴段轴线与三段同轴心轴段轴线之间的垂直距离定义为偏轴半径。摩擦盘环、摩擦环一在一个以圆盘面中心垂直线为转轴轴线的摩擦工作圆盘两侧盘面上,以其轴线为旋转中心线各设有一对称摩擦圆柱环,将该摩擦工作圆盘定义为摩擦盘环,并将其两侧盘面上对称的摩擦圆柱环定义为摩擦环。摩擦盘环位于两摩擦盘之间,其工作摩擦面为摩擦环的环带面。摩擦盘、内盘面、外盘面一将完全相同并分别安装在曲轴轮轴两偏心轴上的两个摩擦工作圆盘统称为摩擦圆盘,亦称为摩擦盘,两摩擦盘的轴线为其圆盘面中心垂直线,其摩擦工作面为其两侧盘面。与摩擦盘环接触摩擦工作的两摩擦盘一侧盘面定义为内盘面,两摩擦盘的另一侧盘面定义为外盘面。制动卡钳、摩擦片、摩擦片对一将应用于本发明双向制动机构并与汽车现有盘式制动器中结构相同或类似的各种制动卡钳继续称为制动卡钳,制动卡钳上的摩擦工作部件仍称为摩擦片,因摩擦片通常成对使用,故也可称之为摩擦片对。外摩擦副、内摩擦副——将由摩擦盘外盘面与制动卡钳摩擦片接触摩擦构成的摩擦副定义为外摩擦副,将由摩擦盘内盘面与摩擦盘环两侧盘面上摩擦环接触摩擦构成的摩擦副定义为内摩擦副。卡钳安装支架——将与车轮转轴滚动轴承外套固定连接或成一体、用于制动卡钳与车体固定安装的刚性安装支架称为卡钳安装支架。公转、自转、平动旋转摩擦——摩擦盘绕曲轴轮轴主轴轴线的旋转定义为公转,同时又相对于曲轴轮轴上偏心轴轴线产生的逆向旋转定义为自转,当摩擦盘自转与公转的即时角速度值相等或近似相等时,由于摩擦盘上任何质点的运动轨迹均为与摩擦盘轴线绕曲轴轮轴主轴轴线公转半径相同或近似相同的圆周,且摩擦盘上任意两质点之间的连线始终处于一种平行或近似平行的旋转状态,因此,将本发明中由同时公转和自转的摩擦盘与制动卡钳摩擦片和摩擦盘环工作面之间产生的相对摩擦运动方式定义为平动旋转摩擦。车轮固定法兰盘——将与曲轴轮轴外端主轴固定连接、专门用于车轮固定安装的连接法兰盘定义为车轮固定法兰盘。反向制动力矩、反向制动器、反向制动方法-将与车轮旋转方向相反的现有轮
式交通工具车轮制动机构的制动力矩,定义为反向制动力矩;将仅有反向制动力矩的全部现有盘式、鼓式制动器,统称为反向制动器;将制动器仅有反向制动力矩的制动方法,定义为反向制动方法,也可称之为单向制动方法、反向制动技术。双向制动方法、同向制动力矩、双向制动力矩、双向制动器——本发明制动方法中,与车轮旋转方向相反、相同的两种制动机构制动力矩因同时相互作用产生,为突出其鲜明的技术特征,故将该制动方 法定义为双向制动方法,也可称为双向制动技术,定义其所对应的英文名称为Sual-dire ctions Braking technology,英文缩写为DBT ;将其中与车轮旋转方向相同的制动机构制动力矩定义为同向制动力矩,与其同时相互作用产生且与车轮旋转方向相反的制动机构制动力矩仍称之为反向制动力矩,并将反向、同向制动力矩统称为双向制动力矩,将本发明制动方法中同时具有反向、同向制动力矩的制动机构定义为双向制动机构,或双向制动器。DABS双向制动防车轮抱死系统——将在由本发明双向制动机构构成的汽车双向制动系统中,为防止刹车时车轮被抱死、车轮滑动而设计的汽车电子安全制动控制系统,定义为双向制动防车轮抱死系统,并将其所对应的英文名称定义为Sual-directionsAnt1-lock Braking System,英文缩写为 DABS。DEBD双向电子制动力分配——将在由本发明双向制动机构构成的汽车双向制动系统中,为防止刹车时左右两侧车轮双向制动力分配不均,造成前轮侧滑转向失控跑偏、后轮侧滑车身横摆甩尾而设计的汽车电子安全制动控制功能,定义为双向电子制动力分配,将对应的英文名称定义为2ual-directions£lectric Brake force Distribution,英文缩写为DEBD。DESP双向制动电子稳定程序——将在由本发明双向制动机构构成的汽车双向制动系统中,为实现主动监测控制汽车的行驶安全稳定性,防止前轮转向过度或不足与失控跑偏、后轮侧滑车身横摆甩尾而设计的汽车主动安全电子控制功能,定义为双向制动电子稳定程序功能,并将其所对应的英文名称定义为^ual-directions Electronic StabilityProgram,英文缩写为DESP 。
权利要求
1.一种盘式制动器的双向制动方法,包括结构组成、摩擦运动方式、力学原理、功能性能的设定及应用在内,其特征是制动器由一个有三同轴心轴段和两偏轴心轴段的曲轴轮轴、两个摩擦盘、一个摩擦盘环和至少一副制动卡钳四种核心工作部件组成,所述两偏轴心轴段以互相错相180度角设置在所述三同轴心轴段的两两轴段之间,所述两摩擦盘分别位于所述两偏轴心轴段上,所述摩擦盘环设置在所述两偏轴心轴段之间的同轴心轴段上并被夹压在两摩擦盘之间,所述每副制动卡钳上设有一对工作面相向的摩擦片,制动器的目标功能通过两摩擦盘内外盘面分别与摩擦盘环、每副制动卡钳摩擦片对工作面之间的同时相互摩擦并在同轴心轴段上同时形成双向制动力矩的方式实现,制动器不工作时,在两摩擦盘与每副制动卡钳上摩擦片对的工作面之间不发生接触摩擦,两摩擦盘和摩擦盘环仅通过相互之间的旋转静摩擦作用,跟随曲轴轮轴绕其同轴心轴段轴线同步旋转,制动器工作时,通过每副制动卡钳上摩擦片对同时对两摩擦盘和摩擦盘环工作面的轴向相向压力作用,使两摩擦盘绕曲轴轮轴同轴心轴段轴线产生同步公转,同时又分别相对于曲轴轮轴两偏轴心轴段轴线产生与两摩擦盘同步公转方向相反的同步逆向自转,同时又使摩擦盘环相对于同轴心轴段轴线产生与两摩擦盘同步公转方向相反的同步逆向旋转,因此,在两摩擦盘、每副制动卡钳上摩擦片对和摩擦盘环的工作面之间形成同步平动旋转摩擦,并建立两摩擦盘同步平动旋转摩擦的角速度和力矩约束机制,从而使曲轴轮轴同轴心轴段同时分别产生与其转动方向相反的反向制动力矩、与其转动方向相同的同向制动力矩,且当反向制动力矩是同向制动力矩的两倍时,在同比工作条件下,制动器可产生三倍于汽车现有反向制动器制动性能的双向制动期望性能。
2.一种盘式制动器的双向制动方法所采用的制动机构,包括制动卡钳,其特征是设有一个由三同轴心轴段和两偏轴心轴段构成的曲轴轮轴、两个摩擦盘、一个摩擦盘环、一个车轮固定法兰盘和至少一副制动卡钳及相对应的卡钳安装支架;所述两偏轴心轴段以互相错相180度角方式,设置在所述三同轴心轴段的两两轴段之间,使三同轴心轴段中的两段同轴心轴段处于所述曲轴轮轴的两端,三同轴心轴段中的一段同轴心轴段处于两偏轴心轴段之间;所述两摩擦盘分别位于所述两偏轴心轴段上,所述摩擦盘环设置在位于所述两偏轴心轴段之间的同轴心轴段上并被夹压在两摩擦盘之间,使两摩擦盘面在两偏轴心轴段轴向上获得等工作压力承载能力,同时在同轴心轴段转动方向上形成双向制动力矩工作能力;位于所述曲轴轮轴两端的两同轴心轴段,分别用于所述车轮固定法兰盘的固定安装、与车轮转轴轴承的旋转连接;在所述每副制动卡钳上,均设有一对工作面相向的摩擦片和至少一个液压分泵,液压分泵为每副制动卡钳摩擦片对提供相向工作压力,以确保处于工作状态时的每副制动卡钳摩擦片对工作面均能与两摩擦盘面发生接触摩擦;所述的所有卡钳安装支架,与车轮转轴静止轴套部分固定连接或成一体;所述每副制动卡钳固定安装在所述对应的卡钳安装支架上,使所述的每副制动卡钳液压分泵和摩擦片对可同时为所述的两摩擦盘与摩擦盘环之间工作面提供轴向工作压力;制动机构不工作、处于所述的非工作回位状态时,在所述的两摩擦盘与每副制动卡钳上摩擦片对工作面之间不发生接触摩擦,两摩擦盘和所述摩擦盘环仅通过相互之间的旋转静摩擦作用,将跟随所述曲轴轮轴绕其同轴心轴段轴线同步旋转,在同轴心轴段上不产生制动力矩;制动机构工作开始时,对应所述曲轴轮轴同轴心轴段的即时转速,首先由所述每副制动卡钳上液压分泵同步产生一个“上升斜率波压力”,相向推动所述每副制动卡钳摩擦片对工作面与所述两摩擦盘面同时接触并产生轴向工作压力,并在该轴向工作压力的作用下,两摩擦盘开始绕所述曲轴轮轴同轴心轴段轴线产生同步公转,同时又分别相对于所述曲轴轮轴两偏轴心轴段轴线产生与两摩擦盘同步公转方向相反的同步逆向自转,同时又使所述摩擦盘环相对于其所在同轴心轴段轴线产生与两摩擦盘同步公转方向相反的逆向旋转,因此,在两摩擦盘与每副制动卡钳摩擦片对、摩擦盘环的工作面之间,同步形成机构工作开始时所固有的平动旋转摩擦瞬态冲激过程,在两摩擦盘平动旋转摩擦瞬态冲激过程完成并迅速进入平动旋转摩擦稳态工作过程之后,由每副制动卡钳液压分泵同步产生的“上升斜率波压力”立刻结束,并立刻产生任意波形的工作压力作用于每副制动卡钳摩擦片对、两摩擦盘、摩擦盘环的工作面之间,以保持两摩擦盘的平动旋转摩擦稳态工作,使曲轴轮轴同轴心轴段同时分别产生与其转动方向相反的反向制动力矩、与其转动方向相同的同向制动力矩,且当反向制动力矩是同向制动力矩的两倍时,在同比工作条件下,制动机构可产生三倍于汽车现有反向制动器制动性能的双向制动期望性能;制动机构工作结束后,对应所述曲轴轮轴同轴心轴段的即时转速,所述每副制动卡钳上液压分泵同步产生一斜率可变的“下降斜率波压力”,使所述的每副制动卡钳摩擦片对、两摩擦盘、摩擦盘环工作面之间快速完成制动机构工作结束时所固有的平动旋转摩擦瞬态冲激过程,每副制动卡钳摩擦片对与两摩擦盘之间工作面产生同步分离,两摩擦盘和摩擦盘环同时停止相对于所述曲轴轮轴的逆向旋转,自动返回所述的非工作回位状态。
3.根据权利要求2所述的盘式制动器的双向制动方法所采用的制动机构,在所述的两摩擦盘与其曲轴轮轴两偏轴心轴段之间,在所述的摩擦盘环与其曲轴轮轴同轴心轴段之间,均应采用滚动轴承安装方式连接,以减小两摩擦盘、摩擦盘环分别与其偏轴心轴段之间、同轴心轴段之间的旋转摩擦,以便通过两摩擦盘与摩擦盘环之间工作面的平动旋转摩擦作用和两偏轴心轴段力矩作用,在同轴心轴段上同时形成双向制动力矩。
4.根据权利要求2所述的盘式制动器的双向制动方法所采用的制动机构,为发挥其双向制动期望性能,并承接汽车现有规范化应用的ABS刹车防车轮抱死系统、EBD电子制动力分配、ESP电子稳定程序等电子安全控制技术,设计有一种汽车双向制动系统,其特征是在每个车轮轮毂内部空间各安装一个所述的双向制动机构,每个车轮并各设有一个轮速传感器;在所述汽车双向制动系统中,设有一个主要由微处理器构成的电子控制装置,并为该电子控制装置分别设有一个方向盘转角传感器、一个横摆角速度传感器、一个侧向加速度传感器、一个机械电子式制动踏板等主要电子检测工作部件;在所述汽车双向制动系统中,采用若干个限压阀、比例阀等液压调节部件,并以现有先进、成熟的ESP汽车电子稳定程序制动液压控制器技术为基础,设计安装一套可在所述电子控制装置控制下产生“斜率波压力”且其上升和下降压力斜率可变的制动液压装置,以便为所述每个双向制动机构上的每副制动卡钳液压分泵提供工作压力;在所述电子控制装置中,为所述的每个轮速传感器、方向盘转角传感器、横摆角速度传感器、侧向加速度传感器、机械电子式制动踏板等,分别设有相应数量的电子检测输入接口,为所述制动液压装置设有相应数量的电子控制输出接口,并设有一个标准通信总线接口,以满足所述汽车双向制动系统各种实时输入检测、输出与通信控制的应用要求。当所述汽车双向制动系统运行在汽车行驶状态时,当所述电子控制装置通过所述电子检测输入接口检测到机械电子式制动踏板动作电压信号时,基于所述每个轮速传感器及其电子检测输入接口实时检测的车轮即时轮速,电子控制装置自动控制所述制动液压装置为所述每个双向制动机构上的制动卡钳液压分泵同步产生一个“上升斜率波压力”,以引导控制每个双向制动机构工作开始时所固有的平动旋转摩擦瞬态冲激过程的响应时间和冲激强度,使每个双向制动机构能够同步快速地进入所述的平动旋转摩擦稳态工作过程;一旦所述每个双向制动机构同步完成所述的平动旋转摩擦瞬态冲激过程,并进入所述的平动旋转摩擦稳态工作过程后,所述电子控制装置将通过所述的控制输出接口,自动控制所述制动液压装置中限压阀、比例阀的开度大小,立刻结束所述“上升斜率波压力”的引导作用,同时再控制制动液压装置立刻为每个双向制动机构同步产生大小可随所述机械电子式制动踏板动作行程大小实时变化、任意波形的工作压力,以实现每个双向制动机构工作压力的增压、减压或保压,使每个双向制动机构的平动旋转摩擦稳态工作过程能够产生相应大小的反向、同向制动力矩及双向制动功效,直至所述机械电子式制动踏板动作电压信号取消为止;当所述电子控制装置通过所述电子检测输入接口检测到机械电子式制动踏板动作电压信号取消时,电子控制装置基于所述电子输入检测接口及轮速传感器实时检测的车轮转速,通过所述电子控制装置的电子输出控制接口,控制所述制动液压装置产生一个斜率与车轮即时转速成比例的“下降斜率波压力”,使所述每个双向制动机构快速完成工作结束时所固有的平动旋转摩擦瞬态冲激过程,同步自动返回所述的非工作回位状态。当所述汽车双向制动系统中的每个双向制动机构处于所述的同步平动旋转摩擦稳态工作过程时,所述电子控制装置,基于所述每个车轮上轮速传感器的实时检测以及每个车轮轮胎与路面滑移率的实时计算判断和所述每个双向制动机构的双向制动力矩大小等一系列实时自动检测、计算、判断和控制,可实现每个车轮的DABS双向制动防车轮抱死系统和DEBD双向电子制动力分配的控制功能,以避免紧急制动时因每个车轮轮胎超过路面最大摩擦附着力、每个车轮双向制动力分配不均而产生滑动摩擦,汽车车身出现转向失控跑偏、横摆侧滑甩尾等危险工况,进一步提高汽车双向制动系统工作的安全可靠性。当所述汽车双向制动系统运行在汽车行驶状态时,所述电子控制装置,通过所述的轮速传感器、方向盘转角传感器、横摆角速度传感器、侧向加速度传感器及其电子检测输入接口的实时检测和车身行驶稳定性的实时高速计算分析,当自动检测到汽车前轮转向过度或不足,一旦发现汽车车身行驶不稳定的预兆时,电子控制装置将立刻通过对所述的制动液压装置、每个车轮双向制动机构工作开始时的平动旋转摩擦瞬态冲激过程、稳态工作过程所需工作压力的自动控制,并基于所述DABS双向制动防车轮抱死系统和DEBD双向电子制动力分配的自动控制功能,利用每个双向制动机构宽动态范围的双向制动性能,对每个双向制动机构和车轮双向制动力矩大小实时自动制动控制的方法,并结合可通过所述标准通信总线接口与现有汽车发动机管理系统实时通信所能实现的TCS牵引力控制系统或ASR防滑驱动控制系统等车轮驱动扭矩控制方法,对汽车转向失控跑偏、横摆侧滑甩尾现象等行驶姿态给予实时修正,因此, 可实现DESP双向制动电子稳定程序主动安全控制功能,更进一步提高汽车行驶的安全稳定性。
全文摘要
一种盘式制动器的双向制动方法及其制动机构与应用,适用于汽车、列车和飞机等领域。双向制动法及其制动机构中,包含一有三主轴和两偏心轴的曲轴轮轴、两摩擦盘、摩擦盘环和至少一副制动卡钳及摩擦片,两偏心轴以互相错相180度设置在所述曲轴轮轴三主轴的两两轴段之间,两摩擦盘分别位于两偏心轴上,摩擦盘环设置在两偏心轴之间的主轴上,通过两摩擦盘分别与摩擦盘环和所述每副制动卡钳摩擦片的同步平动旋转摩擦,使所述主轴同时产生反向、同向制动力矩,同比现有反向制动器,制动性能可提高两倍,车轮摩擦负荷不变;由双向制动机构构成汽车双向制动系统,可实现DABS、DEBD、DESP电子安全控制功能,大幅提高交通安全。
文档编号B60T1/06GK103052824SQ201280001602
公开日2013年4月17日 申请日期2012年7月24日 优先权日2012年7月24日
发明者强海胜 申请人:强海胜
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1