催化剂制造方法与流程

文档序号:11282042阅读:365来源:国知局
本发明涉及使用加层(additivelayer)制造制备的载体来制造催化剂的方法。非均相催化剂典型地通过造粒、挤出或粒化粉末状催化金属化合物,随后煅烧,和/或任选地还原阶段来制造。可选地,通过造粒或挤出催化惰性材料所形成的催化剂载体可以用催化剂化合物的溶液浸渍,并且干燥,然后是煅烧和/或还原阶段。造粒、挤出和粒化方法虽然是有效的,但是在催化剂几何形状和物理性能方面提供的可变性有限。为了处理来自于车辆和发电站的废气,粉末状催化剂可以制备成含水浆料,并且涂覆(“载体涂覆(washcoated)”)到惰性蜂窝体基底整料上,例如所谓的流通式或壁流式过滤器蜂窝体基底。加层制造(alm)是粉末状材料的2维层依次敷设并且熔合或结合在一起以形成3维固体物体的技术。已经研发该技术用来制作用于航天和医学应用的金属和陶瓷部件。wo2012032325公开了一种使用加层方法生产催化剂的方法,其包括:(i)形成粉末状催化剂或催化剂载体材料的层,(ii)根据预定图案,粘合或熔合所述层中的粉末,(iii)逐层重复(i)和(ii)以形成载体结构,和(iv)任选的将催化材料施用到所述载体结构。已经发现一种可以将催化剂提供在alm载体上的改进方法。因此,本发明提供一种生产催化剂或催化剂前体的方法,其包括:(i)将微粒催化剂化合物在载流体中的浆料施用到加层制造的载体结构,以形成浆料浸渍的载体结构,和(ii)干燥和任选地煅烧该浆料浸渍的载体以形成催化剂或催化剂前体,其中该浆料中该微粒催化剂化合物的平均粒度(d50)是1-50μm,和该载体结构的孔隙率≥0.02ml/g。该方法提供相对于常规方法性能增强的催化剂,并且能够使用不适于经由可溶性盐来浸渍的催化剂化合物。作为本文使用的,术语“平均粒度”是d50,并且以μm(微米)表示。浆料中的平均粒度分布可以通过常规激光散射方法来测定。例如,粒度测量可以通过激光衍射粒度分析,使用malvernmastersizer2000来获得,其是一种基于体积的技术(即d50和d90也可以称作dv50和dv90(或d(v,0.50)和d(v,0.90)),并且使用了数学mie理论模型来测定粒度分布。本文所用术语“孔隙率”是通过孔隙度测定法来测定的总孔体积,可以表示为ml/g或cm3/g。载体结构通过加层制造(alm)方法来制备,其也称作层制造、结构制造、生成制造、直接数字制造、自由形态制作、实心自由形态制作、快速原型法或3d打印。alm方法能够通过常规3d设计计算机程序包来进行,其允许将载体结构设计为所谓的“stl文件”,其是3d形状的一种简单筛网描述。stl文件使用设计软件分成多个二维层,其是制作方法的基础。然后读取了该二维图案的alm制作装置依次逐层沉积对应于2d切片的粉末材料。为了使得载体结构具有结构完整性,在层沉积时将粉末材料粘合或熔合在一起。重复层沉积和粘合或熔合的方法,直到产生载体结构。将未粘合或未熔合的粉末容易地与载体结构分离,例如通过重力、翻滚、筛分或喷吹。已知的3d打印技术可以用于制备载体结构。优选地,载体结构制备方法包括:(i)将微粒载体材料与粘合剂合并以形成预形成混合物,(ii)形成该预形成混合物的层,(iii)根据预定图案将粘合溶剂从打印头施用到预形成混合物的层,以粘合该微粒载体材料,(iv)逐层重复(ii)和(iii),(v)除去未粘合的材料,和(vi)干燥和任选地煅烧以形成该载体结构。微粒载体材料典型地是平均粒度为0.1-400μm的粉末。该平均粒度可以是100-300μm,或者可以使用更小的平均粒度,例如20-75μm,或0.1-15μm,例如2-4μm。可以使用具有不同平均粒度的颗粒的混合物,例如10-90重量%的平均粒度0.1-15μm的第一微粒载体材料和10-90重量%的平均粒度20-75μm的第二微粒载体材料。具有所需平均粒度的材料是可商购的或者可以使用已知方法例如研磨和筛分来产生。通过仔细选择加层制造方法中所用载体材料的粒度和粒度分布,可以控制形成的载体结构的孔体积和孔尺寸分布。载体的孔隙率≥0.02ml/g,优选≥0.1ml/g,可以是0.1-1.4ml/g,特别是0.3-0.8ml/g。孔隙率来自于微粒载体材料颗粒间的空间加上载体材料本身中的任何孔。在载体材料煅烧后保持了大部分孔隙率的情况中,这对形成的催化剂会是有益的,但是在本发明中保持这样的孔隙率并不重要。例如,低孔隙率/表面积载体如α-氧化铝或氧化锆可以有效地用来制备载体。载体构建的alm方法允许对每个应用潜在地调节孔尺寸分布。因此,除了平均孔尺寸(其也可以表达为d50值)之外,孔尺寸范围(其可以表达为d10和d90值的差值)可以通过alm方法来完成。载体孔的d50优选是10-25μm。d10和d90的差值可以是30-50μm。载体的孔尺寸分布可以使用压汞孔隙率测定法来容易地测定。孔尺寸分布可以通过log微分压汞对孔尺寸直径(μm)的图来展示,其通常显示1、2或3个峰,对应于单、双或三峰孔尺寸分布。在本发明中,孔隙率可以从一个或多个峰下的面积来测定。孔尺寸分布可以认为是主峰下的孔尺寸范围,即对催化剂载体的总孔隙率贡献最大的孔尺寸范围。在这种情况中,d50对应于这个范围内50%的孔的尺寸,d10是10%,和d90是90%。此外,3d打印机头的打印分辨率可以用来影响催化剂结构的性质。已经发现,打印分辨率的变化改变形成的结构的密度,独立于粘合剂,在密度和孔隙率之间存在直接关系。较高密度可以在较高打印分辨率实现,这提供了增强的强度,但是具有较低的孔隙率。打印分辨率可以在x向和y向上调节。已经发现,对于50-150μm的层厚度,x向上的打印分辨率是40μm-70μm和y向上是80-100μm,对于制备催化剂载体结构来说是理想的。液滴质量可以是50-250ng,优选110-160ng。粘合剂可以是粉末,在这种情况中微粒载体材料和粘合剂可以共混以形成预形成混合物。可选地,粘合剂可以例如从溶液或熔体涂覆于微粒载体材料表面上。粘合剂/微粒载体材料重量比可以是0.05/1-2/1。粘合剂用量可以是预形成混合物的1-30重量%,并且预形成混合物的5-15重量%被证明是特别有用的。优选的粘合剂是有机聚合物例如糊精、蔗糖、聚(乙烯醇)(pva)及其混合物。有机聚合物具有它们可以通过随后的热处理来从载体结构中除去的优点。已经发现,pva,特别是>80%水解的平均分子量20,000-30,000的pva在本发明中特别有效。粘合剂的平均粒度可以与微粒载体材料在相同的范围内。增强剂例如聚合物或陶瓷纤维(例如纤维素纤维)也可以以1-10重量%包括在预形成混合物中。另外地或替代地,预形成混合物可以包含1-20重量%的水泥粉末例如铝酸钙水泥或硅酸钙水泥。水泥可以有效增加载体结构的强度。除了微粒载体材料、粘合剂和任何增强剂之外,预形成混合物可以含有0.5-5重量%的一种或多种烧结助剂,其改进微粒载体材料在载体结构形成过程中的烧结。改进的烧结改进该结构煅烧之前和之后的强度,并且可以用来影响催化剂的孔隙率和表面积。可以使用的烧结助剂包括氧化钛(iv)(tio2)、氧化铁(iii)(fe2o3)、氧化铜(ii)(cuo)、氧化镁(mgo)和碳酸钙(caco3)。特别地,已经发现氧化钛(iv)和氧化铁(iii)或氧化铜(ii)的混合物是有效的。tio2-fe2o3或cuo优选的重量比是40:60-60:40。预形成混合物可以通过以任意顺序混合微粒载体材料和粘合剂,以及任何增强剂或烧结助剂来简单地制备。期望的是如果可能,可以使用具有类似平均粒度和密度的微粒材料,以使组分在混合物中的隔离最小化。如果需要,烧结助剂和微粒载体材料可以在与粘合剂混合之前预混和筛分。如果需要,可以筛分预形成混合物来控制用于制备载体结构的粒度。例如,将预形成混合物筛分到低于100μm的粒度提供了能够生产蛋壳催化剂的载体结构,而筛分到100-200μm的粒度提供了浆料浸透完全和均匀的载体结构。预形成材料的层可以是0.02-5.0mm厚,优选0.02-2.5mm厚,更优选0.02-0.5mm厚。粘合溶剂可以是溶解了粘合剂的任何液体,和使载体材料颗粒根据预定图案粘合在一起。可以使用一种或多种粘合溶剂。可以使用有机溶剂例如酮、醇或烃,但是优选粘合溶剂是含水的,并且优选是水。如果需要,酸、碱或其他可溶性化合物例如表面活性剂可以包含在粘合溶剂中。没有通过粘合剂和粘合溶剂的作用粘合在一起的材料保持为未粘合的。未粘合的材料可以通过重力、翻滚、筛分或通过喷吹与载体结构分离。用于生产本文所述的催化剂载体结构的合适装置可商购自德国的voxeljettechnologyag和美国的z-corporation。将载体结构干燥以除去粘合溶剂,例如在25-125℃,优选25-110℃。经常令人期望的是,将煅烧阶段应用于干燥的载体结构以增加载体结构的强度。煅烧温度可以是500-2000℃,优选800-1800℃。干燥和煅烧可以在空气中或在惰性气体例如氮气或氩气下进行。干燥和煅烧可以在大气压或者如果需要在真空下进行。通过alm方法生产的载体结构可以是整料例如蜂窝体或其他包含被壁隔开的多个平行通道的相关结构,该壁可以是直的或弯的。使用alm,可以产生具有新几何形状的整料结构,并且其可以特别用于汽车或固定式内燃机排气系统,例如流通式构造的蜂窝体基底整料,其根据期望可以具有以棋盘图案在其任一端部插入的端塞,以产生壁流式过滤器布置。典型地,整料结构的横截面尺寸是100-1000mm。可选地,载体结构可以适用于填料床。这样的载体结构的横截面尺寸是0.2-50mm,更优选1-25mm,最优选2-10mm。对于可以使用alm技术来制作的催化剂载体结构的几何形状几乎没有限制。结构复杂性可以从骨架框架和栅格或饰带工作结构到多结构(multi-featured)和多面(facetted)实心结构。例如,载体结构可以为网架或骨架结构的形式,其含有内部的空隙空间,并且其可以具有多个内增强棒,或者载体结构可以是实心单元例如圆柱体,其可以配置有圆顶端、多叶片和/或通孔,其横截面可以是圆形、椭圆形或多边形。存在于载体结构中的微粒载体材料可以包含单个或混合金属氧化物或者包含两种或更多种金属氧化物的组合物。因此,微粒载体材料可以包含氧化铝、金属铝酸盐、二氧化硅、铝硅酸盐、堇青石、氧化钛(iv)、氧化锆、氧化铈(iv)、氧化锌或其混合物。可选地,微粒载体材料可以包含沸石,其可以含有一种或多种过渡金属例如铜、钴、铁和镍。当例如经由离子交换用铜和/或铁促进时,沸石对于选择性催化还原(scr)车辆排放的废气中的氮氧化物特别有用。特别合适的沸石由6元环的链形成,并且包括菱沸石骨架(cha);八面沸石骨架(fau)和丝光沸石骨架(mor)。具有骨架类型代码aei,并且用铜促进的分子筛对于促进车辆应用中的scr反应特别有用。可选地,催化剂载体粉末可以是金属粉末,例如贵金属粉末或非贵金属粉末例如铁素体合金或钢粉末。可以使用其他微粒载体材料例如碳化硅、氮化硅或碳。含铝材料(包括含水氧化铝例如勃姆石或三水合氧化铝、过渡氧化铝例如δ-、γ-和θ-氧化铝,或α氧化铝)是特别合适的微粒载体材料,特别是具有0.1-0.7ml/g的孔隙率。可以使用一种或多种含铝材料。还可以使用混合的金属铝酸盐材料,例如氧化镧-氧化铝、氧化铈(iv)-氧化铝和氧化铈(iv)-氧化锆-氧化铝。在本发明中,将微粒催化剂化合物在载流体中的浆料施用到载体结构。微粒催化剂化合物可以与载体结构中所用的微粒载体材料相同或不同。浆料可以如下来施用:用浆料喷涂载体结构,将载体结构在浆料中翻滚,或者将载体结构浸入浆料中。浆料理想的固体含量是5-80重量%,并且可以通过常规技术来稳定。浆料可以是含水的或非含水的,但是优选含水浆料。因此,用于将微粒催化剂化合物制浆的载流体可以是酮、醇、酯或合适的液体烃,但是优选是水。浆料可以使用常规的催化剂载体涂层(wash-coat)制备技术来制备。浆料中微粒催化剂化合物的平均粒度是1-50μm,最优选1-20μm,特别是1-10μm。已经发现,为了改进催化剂在载体结构中的分布,微粒催化剂化合物的平均粒度小于孔尺寸分布。具有期望的平均粒度的材料可商购,或者可以使用已知的方法例如研磨来产生。施用到载体结构的微粒催化剂化合物可以包含金属粉末、金属化合物或沸石。在微粒催化剂化合物是金属粉末的情况中,优选它包含选自pt、pd、rh、ir、ru、re的一种或多种的贵金属粉末。在微粒催化剂化合物是金属化合物的情况中,它可以选自一种或多种过渡金属化合物,包括镧系金属化合物和锕系金属化合物。过渡金属化合物包含选自以下的一种或多种金属:na、k、mg、ca、ba、al、si、ti、v、cr、mn、fe、co、ni、cu、zn、y、zr、nb、mo、ru、rh、pd、ag、sn、sb、la、hf、w、re、ir、pt、au、pb或ce。金属化合物可以是金属氧化物、金属氢氧化物、金属碳酸盐、金属碱式碳酸盐或其混合物。金属氧化物可以包含单个或混合金属氧化物例如尖晶石或钙钛矿,或者包含两种或更多种金属氧化物的组合物。优选的微粒催化剂化合物包含选自以下的一种或多种催化金属:ni、co、mo、w、cu、fe、pt、pd、rh和ir。微粒催化剂化合物可以是催化金属分布在整个颗粒中的松散的催化剂颗粒,或者微粒催化剂化合物可以是催化金属作为颗粒表面上的表面层存在的涂覆的催化剂颗粒。因此,微粒催化剂化合物可以使用已知的方法沉淀或浸渍载体材料,和如果需要研磨到所需平均粒度来形成。这种类型的微粒催化剂化合物的具体实施方案包含涂覆在载体材料例如氧化铝、氧化钛(iv)、氧化锆、氧化铈(iv)及其混合物的pt、pd、rh和ir中的一种或多种,和涂覆或松散的催化剂颗粒,其包含选自ni、co、mo、w、cu和fe的一种或多种催化金属,例如ni、co、mo、w、cu和fe的氧化物,包括cu-al氧化物、co-al氧化物、co-zr氧化物、co-ce氧化物、co-mn氧化物、cr-co氧化物和laceco氧化物。在一个实施方案中,微粒催化剂化合物可以是lacoo3,包括这样的lacoo3,其中a位置已经通过例如sr或ce进行了部分取代(例如至多20mol%),或者b位置已经用以下进行了部分取代(例如至多50mol%):例如cu),la2coo4,负载在氧化铝上的co3o4,稀土元素促进和任选地含有mn、fe、mg、cr或nb的氧化物的一种或多种的co3o4,在载体上具有pt的coox。特别合适的催化剂是铈掺杂的lacoo3催化剂,例如laxce1-xcoo3,其中x是0.8-0.99,特别是la0.8ce0.2coo3,如wo98/28073a中所述,通过参考引入本文。在微粒催化剂化合物是沸石的情况中,优选它包含6元环的链,例如菱沸石骨架(cha);八面沸石骨架(fau)和丝光沸石骨架(mor)和aei骨架。沸石可以含有一种或多种过渡金属例如铜、钴、铁和镍的氧化物。将已经用微粒催化剂化合物的浆料浸渍的载体结构,即浆料浸渍的载体结构,干燥来除去载流体。干燥步骤可以在25-125℃进行。施用到载体结构的微粒催化剂化合物的量可以通过增加或减少浆料的固体含量和接触时间来调节。但是,已经发现与载体结构孔隙率联合的催化剂化合物的粒度在确定总催化剂含量中更重要。例如,已经发现将催化剂化合物在溶液中研磨来生产较低平均粒度分布通常增加催化剂负载量。令人期望的是,将煅烧程序应用于干燥的催化剂浸渍的载体结构来将存在的任何非氧化物化合物转化成相应的氧化物,或者生产具有改进的稳定性或更大选择性催化性能的结晶氧化物材料例如尖晶石或钙钛矿结构。煅烧温度可以是300-1200℃,优选400-900℃。干燥和煅烧可以在空气中或者在惰性气体例如氮气或氩气下进行。干燥和煅烧可以在大气压或者如果期望在真空下进行。在微粒催化剂化合物包含一种或多种还原性金属的情况中,干燥或煅烧的材料在需要时可以经历还原步骤来将还原性金属化合物转化成它们的对应金属。还原可以直接在干燥的载体结构上进行,而不煅烧,或者可以在煅烧后进行,来将还原性金属氧化物转化成对应金属。还原可以使用含氢和/或一氧化碳的气体来方便地进行。合适的还原性气体包括氢,1-50体积%的氢/氮气和包含氢、一氧化碳和二氧化碳的合成气。还原可以通过将载体结构在150-800℃,优选200-600℃的温度暴露于还原性气体来进行。对于每个还原性金属来说,最佳还原温度是已知的,或者可以使用tpr来建立。包含还原的金属例如cu、co、ni和fe的催化剂可以是引火的,因此令人期望的是在这样的情况中,通过将催化剂受控暴露于含氧气流来在还原的金属上形成保护层来钝化催化剂的表面。在本发明中,载体结构可以简单地用于负载微粒催化剂化合物中的一种或多种催化金属,例如其中该载体结构为蜂窝体基底整料的形式,其可以用适当的催化剂来活性涂覆,或者它本身可以充当催化或其他目的。在载体结构本身包含催化剂的情况中,这可以发挥与微粒催化剂化合物相同或不同的功能。此外,加层制造生产许多载体几何形状的能力能够产生具有设计孔隙率的载体结构,其可以用于增加某些流动方向上的催化剂活性或者充当捕集经过载体结构之上或之中的工艺流体的组分的过滤介质。使用本文所述的方法制备的催化剂和催化剂前体可以用于任何催化方法,其中反应物混合物与它在进行催化反应的条件下接触。可选地,载体结构可以用于吸附方法中来催化除去工艺流体中的物质,其可以是液体或气体。催化反应可以选自加氢处理包括加氢脱硫、氢化,蒸汽重整包括预重整、催化蒸汽重整、自动热重整和二段重整和用于直接还原铁的重整方法,催化部分氧化,水煤气变换包括等温变换、酸性变换、低温变换、中温变换、介质温度变换和高温变换反应,甲烷化,通过费托反应的烃合成,甲醇合成,氨合成,voc或甲烷氧化,氨氧化和一氧化二氮分解反应,或者氧化,内燃机或发电站废气的三元催化或选择性还原反应。该方法特别适于制造用于以下的催化剂:氨氧化,一氧化二氮消除,烃的催化部分氧化和催化蒸汽重整,和用于来自于内燃机或发电站的废气的组分的选择性氧化和还原。氨氧化方法,包括安德卢梭(andrussow)法,可以通过包括以下的步骤来进行:使包含氨源(例如氨本身或来自于尿素设备的废气)与氧源例如空气的进料气经过在700-1000℃,优选800-1000℃的温度操作的催化剂的固定床。催化剂可以直接使用或者与贵金属线网催化剂组合来使用。在单独使用时,催化剂可以充当氨氧化催化剂,而在组合的情况中,它可以充当氧化催化剂以及用于分解或消除不期望的副产物一氧化二氮(n2o)的催化剂。用于该方法的特别合适的催化剂包含混合氧化物组合物中的钴,例如铈掺杂的lacoo3催化剂如laxce1-xcoo3,其中x是0.8-0.99,特别是la0.8ce0.2coo3,如wo98/28073a中所述的催化剂。吸附方法可以是选自以下的吸附:从污染的气态或液态流体料流中回收硫化合物或重金属例如汞和砷,或者从内燃机或发电站的废气中回收颗粒物质。具体地,该方法可以用于制造被称作催化烟灰过滤器(壁流式过滤器)的蜂窝体型整料结构。对于期望的应用,可以选择壁流式过滤器的平均孔尺寸(d50)。例如,在壁流式过滤器用于催化烟灰过滤器来用于尤其是来自于车辆柴油废气的滤过微粒的情况中,平均孔尺寸可以选择为在10-25微米范围内。可选地,如果壁流式过滤器用于过滤汽油机的微粒物质和用三元催化剂涂覆,则d50可以较低,例如3-20微米。参考下面的实施例来进一步例示本发明。催化剂的表面积根据astmd3663-03测定。催化剂的氮气吸附和解吸等温线根据astmd4222-03测定。孔体积通过压汞孔隙率测定法,根据astmd4284-03测定。粒度分布通过激光散射,根据astmd4464-00测定。压缩强度使用h25kshounsfieldtensiletester测量。使用硬化的压缩测试压盘,具有连接到固定压盘上的十字头的可调节压盘。全部测试使用1(mm/min)的十字头速度。实施例1.制备载体结构载体混合物通过混合α氧化铝(martoxidpn-202,>70%α氧化铝;bet表面积8-15m2/g;d502-4μm)与氧化钛(iv)(acrosorganics,锐钛矿99%)和氧化铜(ii)(fisherscientific>98%)来制备。氧化铝、氧化钛(iv)和氧化铜(ii)是直接使用的。不同的粘合剂和在一种情况中纤维素纤维与形成的载体混合物组合,来产生如下的预形成混合物:将预形成混合物置于3-d打印设备(喷墨粉末床设备,可获自voxeljettechnologyag)的料斗中,用于3-d打印10mm立方体载体结构。将层厚度设定在0.1mm,从打印头的x向分辨率是50μm和y向分辨率是88μm。将打印的载体结构在105℃干燥一整夜,然后在1200℃煅烧2小时。将立方体浸入22℃水浴中。记录干燥质量、浮力质量和湿质量,由它们来测定密度和冷水吸收(cwp)。测试5个立方体,取平均值。还测量了立方体的压缩强度。测量从立方体的“侧面”沿着在3-d打印方法过程中形成的层的平面(x向)和从立方体的“顶部”穿过层(z向)来进行。测试了2个立方体,取平均值。结果如下:pva粘合的结构具有较高的cwp,这指示更多孔的结构。纤维素纤维表现出也具有较高cwp的结构显著增加的强度。改变打印分辨率来确定它对于形成的结构的孔隙率的作用。对于60μm和70μm的x向分辨率,获得了较低的密度和较高的cwp值。对于60μm以及40μm或70μm的x向分辨率重复载体制备。对于载体1a和1b,孔隙率分析的主峰的d10、d50和d90如下。载体1a载体1b载体1c实施例2.制备催化剂由预形成混合物a、b、c、d、e和f,根据实施例1的方法,使用40-70μm的x向打印分辨率制备了两个立方体,在105℃干燥一整夜,在1200℃烧制2小时,然后使其冷却,然后用催化剂通过将立方体浸入la0.8ce0.2coo3浆料中来涂覆。通过将400g的根据wo98/28073制备并在珠磨机中研磨到2.5-3.0μm的d50粒度的la0.8ce0.2coo3分散,来制备在600ml软化水中的la0.8ce0.2coo3浆料(40%固体)。这产生了d10、d50和d90粒度分别是0.956、2.942和7.525μm的浆料。将2个立方体浸泡在60ml浆料中。使立方体浸泡5分钟,然后除去和在105℃干燥一整夜。下面给出不同立方体的催化剂吸收:如果对于载体1a-1f,将催化剂负载量对总孔隙率作图,可以看到存在着强相关性。该图显示在图1中。图1显示了在每种情况中,随着总孔隙率增加,催化剂吸收也增加。此外,结果表明在吸收催化剂方面优于其他的孔尺寸分布。实施例3.催化剂测试la0.8ce0.2coo3催化剂在铝硅酸盐和氧化铝四面体形状载体结构(具有直线基础尺寸7.95+/-0.5mm和7.3+/-0.5mm,和高度是5.75+/-0.5mm)上根据上述方法制备,并且在实验室测试反应器中测试氨氧化和一氧化二氮消除。铝硅酸盐载体结构表现出单主峰,并且d50是25.7μm和总浸入体积是0.484ml/g。根据实施例1和2中所述的方法制备两种催化剂。实施例3a,其中四面体形状铝硅酸盐结构用40wt%的la0.8ce0.2coo3浆料浸涂(如实施例2中所述),并且在105℃干燥来提供具有25wt%la0.8ce0.2coo3的催化剂;和实施例3b,以与实施例3a相同的方式制备,但是在干燥后进一步经历在900℃的空气中6小时的煅烧。作为对比,还测试了通过常规造粒方法制备的la0.8ce0.2coo3圆柱形催化剂粒料。测试方法如下。将已知质量的催化剂装入内径24.6mm的石英反应器管中,来产生20mm深的催化剂床。将热电偶放入床底部1mm,来测量测试过程中的催化剂温度。第二热电偶放置在床顶上25mm处,来测量入口气体温度。催化剂性能和活性使用两种不同的测试程序之一来进行。在每个方法过程中使用四极质谱仪测量不同背景气体和含氮物质的浓度,并且使用收集的数据来评价催化剂性能。程序(i)。一氧化二氮消除。使包含10.5%o2、1%ar和余量he的合成空气混合物以35lmin-1的速度流过催化剂床,并且预热到100℃。然后将0.3lmin-1流速的25%的在n2中的n2o添加到该空气混合物中,并且以10℃min-1的速率将反应器加热到850℃。使反应在850℃停留30分钟,然后以10℃min-1冷却回到100℃。已经消除的一氧化二氮的浓度[n2o]a通过测量在时间=t形成的气体的浓度[n2o]t,并且从时间=0的初始浓度[n2o]0中减去来计算。然后用[n2o]a除以[n2o]0来计算消除百分比。程序(ii)。氨氧化。使包含10.5%o2、1%ar和余量he的合成空气混合物以35lmin-1的速度流过催化剂床,并且预热到100℃。然后将1.85lmin-1氨流添加到该空气混合物中,并且以10℃min-1的速率将反应器加热到415℃。使反应在415℃停留,预热30分钟,然后以10℃min-1冷却回到100℃。来自于氨氧化反应的放热与预热温度相结合,来产生750℃-900℃的最大催化剂温度。报告氨氧化为no、n2和n2o选择性的百分比。一氧化二氮消除结果如下:这些结果表明,虽然活性催化剂含量较低,但是在接近于设备操作温度(800-900℃)的温度,涂覆的催化剂表现出与固体la0.8ce0.2coo3粒料同样的性能。氨氧化结果如下:实施例no选择性(%)n2选择性(%)n2o选择性(%)实施例3a80.5617.422.02实施例3b86.9210.252.83这些结果表明在900℃烧制涂覆的材料之后,no选择性有小的增加。使用三个另外的催化剂研究微粒催化剂化合物在浆料中的粒度的影响。实施例3c-研磨的la0.8ce0.2coo3浆料浸涂到铝硅酸盐四面体载体上。实施例3d-未研磨的la0.8ce0.2coo3浆料浸涂到铝硅酸盐四面体载体上。实施例3e-研磨的la0.8ce0.2coo3浆料浸涂到氧化铝四面体载体上。研磨的浆料根据实施例2来制备,未研磨的浆料的粒度分布是d101.48、d507.68和d9036.09μm。一氧化二氮消除结果如下:这些结果表明,使用氧化铝载体制备的材料的活性高于铝硅酸盐载体上制备的材料。结果还表明,用研磨的la0.8ce0.2coo3浆料制备的样品对于n2o消除的活性高于用未研磨的la0.8ce0.2coo3浆料制备的样品。实施例4.具有贵金属线网的催化剂测试实施例3a和实施例3e催化剂还与贵金属氨氧化催化剂相组合进行测试。在这些测试中,向40mm内径的反应器篮中在低密度不锈钢织造线网的顶上装入含有5%铑和95%铂(5rhpt)的5层线网填料。然后在5rhpt线网填料下面装入预称重的la0.8ce0.2coo3催化剂。将另一不锈钢织造线网夹入下面的篮法兰,来负载la0.8ce0.2coo3催化剂。除非另有指示,否则la0.8ce0.2coo3催化剂床深54mm和直径40mm。除非另有指示,否则催化剂在以下方法条件下测试10天:10nm3h-1空气,10vol%nh3,200℃预热和4绝对巴。分析形成的气体,并且记录转化效率(对于nh3到no,以百分比表达)和产物气流中n2o副产物的量。结果在下面给出:在相同条件下,5rhpt催化剂本身提供了94-95%的转化效率和1300-1400ppmv的n2o水平。这些结果表明,两种催化剂显示了在前两天中产生的n2o的增加。转化效率相当稳定地保持在92-94%。实施例5.催化剂制备和测试使用实施例1中所述的设备和条件制备固体圆柱体形式的alm氧化铝和氧化锆催化剂载体结构(直径3.7mm,长度3.6mm),但是其是在1700℃烧制2小时。将载体结构用实施例2中所述的la0.8ce0.2coo3的研磨浆料进行浸渍。形成的催化剂上面的实施例4中所述方法来测试(实施例5(d)-(f)),或者与贵金属催化剂组合(实施例5(a)-(c))用于转化效率和n2o产生。除非另有指示,否则la0.8ce0.2coo3催化剂床深54mm和直径40mm。除非另有规定,否则将催化剂在以下方法条件下测试约2天:10nm3h-1空气,10vol%nh3,200℃预热和4绝对巴。分析形成的气体,并且记录转化效率(对于nh3到no,以百分比表达)和产物气流中n2o副产物的量。结果在下面给出:这些结果表明,与常规pgm或粒料化催化剂相比,涂覆的载体结构能够将氨有效转化成氧化一氮,并且具有相当低的n2o水平。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1