一种金属相硒化钨纳米片/碳纳米管杂化结构电催化剂及其制备方法与流程

文档序号:14358261阅读:544来源:国知局

本发明属于电催化剂制备领域,具体涉及一种金属相硒化钨纳米片/碳纳米管杂化结构电催化剂及其制备方法。



背景技术:

过渡金属硫族化合物作为一种新型的二维层状材料,具有类似于石墨烯的特性,广泛用于场效应晶体管、传感、储能和催化等方面,其主要有半导体2h相、金属1t相和半金属3r相,其中1t相具有更多的活性位点以及良好的导电性,使之展现出比2h相更优异的性质。但是1t相是热力学亚稳相,本质上不能稳定存在,因此如何制备稳定的1t相过渡金属硫族化合物存在难题。截至目前,金属相过渡金属硫族化合物的制备方法主要是锂离子插层,但是该过程的操作比较复杂且危险(金属锂有机盐要求无水无氧操作,容易爆炸),并且残余的锂盐会改变材料的电学性质,限制了其在电子器件方面的应用。硒化钨作为一个未被广泛开发的过渡金属硫族化合物,是具有前景的非贵金属催化剂,它的性能同样受相态和电子结构的影响。因此,寻找一种行之有效的方法得到稳定存在的金属相二维硒化钨仍然是一个挑战。

研究表明,对二维层状材料施加应力可有效改变其电学特性。其中拉伸应力可有效地改变二维层状过渡金属硫族化合物的电学特性,使之发生从半导体到导体的转变。最近,研究者也发现过渡金属硫族化合物从半导体2h相到金属1t相转变时也涉及到应力和变形。碳纳米管,作为一种纳米尺寸的管状结构,可作为一种有效的拓扑和结构模板用于调控二维层状过渡金属硫族化合物的生长,使之包覆在碳纳米管上形成弯曲的表面。弯曲的二维层状过渡金属硫族化合物有望在其内部产生弯曲应力,从而改变其电子结构和相变,并且稳定存在的应力可有效提高二维层状过渡金属硫族化合物的电子结构和相态的高度稳定性。然而,在碳纳米管上构筑弯曲的二维层状过渡金属硫族化合物还没有大规模地实现,并且弯曲的结构对其金属相的调控以及催化性能的研究还没有报道。因此,构筑二维硒化钨纳米片/碳纳米管杂化结构为实现稳定存在的金属相二维硒化钨提供可能。与此同时,碳纳米管还具有高导电性和良好的化学稳定性,二维硒化钨纳米片/碳纳米管杂化结构的构筑可有效提高硒化钨的活性位点的密度和电子传输能力,进一步提高催化活性。



技术实现要素:

针对上述现有技术的缺陷与不足,本发明的目的在于提供一种金属相硒化钨纳米片/碳纳米管杂化结构电催化剂及其制备方法。

为实现上述目的,本发明采取的技术方案如下:

一种金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的制备方法,步骤如下:

(1)、将硒粉、硼氢化钠和多壁碳纳米管分散于n,n-二甲基甲酰胺中,在40~60℃条件下搅拌均匀,配成硒粉、硼氢化钠和多壁碳纳米管的质量浓度分别为(10~15)×10-3g/ml、(5~6)×10-3g/ml和(1~6)×10-4g/ml的溶液;

(2)、将二水合钨酸钠溶解于水中,配成二水合钨酸钠的质量浓度为(100~150)×10-3g/ml的溶液;其中n,n-二甲基甲酰胺和水的体积比为(4~5)∶1;

(3)、将步骤(2)所得溶液加入步骤(1)所得溶液中,搅拌均匀;

(4)、将步骤(3)所得溶液于160~200℃条件下反应8~12h;

(5)、步骤(4)反应结束后,离心洗涤,将所得沉淀在真空下干燥;

(6)、将步骤(5)所得产物在惰性气体保护下300~500℃碳化3~5h,即得金属相硒化钨纳米片/碳纳米管杂化结构电催化剂。

较好地,离心洗涤时,先用水洗涤再用乙醇洗涤;每次离心时,速度为7000~9000rpm,时间为5~10min。

更好地,水和乙醇各自洗涤三次。

较好地,真空干燥的温度为40~60℃。

利用所述制备方法制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂。

本发明相对于现有技术,有以下优点:

1、本发明制备方法工艺简单、操作简便、后处理简单、安全,具有重复性;

2、本发明制备方法提供了一种制备金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的新路径,此方法较温和安全而且产量大,有应用在器件上的潜力;

3、本发明方法制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂展现出比商业硒化钨和单纯金属相硒化钨更优异的电催化析氢性能,这在催化领域具有良好的应用前景。

附图说明

图1:本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的扫描电子显微镜图。

图2:本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的x射线光电子能谱图,(a)钨元素,(b)硒元素,(c)碳元素。

图3:本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的x射线衍射图。

图4:本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的紫外吸收曲线。

图5:本发明对照例1制备的硒化钨电催化剂钨元素的x射线光电子能谱图。

图6:本发明实施例1-3制备的金属相硒化钨纳米片/碳纳米管杂化结构与纯碳纳米管以及本发明对照例1制备的硒化钨在0.5mh2so4酸性电解液中的极化曲线对比。

具体实施方式

以下以具体实施例来说明本发明的技术方案,但本发明的保护范围并不局限于此:

实施例1

(1)、将640mg硒粉、300mg硼氢化钠和20mg多壁碳纳米管分散在50mln,n-二甲基甲酰胺中,封上保鲜膜在60℃条件下搅拌两个小时直至溶液变为棕黄色,形成硒粉、硼氢化钠和多壁碳纳米管的质量浓度分别为12.8×10-3g/ml、6×10-3g/ml和4×10-4g/ml的溶液;

(2)、将1320mg二水合钨酸钠加入10ml去离子水中,超声0.5小时,形成二水合钨酸钠质量浓度为132×10-3g/ml的溶液;

(3)、将步骤(2)所得溶液加入步骤(1)所得溶液中,继续60℃搅拌0.5小时;

(4)、将步骤(3)所得溶液转至反应釜中,在200℃条件下反应12小时;

(5)、分别用去离子水和无水乙醇洗涤三次,每次离心时,速度为7000rpm,时间为10分钟,提取离心管下层沉淀在40℃下真空干燥;

(6)、将步骤(5)所得产物在氮气保护下炭化炉300℃碳化5小时,即得金属相硒化钨纳米片/碳纳米管杂化结构电催化剂。

实施例2

与实施例1的不同之处在于:步骤(1)中的多壁碳纳米管的用量调为5mg,其它均同实施例1。

实施例3

与实施例1的不同之处在于:步骤(1)中的多壁碳纳米管的用量调为30mg,其它均同实施例1。

对照例1

与实施例1的不同之处在于:步骤(1)中不加多壁碳纳米管,其它均同实施例1。

结构表征和性能测试

(一)结构表征

图1为本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的扫描电子显微镜图,从图中可以看到碳纳米管周围均匀包裹着片状的硒化钨。

图2为本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的x射线光电子能谱图,分别为(a)w4f、(b)se3d、(c)c1s谱图,(a)、(b)两者均可以分出属于低结合能的金属相和高结合能的半导体相的分峰,且金属相含量高达70%,说明碳纳米管的引入可以使原本不稳定的金属相大量存在。

图3为本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的x射线衍射谱图,可以看到碳纳米管的引入下,硒化钨仍保留了原有的特征峰,如:2θ=13.62°,31.41°,37.80°,47.36°,55.90°,分别对应硒化钨的(002),(100),(103),(105),(110)面(jcpds卡号.38-1388)。

图4为本发明实施例1制备的金属相硒化钨纳米片/碳纳米管杂化结构电催化剂的紫外吸收曲线,从图中可以看到在300~800nm波长范围内都没有明显吸收峰的出现,而呈现单调递减的性质,这表明材料的金属相性质。

图5为本发明对照例1制备的硒化钨电催化剂钨元素的x射线光电子能谱图,从图中可以看到在不加碳纳米管的情况下,金属相含量仅有55%,对比图2结果可见碳纳米管的加入使得硒化钨金属相的含量相对不加碳纳米管的硒化钨金属相含量提高了近30%。

(二)性能测试

分别把实施例1-3制备的硒化钨/碳纳米管杂化结构、对照例1制备的硒化钨与纯碳纳米管作为催化剂加载到玻碳电极上作为工作电极,银/氯化银电极为参比电极,碳棒为对电极,组装三电极体系测试析氢性能,电解液为0.5mh2so4,扫描速度为5mv/s。工作电极的制备过程为:将5mg样品溶解于1ml无水乙醇中并加入5μl5wt%萘酚溶液超声1小时左右直至均匀分散,用移液枪取10μl均匀涂敷在玻碳电极上,在室温下干燥。

图6为本发明实施例1-3制备的金属相硒化钨纳米片/碳纳米管杂化结构与纯碳纳米管以及本发明对照例1制备的硒化钨在0.5mh2so4酸性电解液中的极化曲线对比。从图6中可以看到,对照例1制备的硒化钨的电催化析氢性能比实施例1差很多。相对于不加碳纳米管制备的单纯硒化钨(对照例1)而言,少量碳纳米管的引入(实施例2)同样提高了原有催化剂的析氢性能,但仍劣于实施例1制备的催化剂的析氢性能。然而当碳纳米管的加入量高于实施例1时(实施例3),催化剂的析氢性能呈现出下降趋势,证明碳纳米管的加入量存在一个最优值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1