纳米线或纳米管放电加工孔的方法和系统的制作方法

文档序号:5268139阅读:203来源:国知局
专利名称:纳米线或纳米管放电加工孔的方法和系统的制作方法
技术领域
本发明属于微纳制造技术领域,涉及一种放电加工孔的方法和系统。
背景技术
放电技术作为特种加工技术之一在工业中有着广泛的应用。随着产品微细化,微纳 结构的加工技术及方法的研究已经成为制造领域的主要课题之一。按加工原理的不同, 微小孔的加工分为两大类传统机械加工和特种加工。在微小孔加工领域,常用的机械 加工方法是钻削。而钻削很难实现高硬度材料的加工,且进行微孔加工时为获得所需切 削力,需要采用很高的转速,同时钻头的强度和刚度随直径的减小而减小,加工中易折 断。在特种加工中,激光加工的表面粗糙度差,且在孔的加工中存在随加工深度的增加 而增大的锥角,其加工深度受输出功率及聚焦能力的限制;超声振动加工小孔时刀具磨 损大,同时由于受排屑条件制约,孔径很难进一步减小;电子束和离子束加工需要真空 环境,实际应用中具有局限性;放电加工因加工过程无接触应力,能实现低硬度工具加 工高硬度工件,同时通过控制电极尺寸就可实现相应尺度的微孔加工。
在线电火花磨削是目前加工微细电火花电极的主要方法,这种方法所加工的电极直 径只能达到10'微米级,同时受材料刚性的影响,电极长径比有限,从而限制了放电加工 微孔的能力。因此,大长径比微米、纳米级电极的制备成为了放电加工的一个难题。同 时,由于加工孔的直径太小,利用外部冲液的方式,很难进行排屑,使得放电加工过程 中排屑问题显得更加突出,从而制约了大深径比微米、纳米级小孔加工的发展。
如果利用某些具有良好的导电性能和导热性能的纳米线、纳米管,作为电火花加工 用电极材料,那么就可以解决微纳级放电加工的电极制备困难的问题。例如,目前碳纳 米管的加工技术已十分完善,现有技术能制备直径几个纳米到一百纳米的纳米管,碳纳 米管束的直径也可达到几微米,非常适合用于微纳放电加工。

发明内容
本发明的目的在于,克服现有技术的不足,针对如黄铜、紫铜、铝、钢、硬质合金 等导电材料,提出一种纳米放电加工微米、纳米级微纳孔的方法。 为实现上述目的,本发明采取的技术方案如下
一种纳米线或纳米管放电加工孔的方法,用于在导电材料上加工孔,其特征在于, 包括下列步骤
(1) 采用铂沉积法,利用聚焦离子束加工技术将导电性的纳米线或纳米管粘接到钨针 尖上,并将钨针尖固定在电极夹持装置上;(2) 将电极夹持装置置于具有纳米级分辨率的电极进给位移台上;
(3) 将导电材料工件置于X/Y精密位移台上;
(4) 将脉冲电源的负极接到钨针尖上,其正极接到工件上;
(5) 利用多轴运动控制器控制放置有电极夹持装置的位移台,由脉冲电源提供放电加 工的工作电压,并由间隙电压检测装置采集放电间隙电压,采集到的数据被送入工控 机内,由工控机根据间隙电压判断当前放电加工的状态,并通过多轴运动控制器控制 电极进给位移台的移动,从而控制电极的进给,实现稳定的纳米放电加工孔过程;并 由工控机通过多轴运动控制器控制控制X/Y精密位移台的移动,实现对工件位置的调 整。
作为优选实施方式,将纳米管粘接到被固定在电极夹持装置的钨针尖上,在放电加 工过程中,导入1 3Mpa压力的工作液,将加工液输入到放电加工区域,利用工作液的 压力将放电过程中产生的废屑带走;脉冲电源的脉宽变化范围2-30微秒,电压0-120V, 最大输出电流2A;工控机根据当前放电加工的状态,利用如下方法控制电极的进给如 果放电加工处于正常放电状态,则电极保持当前位置;如果放电加工处于开路状态,工 控机则向多轴运动控制器发送指令,使电极进给位移台向前进给,则电极向靠近工件的 方向移动,以减小放电间隙,直到放电加工从开路状态进入正常放电加工状态;如果放 电加工处于短路、电弧放电状态,工控机则向多轴运动控制器发送指令,使电极进给位 移台后退,则电极向远离工件的方向移动,以增大放电间隙,直到放电加工从短路、电 弧状态进入正常放电加工状态。
本发明同时提供一种纳米线或纳米管放电加工孔的系统,用于在导电材料工件上加 工孔,包括粘接有能够导电的纳米线或纳米管的钨针尖、电极夹持装置、具有纳米级分 辨率的电极进给位移台、X/Y精密位移台、多轴运动控制器、脉冲电源、间隙电压检测装 置和工控机。其中,电极夹持装置用于固定钨针尖,并置于具有纳米级分辨率的电极进 给位移台上;X/Y精密位移台用于放置工件;多轴运动控制器具有纳米级数控分辨,用于 控制电极进给位移台和X/Y精密位移台的移动;脉冲电源提供放电加工所需要的工作电 压;间隙电压检测装置采集的电压数据被送入工控机,由工控机根据间隙电压判断当前 放电加工的状态,通过多轴运动控制器控制电极进给位移台的移动,从而控制电极的进 给,实现稳定的纳米放电加工孔的过程;并由工控机通过多轴运动控制器控制X/Y精密 位移台的移动,实现对工件位置的调整。
作为优选实施方式,所述脉冲电源的脉宽变化范围2-30微秒,电压0-120V,最大输 出电流2A。
本发明使放电加工的尺寸达到微米、纳米级,同时解决了加工过程的排屑问题,从 而能够实现大深径比微米、纳米级小孔的加工,丰富了微纳加工领域的技术方法。


图l纳米线、纳米管电极制备显微图。图2本发明采用的纳米放电加工系统框图。
具体实施例方式
本发明使用纳米线、纳米管作为纳米放电加工用电极进行微米、纳米级小孔的加工,
而作为电极的纳米线、纳米管需要具备下述条件
纳米线、纳米管需要具备良好的导电、导热性能和力学性能。例如,碳纳米管的熔 点是目前己知材料中最高的,在放电加工中不易被热腐蚀;其次,碳纳米管分子结构稳 定,具有很高的热稳定性;第三,碳纳米管的结构与石墨的片层结构相同,因而具有良 好的电学性能,同时碳纳米管沿管轴方向上热交换性很高,加工中利于散热;最后,碳 纳米管具有良好的力学性能,其抗拉强度达到50 200GPa,是钢的100倍,可加工出长 径比接近1000的微轴,同时还具有较高的径向刚性。碳纳米管的上述特性,使得碳纳米 管作为放电加工用电极,能满足微细放电加工过程中所需的低损耗率和抗变形能力。
而且,纳米管作为放电加工电极,其结构为中空结构,但纳米管的孔隙达到了纳米 级别,加工中的放电能够覆盖此区域,因而能够实现盲孔加工。
此外,纳米管做电极进行放电加工,可利用其中空结构的特点,导入一定压力的绝 缘介质,将带有一定压力的加工液输入到放电加工区域,利用工作液的压力将放电过程 中产生的碎屑带走,从而解决微纳放电加工的排屑问题。
如图1所示,采用铂沉积法,利用FIB (聚焦离子束加工技术)将纳米线、纳米管粘 接到钩针尖上,那么电压就可通过钨针尖导至纳米线、纳米管。
如图2所示,纳米放电加工系统由电极进给控制系统、纳米放电加工电源、间隙电 压检测装置、放电间隙控制算法、X/Y精密位移台以及工控机构成。
下面详细介绍本发明的纳米放电加工微米、纳米级孔的方法。
1、 纳米放电加工电极制备
采用铂沉积法,利用FIB (聚焦离子束加工技术)将纳米线或纳米管2粘接到钨针尖 1上。此外,纳米管2做电极进行放电加工,可利用其中空结构的特点,导入1 3Mpa 压力的工作液,如煤油、电火花加工油、去离子水等等,将带有一定压力的工作液输入 到放电加工区域,利用工作液的压力将放电过程中产生的碎屑带走,从而解决微纳放电 加工中的排屑问题。
2、 电极进给控制系统 构建一个适合纳米放电加工的高精度电极进给控制系统,包括具有纳米级分辨率的
位移台和纳米级数控分辨的多轴运动控制器。电极进给位移台配备高精密光栅,作为位 移台移动的位置反馈装置,向多轴运动控制器提供位置反馈信息,多轴运动控制器则根 据位置反馈信号对电极进给位移台的移动进行控制,以此构成位置全闭环控制,从而实 现电极的纳米级高精度进给。
3、 纳米放电加工电源构建一个适合纳米放电加工的高品质脉冲电源,电源的脉宽变化范围2-30微秒,电 压0-120V,最大输出电流2A。加工采用负极性,即电极接负极,工件接正极。
4、 间隙电压检测装置
构建一个高采样率的电压采集系统,对纳米放电加工过程的纳米线、纳米管与工件 之间的放电间隙电压进行釆集。通过高频数据釆集卡实现放电电压采集,其最高采样频 率可达5MHz。首先采用分压电路将放电电压调整到0到5V,然后将电压输入数据采集卡, 对电压进行采集,进而实时采集当前放电间隙电压,最后将放电间隙电压采样值传输给 工控机进行间隙电压的运算处理,作为控制电极进给的依据。
5、 放电间隙控制算法
编制放电间隙控制算法,算法可对间隙电压检测装置采集到的间隙电压进行运算处 理。工控机则根据运算处理得到的电压波形判断当前放电加工的状态。如果放电加工处 于正常放电状态,工控机则稳定电极当前位置;如果放电加工处于正常放电状态,则电 极保持当前位置;如果放电加工处于开路状态,工控机则向多轴运动控制器发送指令, 使电极进给位移台向前进给,则电极向靠近工件的方向移动,以减小放电间隙,直到放 电加工从开路状态进入正常放电加工状态;如果放电加工处于短路、电弧放电状态,工 控机则向多轴运动控制器发送指令,使电极进给位移台后退,则电极向远离工件的方向 移动,以增大放电间隙,直到放电加工从短路、电弧状态进入正常放电加工状态。
6、 X/Y精密位移台
多轴运动控制器可实现8轴联动精密运动控制,在实现对电极进给位移台控制的同 时,控制X/Y精密位移台在X/Y平面调整工件位置。X轴和Y轴精密位移台都配备高精密 光栅,作为位移台移动的位置反馈装置,向多轴运动控制器提供位置反馈信号,多轴运 动控制器则根据X轴和Y轴各自的位置反馈信号分别对其移动进行控制,以此构成位置 全闭环控制,从而实现工件的高精度移动控制。
7、 多轴运动控制器和工控机构成的运动控制装置 多轴运动控制器和工控机构成的运动控制装置能够完成人机交互、工件位置调整、
放电间隙的控制等功能。
电极进给位移台和X/Y精密位移台分别配备了高精密光栅,作为它们各自的位置反 馈装置,光栅向多轴运动控制器提供位置反馈信号,多轴运动控制器则根据位置反馈信 号对位移台的移动进行控制,以此构成位置全闭环控制,从而实现高精度的运动控制。
工控机装载了放电加工程序,用户可利用程序提供的接口向多轴运动控制器发送在 线运动指令或CAM加工代码,实现对电极进给位移台和X/Y精密位移台的指令控制或代 码控制,从而实现对电极和工件位置的调整;放电加工程序内部还实现了间隙电压控制 算法,在进行纳米放电加工时,程序可与间隙电压检测装置进行实时通信,对放电间隙 电压进行实时采集,然后通过放电间隙控制算法对放电间隙电压进行处理,判断出电极 下一步的位移,最后通过向多轴运动控制器发送指令的方式,实现电极的进给。
权利要求
1.一种纳米线或纳米管放电加工孔的方法,用于在导电材料上加工孔,其特征在于,包括下列步骤(1)采用铂沉积法,利用聚焦离子束加工技术将导电性的纳米线或纳米管粘接到钨针尖上,并将钨针尖固定在电极夹持装置上;(2)将电极夹持装置置于具有纳米级分辨率的电极进给位移台上;(3)将导电材料工件置于X/Y精密位移台上;(4)将脉冲电源的负极接到钨针尖上,其正极接到工件上;(5)利用多轴运动控制器控制放置有电极夹持装置的位移台,由脉冲电源提供放电加工的工作电压,并由间隙电压检测装置采集放电间隙电压,采集到的数据被送入工控机内,由工控机根据间隙电压判断当前放电加工的状态,并通过多轴运动控制器控制电极进给位移台的移动,从而控制电极的进给,实现稳定的纳米放电加工孔过程;并由工控机通过多轴运动控制器控制控制X/Y精密位移台的移动,实现对工件位置的调整。
2. 根据权利要求1所述的纳米线或纳米管放电加工孔的方法,其特征在于,将纳米管粘 接到被固定在电极夹持装置的钨针尖上,在放电加工过程中,导入1 3Mpa压力的工 作液,将加工液输入到放电加工区域,利用工作液的压力将放电过程中产生的废屑带 走。
3. 根据权利要求1所述的纳米线或纳米管放电加工孔的方法,其特征在于,所述脉冲电 源的脉宽变化范围2-30微秒,电压0-120V,最大输出电流2A。
4. 根据权利要求1所述的纳米线或纳米管放电加工孔的方法,其特征在于,工控机根据 当前放电加工的状态,利用如下方法控制电极的进给如果放电加工处于正常放电状 态,则电极保持当前位置;如果放电加工处于开路状态,工控机则向多轴运动控制器 发送指令,使电极进给位移台向前进给,则电极向靠近工件的方向移动,以减小放电 间隙,直到放电加工从开路状态进入正常放电加工状态;如果放电加工处于短路、电 弧放电状态,工控机则向多轴运动控制器发送指令,使电极进给位移台后退,则电极 向远离工件的方向移动,以增大放电间隙,直到放电加工从短路、电弧状态进入正常 放电加工状态。
5. —种纳米线或纳米管放电加工孔的系统,用于在导电材料工件上加工 L,包括粘接有 能够导电的纳米线或纳米管的钨针尖、电极夹持装置、具有纳米级分辨率的电极进给 位移台、X/Y精密位移台、多轴运动控制器、脉冲电源、间隙电压检测装置和工控机。 其中,电极夹持装置用于固定钨针尖,并置于具有纳米级分辨率的电极进给位移台上; X/Y精密位移台用于放置工件;多轴运动控制器具有纳米级数控分辨,用于控制电极进给位移台和X/Y精密位移台的移动;脉冲电源提供放电加工所需要的工作电压;间隙电压检测装置采集的电压数据被送入工控机,由工控机根据间隙电压判断当前放电 加工的状态,通过多轴运动控制器控制电极进给位移台的移动,从而控制电极的进给,实现稳定的纳米放电加工孔的过程;并由工控机通过多轴运动控制器控制X/Y精密位 移台的移动,实现对工件位置的调整。
6.根据权利要求5所述的纳米线或纳米管放电加工孔的系统,所述脉冲电源的脉宽变化 范围2-30微秒,电压0-120V,最大输出电流2A。
全文摘要
本发明属于微纳制造技术领域,涉及一种纳米线或纳米管放电加工孔的方法(1)将导电性的纳米线或纳米管粘接到钨针尖上;(2)将电极夹持装置置于位移台上,并通过多轴运动控制器对位移台的移动进行控制;(3)将导电材料工件置于X/Y精密位移台上,由多轴运动控制器控制X/Y精密位移台的移动;(4)将脉冲电源的负极接到钨针尖上,其正极接到工件上;(5)利用工控机向多轴运动控制卡发送指令,控制放置有电极夹持装置的位移台,由脉冲电源提供放电加工的工作电压,并由间隙电压检测装置采集放电间隙电压,工控机则根据间隙电压控制电极进给位移台的移动,实现纳米放电加工孔过程。本发明使放电加工的尺寸达到微米、纳米级,并解决了加工过程的排屑问题。
文档编号B81C99/00GK101607690SQ20091006956
公开日2009年12月23日 申请日期2009年7月3日 优先权日2009年7月3日
发明者徐宗伟, 房丰洲, 王庆祎, 胡小唐 申请人:天津大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1