车辆控制装置的制作方法

文档序号:13909376阅读:145来源:国知局
车辆控制装置的制作方法

本发明涉及一种车辆控制装置。



背景技术:

进行车辆控制的车辆控制装置在例如专利文献1中有所记载。该专利文献1中记载的车辆控制装置基于检测出的道路交通标线来推定车辆的位置,并基于推定出的位置而使车辆自动地行驶。

专利文献:日本特开2015-178332号公报

在这里,推定出的车辆的位置存在误差(偏差)。在车辆的位置误差中,存在纵向位置误差。考虑到若这种纵位置误差较大,则当车辆由直道进入弯道时,根据车辆的速度不同可能导致无法在弯道的行驶车道内自动地行驶。

因此,本发明的一个方面的目的在于提供一种车辆控制装置,该车辆控制装置即使在推定出的车辆纵向位置存在误差时,也能够控制车辆进入弯道时的速度以使车辆能够在弯道的行驶车道内自动地行驶。



技术实现要素:

本发明的一个方面提供一种使车辆自动行驶的车辆控制装置,其具有:纵向位置对照部,其基于照相机的拍摄信息及地标在地图上的位置信息,对车辆在其所行驶的行驶道路的延伸方向上的位置即纵向位置进行识别;纵向位置推定部,其基于检测车辆的状态的内部传感器的检测结果以及纵向位置对照部的识别结果来推定纵向位置;误差推定部,其基于内部传感器的检测精度,对利用纵向位置推定部推定出的纵向位置的误差进行推定;半径获取部,其利用推定出的纵向位置及地图信息获取车辆前方的弯道的转弯半径;转弯行驶速度计算部,其基于所获取的转弯半径以及推定出的纵向位置的误差,对在获取到的转弯半径的弯道的行驶车道内自动行驶所需的转弯行驶速度进行计算;速度控制部,其在车辆的速度处于转弯行驶速度以上、且转弯行驶速度为预先确定的基准速度以上时,以使得车辆进入其前方的弯道时的速度达到转弯行驶速度的方式使车辆减速,当车辆的速度处于转弯行驶速度以上、且转弯行驶速度慢于基准速度时,以维持当前的速度或使车辆进入其前方的弯道时达到基准速度的方式使车辆减速;以及请求部,其当车辆的速度处于转弯行驶速度以上、且转弯行驶速度慢于基准速度时,进行将车辆的控制切换至由驾驶者进行的手动驾驶的开始手动操控的要求。当转弯半径较小时,与转弯半径较大时相比,转弯行驶速度计算部将转弯行驶速度放慢;当纵向位置的误差较大时,与纵向位置的误差较小时相比,转弯行驶速度计算部将转弯行驶速度放慢。

该车辆控制装置中,当推定出的纵向位置的误差较大时,与纵向位置的误差较小时相比,转弯行驶速度计算部将转弯行驶速度放慢。当车辆的速度处于转弯行驶速度以上、且转弯行驶速度为预先确定的基准速度以上时,速度控制部使车辆减速至转弯行驶速度。由此,当纵向位置的误差较大时,车辆的速度比误差较小时变慢。这样一来,由于车辆的速度是与纵向位置的误差对应地控制的,从而即使在推定出的车辆的纵向位置存在误差时,也能够控制车辆进入弯道时的速度,以使其能够在弯道的行驶车道内自动地行驶。

当转弯行驶速度慢于预先确定的基准速度时,车辆控制装置进行开始手动操控的请求,切换至由驾驶者进行的手动驾驶。也就是说,若由车辆控制装置控制车辆的行驶,将由于推定出的纵向位置的误差较大而将速度变为慢于基准速度,此时,通过切换至由驾驶者进行的手动驾驶,驾驶者就能够以适宜的速度沿着弯道进行车辆的驾驶。由此,能够抑制由于车辆以慢于基准速度的速度行驶而妨碍后续车辆行驶的情况。另外,在转弯行驶速度慢于预先确定的基准速度时,通过维持车辆的速度,使得车辆的状态在开始手动操控之前不会发生变化(速度恒定),因此驾驶者能够容易地开始手动操控。或者,在转弯行驶速度慢于预先确定的基准速度时,通过使车辆减速至基准速度,使得车辆的状态的变化变慢,从而驾驶者能够容易地开始手动操控。

请求部可以基于作为将车辆的驾驶状态由自动驾驶状态切换至手动驾驶状态所需的时间而预先确定的基准时间和车辆的当前速度,对车辆以当前速度行驶基准时间后的行驶距离即基准距离进行计算,并在车辆的前方弯道往身前侧基准距离的位置处进行开始手动操控的请求。这时,由于在车辆进入弯道之前往身前侧基准距离处就已经进行了开始手动操控的请求,从而能够确保作为驾驶者开始手动操控的时间而预先确定的基准时间。

发明的效果

根据本发明的一个方面,由于车辆的速度是与纵向位置的误差对应地控制的,从而即使在推定出的车辆的纵向位置存在误差时,也能够控制车辆进入弯道时的速度,以使其能够在弯道的行驶车道内自动地行驶。

附图说明

图1是表示本发明的一个实施方式涉及的车辆控制装置的概略构成的图。

图2是表示车辆在前方存在直道的行驶车道上行驶的状态的示意图。

图3是表示用于使车辆在弯道的行驶车道内自动行驶的转弯行驶速度与转弯半径及纵向位置误差之间的关系的一个示例的图。

图4是表示用于生成当车辆前方存在弯道时使车辆减速的速度计划的处理流程的流程图。

附图标号说明

1…外部传感器,3…内部传感器,12a…纵向位置对照部,12b…纵向位置推定部,15a…半径获取部,15b…转弯行驶速度计算部,15c…速度计划部(速度控制部),16…开始手动操控请求部(请求部),17…行驶控制部(速度控制部),100…车辆控制装置,m…车辆,l…行驶车道,l2…弯道。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。此外,在附图的说明中对相同的要素标以相同的符号,并省略重复说明。

如图1所示,车辆控制装置100搭载于乘用车等车辆m上,对搭载有车辆控制装置100的车辆m进行控制(自动驾驶控制)以使其自动地行驶。车辆控制装置100具有外部传感器1、gps[globalpositioningsystem,全球定位系统]接收部2、内部传感器3、地图数据库4、导航系统5、hmi6、致动器7、以及ecu[electroniccontrolunit,电子控制单元]10。

外部传感器1是用于对车辆m的周边状况进行检测的检测设备。外部传感器1包括照相机和雷达传感器。

照相机是用于对车辆m的外部状况进行拍摄的拍摄设备。照相机设置在车辆m的挡风玻璃的里侧。照相机将与车辆m的外部状况相关的拍摄信息发送给ecu10。照相机可以是单目相机或立体相机。立体相机具有为了再现两眼视差而配置的两个拍摄部。立体相机的拍摄信息还包含纵深方向的信息。

雷达传感器利用电波(例如毫米波)或光来对车辆m的周边障碍物进行检测。雷达传感器将电波或光发送至车辆m的周边,通过对由障碍物反射的电波或光进行接收来检测障碍物。雷达传感器将检测出的障碍物信息发送给ecu10。障碍物除了包括护栏、建筑物等固定障碍物之外,还包括行人、自行车、其他车辆等移动障碍物。

gps接收部2通过接收来自3个以上gps卫星的信号来测量车辆m的位置(例如车辆m的纬度和经度)。gps接收部2将测量出的车辆m的位置信息发送至ecu10。

内部传感器3是用于对车辆m的行驶状态(车辆的状态)进行检测的检测设备。内部传感器3包括车速传感器、加速度传感器、以及偏航率传感器。车速传感器是用于对车辆m的速度进行检测的检测器。车速传感器采用轮速传感器,轮速传感器设在车辆m的车轮或者与车轮一体地转动的传动轴等上,对车轮的转动速度进行检测。车速传感器将检测出的车速信息发送给ecu10。

加速度传感器是用于对车辆m的加速度进行检测的检测器。加速度传感器包括对车辆m的前后方向的加速度进行检测的前后加速度传感器,以及对车辆m的横向加速度进行的检测的横向加速度传感器。加速度传感器将车辆m的加速度信息发送给ecu10。偏航率传感器是对围绕车辆m的重心的竖直轴的偏航率(转动角速度)进行检测的检测器。偏航率传感器可以采用例如陀螺仪传感器。偏航率传感器将检测出的车辆m的偏航率信息发送给ecu10。

地图数据库4是存储地图信息的数据库。地图数据库4可以形成在例如车辆m上搭载的hdd[harddiskdrive,硬盘驱动器]内。地图信息中包含道路的位置信息、道路形状信息(例如直道及弯道等类别、转弯半径等)、道路交通标线的位置信息、十字路口及分叉路口的位置信息,以及建筑物的位置信息等。此外,地图数据库4也可以存储在能够与车辆m进行通信的管理中心等设施的计算机中。

另外,地图数据库4中也存储有地标信息。地标是指其位置固定在路面上(也包括车辆通行带之外的路面上),且作为计算物体位置的基准的物体。地标包括道路标识(类似于道路交通标志)和道路标示(类似于道路交通标线)。道路标识包括指路标识、警告标识、禁令标识、指示标识等。道路标示包括禁令标示和指示标示。禁令标示包括禁止掉头标记、最高速度标记等。指示标示包括道路交通标线(例如,道路中心线、道路边缘线、车道分界线等)、表示前方存在人行横道的菱形标记、表示前方存在优先车道的三角标记、行车方向标记、信号机、轮廓标、隧道出入口、etc[electronictollcollection,电子不停车收费系统]路闸的出入口等。

地图数据库4中还存储有地标在地图上的位置信息。也就是说,地图数据库4中存储有与地图信息相关联的地标的位置信息。另外,地图数据库4中有时也存储有用于将地标从外部传感器1的照相机的拍摄信息中识别出来的地标的图像信息。

导航系统5是将车辆m的驾驶者引导至由车辆m的驾驶者设定的目的地的装置。导航系统5基于gps接收部2检测出的车辆m的位置信息和地图数据库4的地图信息计算车辆m的行驶路线。路线可以是在多车道区间内确定了优选车道的路线。例如,导航系统5计算从车辆m的位置到目的地为止的目标路线,并将目标路线通过显示屏的显示及扬声器的声音输出报告给驾驶者。例如,导航系统5将车辆m的目标路线的信息发送给ecu10。此外,导航系统5也可以存储在能够与车辆m进行通信的信息处理中心等设施的计算机中。

hmi6是用于在车辆m的乘客(包括驾驶者)与车辆控制装置100之间进行信息的输出及输入的界面。例如,hmi6具有用于向乘客显示图像信息的显示面板、用于输出声音的扬声器、以及供乘客进行输入操作的操作按钮或触摸面板等。当由乘客进行了与自动驾驶的运行或者停止相关的输入操作后,hmi6向ecu10输出信号以使自动驾驶开始或停止。当到达应结束自动驾驶的目的地时,hmi6通知乘客到达目的地。

致动器7是执行车辆m的行驶控制的装置。致动器7至少包括发动机致动器、制动致动器、以及转向致动器。发动机致动器通过按照来自ecu10的控制信号改变对发动机的空气供给量(例如改变风门开度)来控制车辆m的驱动力。此外,当车辆m为混合动力车辆或电动车辆时,发动机致动器控制作为动力源的电动机的驱动力。

制动致动器按照来自ecu10的控制信号控制制动系统,并控制给予车辆m的车轮的制动力。制动系统可以采用例如液压制动系统。此外,当车辆m具有再生制动系统时,制动致动器也可以对液压制动系统及再生制动系统这两者进行控制。转向致动器按照来自ecu10的控制信号,对控制电动助力转向系统中的转向力矩的辅助电机的驱动进行控制。转向致动器由此而控制车辆m的转向力矩。

ecu10控制车辆m的行驶。ecu10是具有cpu(centralprocessingunit,中央处理器)、rom(readonlymemory,只读存储器)、ram(randomaccessmemory,随机存取存储器)、can(controllerareanetwork,控制器局域网)通信电路等的电子控制单元。例如,在ecu10中,通过将存储在rom中的程序加载至ram,并利用cpu执行加载至ram的程序而实现各种功能。ecu10可以由多个电子控制单元构成。另外,以下说明的ecu的功能中的一部分可以是在能够与车辆进行通信的信息管理中心等设施的计算机或便携式信息终端中执行的。

ecu10在功能上具有车辆位置识别部11、纵向位置识别部12、外部状况识别部13、行驶状态识别部14、行驶计划生成部15、开始手动操控(handson)请求部(请求部)16、以及行驶控制部17。

车辆位置识别部11基于由gps接收部2接收的车辆m的位置信息以及地图数据库4的地图信息来识别车辆m在地图上的位置。此外,车辆位置识别部11还可以从导航系统5中获取该导航系统5中使用的车辆m的位置并对其进行识别。

纵向位置识别部12基于利用外部传感器1的照相机拍摄的地标来识别车辆m的纵向位置。车辆m的纵向位置是指车辆m在其行驶的行驶道路的延伸方向上的位置。具体地,纵向位置识别部12具有纵向位置对照部12a、纵向位置推定部12b、以及误差推定部12c。

纵向位置对照部12a将外部传感器1的照相机的拍摄信息与地图数据库4存储的地标在地图上的位置进行对照,并识别车辆m的纵向位置。具体地,纵向位置对照部12a基于利用车辆位置识别部11识别出的车辆的位置而从地图数据库4中获取车辆m周围的地标的相关信息。此外,当如后文所述利用纵向位置推定部12b推定出纵向位置后,纵向位置对照部12a能够基于利用纵向位置推定部12b推定出的纵向位置而从地图数据库4中获取车辆m周围的地标的相关信息。

纵向位置对照部12a基于外部传感器1的照相机的拍摄图像和从地图数据库4中获取的地标的相关信息而对拍摄图像中包含的地标进行识别。纵向位置对照部12a利用例如图案识别或轮廓提取来识别图像中的地标。在识别出拍摄图像中包含的地标后,纵向位置对照部12a利用公知的图像处理而对拍摄图像中地标的图像位置坐标进行识别。地标的图像位置坐标是指在拍摄图像中的地标图像的位置的坐标。例如,对于作为路面上的道路标示的菱形标记,可以以该菱形标记的中心在拍摄图像中的坐标为其图像位置坐标。纵向位置对照部12a利用公知的方法识别地标的图像位置坐标。

在识别出地标的图像位置坐标后,纵向位置对照部12a基于地标在拍摄图像中的图像位置坐标和地标在地图上的位置信息来识别车辆m的纵向位置。纵向位置对照部12a通过公知的方法,利用地标对车辆m的纵向位置进行识别。

纵向位置推定部12b基于内部传感器3的检测结果及纵向位置对照部12a的识别结果(车辆m的纵向位置)来推定车辆m的纵向位置。在这里,在无法检测到地标的情况下(在不存在地标的情况下),纵向位置对照部12a就无法识别车辆m的纵向位置。因此,当纵向位置对照部12a识别出车辆m的纵向位置后,纵向位置推定部12b将识别出的纵向位置作为基准,基于作为基准的纵向位置和内部传感器3的检测结果来推定车辆m的纵向位置。如果在纵向位置的推定过程中,纵向位置对照部12a识别出了新的纵向位置时,纵向位置推定部12b将纵向位置对照部12a新识别出的纵向位置作为新的基准,并基于作为新基准的纵向位置和内部传感器3的检测结果再次对纵向位置进行推定。

纵向位置推定部12b能够利用内部传感器3的检测结果,例如能够利用由车速传感器检测出的车辆m的速度、以及由偏航率传感器检测出的车辆m的偏航率。例如,当利用由车速传感器检测出的速度时,纵向位置推定部12b能够基于检测出的速度来推定行驶距离,并基于推定出的行驶距离来推定纵向位置。另外,当利用由偏航率传感器检测出的偏航率时,纵向位置推定部12b能够基于检测出的偏航率来推定车辆m的方向,并基于推定出的车辆m的方向来推定纵向位置。此外,可以采用现有的各种方法,利用内部传感器3的检测结果推定纵向位置。

误差推定部12c基于纵向位置推定部12b推定纵向位置所利用的内部传感器3的检测精度,对利用纵向位置推定部12b推定出的纵向位置的误差进行推定。纵向位置的误差是指利用纵向位置推定部12b推定出的纵向位置与实际的车辆m的纵向位置之间的偏差。当进行纵向位置推定所使用的内部传感器3的检测精度较差时,与检测精度良好时相比,误差推定部12c将认为误差值较大(误差较大)。另外,当纵向位置推定部12b进行纵向位置的推定时,利用纵向位置推定部12b推定出的纵向位置的误差也随着时间的经过而变大。因此,当为了推定纵向位置而作为基准使用的纵向位置被纵向位置对照部12a识别出来后已经过较长时间时,与经过较短时间相比,误差推定部12c认为其误差的值较大(误差较大)。

当利用纵向位置对照部12a识别出车辆m的纵向位置时,误差推定部12c将之前推定的纵向位置的误差重置(归零)。将误差重置后,误差推定部12c重新对纵向位置的误差进行推定。

外部状况识别部13基于外部传感器1的检测结果(例如照相机的拍摄信息、雷达传感器的障碍物信息等)识别车辆m的外部状况。外部状况包含例如相对于车辆m的行驶车道的道路交通标线的位置或车道中心的位置及道路宽度、道路形状(例如行驶车道的曲率、对外部传感器1的预期推定有效的路面的坡度变化、起伏等)、车辆m的周边障碍物的状况(例如,将固定障碍物和移动障碍物区别开的信息、障碍物相对于车辆m的位置、障碍物相对于车辆m的移动方向、障碍物相对于车辆m的相对速度等)。

行驶状态识别部14基于内部传感器3的检测结果(例如车速传感器的车速信息、加速度传感器的加速度信息、偏航率传感器的偏航率信息等),对车辆m的行驶状态进行识别。车辆m的行驶状态包含例如车速、加速度、偏航率。

行驶计划生成部15基于由导航系统5设定的目标路线、地图数据库4的地图信息、利用外部状况识别部13识别出的车辆m的外部状况、以及利用行驶状态识别部14识别出的车辆m的行驶状态,生成车辆m的行驶计划。当驾驶者进行自动驾驶控制的开始操作时,行驶计划生成部15开始生成行驶计划。该行驶计划将作为车辆m从其当前位置至到达预先设定的目的地为止的行驶计划。

行驶计划中包含与车辆m在目标路线上的位置相对应的车辆m的控制目标值。在目标路线上的位置是指在地图上的目标路线延伸方向上的位置。目标路线上的位置代表着在目标路线的延伸方向上每隔规定间隔(例如1m)设定的设定纵向位置。控制目标值是指行驶计划中作为车辆m的控制目标的值。控制目标值是与目标路线上的每个设定纵向位置相关联地设定的。行驶计划生成部15通过在目标路线上以规定间隔设定设定纵向位置,并针对每个设定纵向位置设定控制目标值(例如目标横向位置及目标车速),由此来生成行驶计划。也可以将设定纵向位置及目标横向位置合起来设定为一个位置坐标。设定纵向位置及目标横向位置代表着行驶计划中作为目标而设定的纵向位置的信息及横向位置的信息。

另外,在本实施方式中,作为行驶计划中的速度计划,当车辆m的前方存在弯道时,行驶计划生成部15基于利用误差推定部12c推定出的纵向位置的误差生成使车辆m减速的速度计划,以使车辆m能够在弯道上自动地(以自动驾驶控制)行驶。以下,对在车辆m的前方存在弯道时使车辆m减速的速度计划的生成处理进行说明。

首先,对纵向位置的误差进行说明。例如,如图2所示,假设车辆m正行驶在行驶车道l上。车辆m当前正行驶在行驶车道l的直道l1上,直道l1的前方连接有弯道l2。以双点划线表示的行驶车道vl是基于利用纵向位置推定部12b推定出的包含误差的纵向位置和地图数据库4的地图信息而识别出的行驶车道。在图2所示示例中,利用纵向位置推定部12b推定出的车辆m的纵向位置比实际的纵向位置偏向后方。因此,所识别到的行驶车道vl相对于车辆m的位置比实际的行驶车道l偏向前方。

例如,当基于如图2所示具有偏向后方的误差的纵向位置使车辆m自动行驶时,为了沿着弯道l2行驶而进行的转向的开始时刻将较晚,根据车辆m的速度不同则可能出现车辆m无法从实际的行驶车道l沿着弯道l2行驶的情况。因此,行驶计划生成部15生成下述计划,即,根据纵向位置的误差使车辆m减速,使其在进入弯道的时刻达到能够在弯道上行驶的速度。

这里的“进入弯道的时刻”是指通过从直道变至弯道的地点的时刻。另外,这里的“进入弯道的时刻”是指进入基于利用纵向位置推定部12b推定出的纵向位置和地图数据库4的地图信息识别出的弯道的时刻。如图2所示,假设从行驶车道vl的直道vl1变至行驶车道vl的弯道vl2的地点为地点vp。“进入弯道的时刻”中从直道变至弯道的地点为图2中的地点vp。另外,如图2所示,假设从实际的直道l1变至弯道l2的地点为地点p。在图2所示示例中,地点vp相对于车辆m的位置比地点p偏向前方。

为了生成在车辆m的前方存在弯道时使车辆m减速的速度计划,行驶计划生成部15具有半径获取部15a、转弯行驶速度计算部15b、以及速度计划部15c。半径获取部15a根据利用纵向位置推定部12b推定出的车辆m的纵向位置及地图数据库4的地图信息而获取车辆m前方的弯道的转弯半径。车辆m的前方是指沿着车辆m的行驶车道的前方。

例如,当车辆m在直道上行驶时,半径获取部15a获取存在于车辆m前方最近位置处的弯道的转弯半径。当车辆m在弯道上行驶时,半径获取部15a获取如下转弯半径,即,在车辆m的前方的、从与当前正在行驶的弯道的前方相连的直道起至车辆m的前方最近位置处之间的弯道的转弯半径。半径获取部15a获取从车辆m的当前纵向位置起、存在于车辆m前方的规定距离以内的弯道的转弯半径。

转弯行驶速度计算部15b基于利用半径获取部15a获取的转弯半径以及利用误差推定部12c推定出的纵向位置的误差,计算在获取到的转弯半径的弯道的行驶车道内自动行驶所需的转弯行驶速度。转弯行驶速度是指在获取到的转弯半径的弯道上,通过车辆控制装置100的自动驾驶控制而满足与行驶状态等相关的规定基准并在行驶车道内自动行驶所需的速度上限值。例如,转弯行驶速度是指在弯道上行驶的过程中,能够在不施加规定值以上的横向加速度的情况下进行行驶的速度。另外,转弯行驶速度还指车辆m能够在不发生打滑等的情况下进行行驶的速度。当车辆m进入弯道时的速度为转弯行驶速度时,车辆m能够通过自动驾驶控制而在弯道的行驶车道内行驶。

随着弯道的转弯半径变小(转弯变急),转弯行驶速度计算部15b将转弯行驶速度放慢。当弯道的转弯半径较小(转弯较急)时,为在弯道上行驶所需的转向量将变大,转向误差将变大。在这里,当车辆m的速度较慢时,由于轮胎的打滑等受到抑制,从而转向误差将变小。因此,在由于弯道的转弯半径较小而进行较大幅度转向,从而导致转向误差变大时,转弯行驶速度计算部15b将在弯道上行驶所采用的转弯行驶速度放慢。通过转弯行驶速度计算部15b以上述方式将转弯行驶速度放慢,基于弯道的转弯半径及车速的转向误差将变小,车辆m将能够在弯道的行驶车道内行驶。

随着利用误差推定部12c推定出的纵向位置的误差变大,转弯行驶速度计算部15b将转弯行驶速度放慢。当纵向位置的误差较大时,弯道的位置识别的误差本身也较大。当上述弯道的位置识别误差中又加入由车辆m的速度引起的转向误差后,相对于实际的行驶车道的车辆m位置的误差将进一步变大。因此,为了抑制相对于实际的行驶车道的车辆m位置的误差的增加,转弯行驶速度计算部15b将在弯道上行驶所采用的转弯行驶速度放慢。通过转弯行驶速度计算部15b以上述方式将转弯行驶速度放慢,由车辆m的速度引起的转向误差将变小,相对于实际的行驶车道的车辆m位置的误差的增加受到抑制,车辆m将能够在弯道的行驶车道内行驶。

图3是表示用于使车辆在弯道的行驶车道内自动行驶的转弯行驶速度与转弯半径及纵向位置误差之间的关系的一个示例的图。在图3的图像中,横轴表示转弯半径,越往右侧则转弯半径越小(转弯越急)。纵轴表示所推定出的车辆m的纵向位置的误差,越往上侧则误差值越大。实线表示转弯行驶速度为100km/h的情况,虚线表示转弯行驶速度为80km/h的情况,双点划线表示转弯行驶速度为60km/h的情况。

例如,当纵向位置的误差相同时,转弯行驶速度将随着转弯半径变小而放慢。另外,当转弯半径相同时,转弯行驶速度将随着纵向位置的误差变大而放慢。

转弯行驶速度计算部15b可以基于转弯半径及纵向位置的误差而利用映射等计算转弯行驶速度,也可以通过运算等计算转弯行驶速度。

此外,这里将在行驶车道内自动行驶所采用的速度作为转弯行驶速度,但也可以将车辆m在从作为行驶车道的边界的道路交通标线往行驶车道的内侧方向上留出规定余量的范围内自动行驶所采用的速度作为转弯行驶速度。

速度计划部15c生成车辆m的行驶计划中的速度计划。当车辆m的速度处于利用转弯行驶速度计算部15b计算出的转弯行驶速度以上、且转弯行驶速度处于预先确定的基准速度以上时,速度计划部15c生成以使车辆m进入前方弯道时其速度达到转弯行驶速度的方式使车辆m减速的速度计划。由此,能够将车辆m进入弯道时的速度设为能够在弯道上自动行驶的转弯行驶速度。

此外,这里与转弯行驶速度进行比较的“车辆m的速度”可以是指在不利用车辆m的纵向位置误差及转弯行驶速度,由行驶计划生成部15生成的上述行驶计划中当前的目标车速。另外,与转弯行驶速度进行比较的“车辆m的速度”也可以是指利用内部传感器3的车速传感器检测出的车辆m当前的速度。

另外,这里的“基准速度”是指当车辆m在前方的弯道上行驶时不妨碍车辆m周围的车辆的行驶的速度。例如,基准速度可以是指车辆m所行驶的道路的法定限速,或从法定限速中减去规定值所得的速度。

另外,当车辆m的速度处于转弯行驶速度以上、且转弯行驶速度慢于基准速度时,速度计划部15c以维持当前速度或使车辆m在进入其前方弯道时达到基准速度的方式生成使车辆m减速的速度计划。此外,这里与转弯行驶速度进行比较的“车辆m的速度”、以及“基准速度”同与上述转弯行驶速度进行比较的“车辆m的速度”、以及“基准速度”具有相同的含义。

也就是说,当车辆m的速度快于基准速度时,速度计划部15c生成以维持当前速度或使车辆m在进入其前方弯道时达到基准速度的方式使车辆m减速的速度计划。另外,当车辆m的速度处于基准速度以下时,速度计划部15c进行维持当前速度的速度计划。此外,这里的“当前速度”可以是指在不利用车辆m的纵向位置误差及转弯行驶速度,由行驶计划生成部15生成的上述行驶计划中的当前的目标车速。另外,“当前速度”也可以是指利用内部传感器3的车速传感器检测出的当前的车辆m的速度。这样一来,当车辆m的速度快于基准速度时,将不会出现车辆m进入弯道时的速度低于基准速度的情况。另外,当车辆m的速度慢于基准速度时,由于车辆m的当前速度得到维持,从而不会出现车辆m的速度相比当前速度进一步变慢的情况。

当车辆m的速度处于利用转弯行驶速度计算部15b计算出的转弯行驶速度以上、且转弯行驶速度慢于基准速度时,开始手动操控请求部16进行将车辆m的控制切换至由驾驶者进行手动驾驶的开始手动操控请求。此外,这里与转弯行驶速度进行比较的“车辆m的速度”同与上述转弯行驶速度进行比较的“车辆m的速度”具有相同的含义。开始手动操控请求是指为将车辆m的驾驶由利用车辆控制装置100进行自动驾驶的状态切换至由驾驶者进行手动驾驶而作出的请求。开始手动操控请求部16使用例如设置在hmi6中的显示面板或扬声器等进行开始手动操控请求。

另外,开始手动操控请求部16在车辆m的前方弯道往身前侧基准距离的位置处进行开始手动操控的请求。车辆m的前方弯道往身前侧基准距离的位置,是指由车辆m前方的进入弯道的位置往车辆m这一侧、与进入弯道的位置相隔基准距离的位置。另外,基准距离是指基于预先确定的基准时间和车辆m的当前速度,以车辆m的当前速度行驶了基准时间时的行驶距离。这里的“当前速度”是指在判定为将进行开始手动操控请求时的车辆m的速度。另外,“当前速度”可以是指在不利用车辆m的纵向位置误差及转弯行驶速度,由行驶计划生成部15生成的上述行驶计划中当前的目标车速。另外,“当前速度”也可以是指利用内部传感器3的车速传感器检测出的车辆m的当前速度。另外,预先确定的“基准时间”是指作为将车辆m的驾驶状态从由车辆控制装置100进行的自动驾驶状态切换至由驾驶者进行的手动驾驶状态所需的时间而预先确定的时间。

行驶控制部17基于利用行驶计划生成部15生成的行驶计划自动地控制车辆m的行驶。另外,当车辆m的前方存在弯道,速度计划部15c生成了速度计划时,作为行驶计划中的速度计划,行驶控制部17基于利用速度计划部15c生成的速度计划控制车辆m的行驶。行驶控制部17将与行驶计划相对应的控制信号输出至致动器7。由此,行驶控制部17以使车辆m按照行驶计划自动行驶的方式控制车辆m的行驶。

也就是说,生成速度计划的速度计划部15c以及基于所生成的速度计划而对车辆m的速度进行控制的行驶控制部17充当速度控制部,其在车辆m的速度处于转弯行驶速度以上、且转弯行驶速度为预先确定的基准速度以上时,以使车辆m进入其前方的弯道时的速度达到转弯行驶速度的方式使车辆m减速;当车辆m的速度处于转弯行驶速度以上、且转弯行驶速度慢于基准速度时,以维持当前的车速或使车辆m进入其前方的弯道时达到基准速度的方式使车辆m减速。

以下,对在车辆m的前方存在弯道时,在ecu10中执行的生成使车辆m减速的速度计划的处理的流程进行说明。在由车辆控制装置100进行车辆m的自动驾驶控制的状态下,从车辆m当前的纵向位置起到车辆m前方的规定距离以内存在弯道时,开始图4所示的处理。在图4所示处理结束后,当在本次处理中作为对象的弯道的前方还存在弯道时再次开始。此外,半径获取部15a能够进行车辆m前方是否存在弯道的判定。

当车辆m的前方存在弯道时,半径获取部15a根据推定出的车辆m的纵向位置及地图数据库4的地图信息,获取车辆m前方弯道的转弯半径(s101)。转弯行驶速度计算部15b获取利用误差推定部12c推定出的车辆m的纵向位置的误差(s102)。转弯行驶速度计算部15b基于所获取的转弯半径以及纵向位置的误差,对在获取到的转弯半径的弯道的行驶车道内自动行驶所需的转弯行驶速度进行计算(s103)。

速度计划部15c判定车辆m的速度是否处于转弯行驶速度以上(s104)。当车辆m的速度处于转弯行驶速度以上时(s104:是),速度计划部15c判定转弯行驶速度是否慢于预先设定的基准速度(s105)。当转弯行驶速度慢于预先设定的基准速度时(s105:是),开始手动操控请求部16进行将车辆m的控制切换至由驾驶者进行的手动驾驶的开始手动操控的请求(s106)。速度计划部15c生成以维持当前速度或使车辆m在进入其前方弯道时达到基准速度的方式使车辆m减速的速度计划(s107)。行驶控制部17基于s107中生成的速度计划进行车辆m的控制,直至到达弯道的进入地点为止(s108)。

另一方面,当转弯行驶速度慢于预先确定的基准速度时(s105:否),速度计划部15c生成以使车辆m进入其前方的弯道时的速度达到转弯行驶速度的方式使车辆m减速的速度计划(s109)。行驶控制部17基于s109中生成的速度计划进行车辆m的控制,直至到达弯道的进入地点为止(s110)。

当车辆m的速度不处于转弯行驶速度以上时(s104:否),则不进行基于纵向位置的误差及转弯行驶速度使车辆m减速的控制。这时,车辆控制装置100基于不利用车辆m的纵向位置误差及转弯行驶速度而由行驶计划生成部15生成的上述行驶计划,使车辆m自动地行驶。

本实施方式以上述方式构成,在该车辆控制装置100中,转弯行驶速度计算部15b基于车辆m前方的弯道的转弯半径及推定出的车辆m的纵向位置的误差,对在弯道的行驶车道内自动行驶所需的转弯行驶速度进行计算。另外,当推定出的纵向位置的误差较大时,与纵向位置的误差较小时相比,转弯行驶速度计算部15b将转弯行驶速度放慢。当车辆m的速度处于转弯行驶速度以上、且转弯行驶速度为预先确定的基准速度以上时,速度计划部15c生成使车辆m减速至转弯行驶速度的速度计划。行驶控制部17基于利用速度计划部15c生成的速度计划来控制车辆m的速度。由此,当利用纵向位置推定部12b推定出的纵向位置的误差较大时,与误差较小时相比,车辆m的速度将变慢。这样一来,由于车辆m的速度是与纵向位置的误差对应地控制的,从而即使在推定出的车辆m的纵向位置存在误差时,也能够控制车辆m进入弯道时的速度,以使其能够在弯道的行驶车道内自动地行驶。

当转弯行驶速度慢于预先确定的基准速度时,开始手动操控请求部16进行开始手动操控的请求,切换至由驾驶者进行的手动驾驶。也就是说,若由车辆控制装置100控制车辆m的行驶,将由于推定出的纵向位置的误差较大而将速度变为慢于基准速度,此时,通过切换至由驾驶者进行的手动驾驶,驾驶者就能够以适宜的速度沿着弯道进行车辆m的驾驶。由此,能够抑制由于车辆m以慢于基准速度的速度行驶而妨碍后续车辆行驶的情况。另外,在转弯行驶速度慢于预先确定的基准速度时,通过维持车辆m的速度,使得车辆m的状态在开始手动操控之前不会发生变化(速度恒定),因此驾驶者能够容易地开始手动操控。或者,在转弯行驶速度慢于预先确定的基准速度时,通过使车辆m减速至基准速度,使得车辆m的状态的变化变慢,从而驾驶者能够容易地开始手动操控。

开始手动操控请求部16基于作为将车辆m的驾驶状态由自动驾驶状态切换至手动驾驶状态所需的时间而预先确定的基准时间,计算出基准距离。开始手动操控请求部16在车辆m的前方弯道往身前侧基准距离的位置处进行开始手动操控的请求。这时,由于在车辆m进入弯道之前的基准距离处就已经进行了开始手动操控的请求,从而能够确保作为驾驶者开始手动操控的时间而预先确定的基准时间。

以上仅对本发明的实施方式进行了说明,但本发明不局限于上述实施方式。例如,这里的开始手动操控请求部16构成为,在车辆m的前方弯道往身前侧基准距离的位置处进行开始手动操控的请求,但作为进行开始手动操控请求的时间点也可以使用基准距离之外的基准。另外,对于基准距离的计算方法,也不限于使用上述基准时间及车辆m的当前速度来计算。

这里的车辆控制装置100是在生成行驶计划后进行车辆m的自动驾驶控制的,但是,也可以进行将以使得车辆m在行驶车道内行驶的方式进行转向控制的车道维持控制与根据行驶车道的形状等控制车辆速度的速度管理控制进行组合的控制。即使在车辆控制装置100进行车道维持控制及速度管理控制,而非利用行驶计划进行自动驾驶控制时,也能够进行利用上述纵向位置的误差及转弯行驶速度进行车辆m的减速控制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1