用于光学信息记录介质的半反射膜和反射膜,光学信息记录介质以及溅射靶的制作方法

文档序号:6736543阅读:134来源:国知局
专利名称:用于光学信息记录介质的半反射膜和反射膜,光学信息记录介质以及溅射靶的制作方法
技术领域
本发明涉及在光学信息记录介质,例如在密纹磁盘(CD)、数字多功能磁盘(DVD)、蓝光盘和HD DVD领域中,用于光学信息记录介质的半反射膜和反射膜,该膜具有高抗粘结性、高耐光性和高耐热性,同时具有高反射率、高透射率、低吸收率和高热导率。本发明还涉及用于光学信息记录介质的溅射靶,该溅射靶用于沉积半反射膜或者反射膜;以及含有这种半反射膜或者反射膜的光学信息记录介质。
背景技术
光学信息记录介质(光盘)包括多种类型的光盘,按照读/写系统分类的三种主要类型为只读的、可录写一次地和可重写光盘。为了增加存储容量,光盘也已经从普通的单面单层光盘发展到了单面多层光盘。例如,在单面双层光盘离激光束入射侧较远的记录层中录写和读取信号的情况下,必须使激光束透过离激光束入射较近的记录层,被较远的记录层反射,并再次透过离激光入射较近的记录层。因此,能够反射和透射激光束的半反射膜被用于离激光束入射较近的记录层。
起到半反射膜作用的材料包括金属,例如Ag、Al、Au、Pt、Rh和Cr,以及元素半导体,例如Si和Ge。其中,纯Ag和以Ag为主要组分的Ag合金具有如下特色(1)光效率高(即,反射率和透射率合计),(2)对蓝光盘和HD DVD中使用的兰-紫激光(波长405nm)的反射率高,以及(3)高导热性,能够使记录信号时在记录膜中产生的热量适当扩散。这种Ag基材料在被用作光盘的半反射膜时显示出优异的性能,包括高反射率、高透射率、低吸收率和高热导率。就此而论,吸收率是按照如下等式计算的吸收率=100%-(反射率+透射率)。但是,为了使其作为光盘半反射膜所起的足够作用具有长期可靠性,Ag基材料需要克服本身的不足之处,即,(1)抗粘结性,(2)耐光性和(3)耐热性。抗粘结性
在加热和/或诸如氟、氯、溴或碘的卤素作用下,Ag基材料很可能发生粘结。当将Ag基材料保持在光盘可靠性测试中使用的高温高湿条件下时,或者使其和含卤素的有机材料,典型地为有机染料记录膜、保护层或者粘合层的含卤素的有机材料接触时,可能发生粘结,导致薄膜表面粗糙度的增加,或者薄膜连续性的丧失,这可能反过来招致该材料作为半反射膜或者反射膜功能的丧失。耐光性
例如,单面双层只读光盘的基本截面结构为聚碳酸酯(PC)基片\半反射膜\粘合层\反射膜\PC基片。在所谓的“耐光性测试”中,用Xe灯(光谱类似于日光光谱的一种灯)照射这种光盘时,当半反射膜包含Ag基材料时,该膜反射率下降,在这种情况下,一旦反射率减小到低于检测要读取信号所必需的阈值,信号读取将变得不可能。耐热性
例如,单面双层可录写一次的光盘的基本截面结构为PC基片\记录膜\半反射膜\垫片\记录膜\反射膜\PC基片,而单面双层可重写光盘的基本截面结构为PC基片\介电和保护层\界面层\记录膜\界面层\介电和保护层\半反射膜\中间层\介电和保护层\界面层\记录膜\界面层\介电和保护层\反射膜\PC基片。在可记录光盘包括这种可录写一次的和可重写光盘的情况下,在录写过程中记录层被加热到高达300℃~600℃的温度,并且对半反射膜或者反射膜产生非常严重的热滞后。这种热滞后所造成的薄膜晶粒的生长和薄膜连续性的丧失削弱了半反射膜和反射膜的功能。
人们已经进行了各种尝试以改善纯Ag的性质,主要通过合金化Ag来达到目的。例如,通过如下途径改善耐腐蚀性在USP 6007889中将Au、Pd、Cu、Rh、Ru、Os、Ir或者Pt加到Ag中;在USP 6280811,已公布的专利申请2002-518596 PCT国际公布的日文译文中,将Au、Pd、Cu、Rh、Ru、Os、Ir、Be或者Pt加到Ag中;以及在USP 5948497,日本专利申请公开号06-208732中,将Pd或者Cu加到Ag中。本发明的发明人在日本专利号3365762中也公开了一种通过将Nd加到Ag中来改善晶体结构稳定性的方法,其中通过抑制Ag扩散和晶粒生长使晶体结构稳定。
尽管有了这样的努力,还没有发现显示出高反射率、高透射率、低吸收率和高热导率,同时具有高抗粘结性、高耐光性和高耐热性的Ag基合金,因此,强烈需要有一种满足所有这些性能要求的Ag基合金。

发明内容
本发明是考虑到这种情况而完成的,本发明的一个目的是找出一种显示出高抗粘结性、高耐光性、高耐热性、高反射率、高透射率、低吸收率和高热导率的Ag基合金,上述性能是纯Ag或者常规的Ag合金无法达到的,并且以这样的合金为基础,提供用于具有优异录写/读取性能和长期可靠性的光学信息记录介质的半反射膜和反射膜;一种在沉积半反射膜和反射膜中使用的光学信息记录介质溅射靶;以及一种包含半反射膜或者反射膜的光学信息记录介质。
具体而言,本发明的第一方面提供一种包含Ag基合金的用于光学信息记录介质的半反射膜或者反射膜,其中Ag基合金包含0.01-10原子百分比的Li。
Ag基合金还可以包含0.005-0.8原子百分比的Bi。
此外或者替代性地,Ag基合金还可以包含总量为0.1-2原子百分比的至少一种选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的稀土金属元素。
优选稀土金属元素是Nd和Y中至少一种。
Ag基合金还可以包含总量为0.1-3原子百分比的至少一种选自Cu、Au、Rh、Pd和Pt的元素。
本发明的第二方面提供一种含有本发明半反射膜的光学信息记录介质。
此外,本发明的第三方面提供一种含有本发明反射膜的光学信息记录介质。
在第四方面,本发明提供一种Ag基合金溅射靶,该溅射靶包含Ag和0.01-10原子百分比的Li。
Ag基合金溅射靶还可以包含0.02-8原子百分比的Bi。
Ag基合金溅射靶还可以包含总量为0.1-2原子百分比的至少一种选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的稀土金属元素。
优选靶中的稀土金属元素是Nd和Y中至少一种。
溅射靶还可以包含至少一种选自Cu、Au、Rh、Pd和Pt的元素。
如上所述,本发明用于光学信息记录介质的半反射膜和反射膜具有高抗粘结性、高耐光性和高耐热性,同时具有高反射率、高透射率、低吸收率和高热导率,并且所得到的光学信息记录介质将显示出显著改善的录写/读取性能以及优异的长期可靠性。本发明的溅射靶非常适于沉积上述的半反射膜或者反射膜,而且使用该溅射靶制造的半反射膜和反射膜具有优异的合金组成、合金元素分布和膜平面方向上的均匀性,并且这样的膜也将具有令人满意的低杂质含量,因此,所得到的半反射膜或者反射膜将具有令人满意的高性能,能够制造出具有优异录写/读取性能和优异的长期可靠性的光学信息记录介质。此外,本发明的光学信息记录介质将具有明显改善的录写/读取性能和长期可靠性。
具体实施例方式
在上述环境下,本发明的发明人已经进行了深入的研究,以提供包含Ag基合金的半反射膜和反射膜,该膜适合在光学信息记录介质中使用,并且显示出高抗粘结性、高耐光性和高耐热性,同时具有高反射率、高透射率、低吸收率和高热导率。更具体而言,发明人通过溅射各种Ag基合金溅射靶沉积了具有各种合金组成的各种Ag基合金薄膜,并且对这些膜的组成、抗粘结性、耐光性、耐热性、反射率、透射率、吸收率和热导率进行了评估。然后,发明人发现包含0.01-10原子百分比Li的用于光学信息记录介质的Ag基合金半反射膜和反射膜具有优异的抗粘结性、耐光性和耐热性,同时具有高反射率、高透射率、低吸收率和高热导率,这些性能超过了由纯Ag或者常规的Ag合金制成的膜。基于这样的发现完成了本发明。
本发明的发明人已经证明了包含Li的Ag基合金薄膜与用纯Ag和常规的Ag基合金制成的薄膜相比,典型之处在于具有优异的耐光性。例如,只有当半反射膜包含Ag基材料时,在例如基本截面结构为PC基片\半反射膜\粘合层\反射膜\PC基片的单面双层只读光盘中,才会出现对Xe灯(光谱类似于日光光谱的一种灯)照射光的反射率的下降。这是由构成Ag基半反射膜的Ag原子扩散和渗透到相邻的PC基片和/或粘合层中而造成的现象。在本发明包含Li的Ag基合金薄膜中,因光照射而产生的Ag的离子化被Li的优先离子化所阻止,即,电离倾向比Ag更高的Li具有牺牲性保护作用,从而改善了耐光性。另外,发明人揭示包含Li的Ag基合金薄膜是最佳的Ag基合金薄膜,所述的最佳Ag基合金薄膜不仅具有优异的耐光性、改良的抗粘结性和改良的耐热性,这些是常规Ag基材料的不足之处,而且显示出高反射率、高透射率、低吸收率和高热导率,这些是这种Ag基材料的优点。
本发明用于光学信息记录介质的Ag基合金半反射膜和反射膜具有如下特征它们包含Li,Li的含量为0.01%-10%(除非另外规定,以下所有的百分比都是原子百分比)。随着Li含量的增加,抗粘结性、耐光性和耐热性的改善变得清晰,但是出现了反射率、透射率和导热性的下降以及吸收率的增加。因此,Li的加入量为0.01%-10%。Li含量小于0.01%不是优选的,因为膜将不能显示出高抗粘结性、高耐光性和高耐热性,而Li含量超过10%也不是优选的,因为所得到的膜将不显示出高反射率、高透射率、低吸收率和高热导率。因此,Li的含量优选为0.01%-10%,更优选为0.05%-8%,还更优选为0.1%-6%。
将Bi加到本发明的Ag基合金半反射膜和反射膜中,对获得更高的抗粘结性、耐热性和耐腐蚀性也是有效的。但是,当Bi的加入量小于0.005%时,可能达不到进一步改善抗粘结性、耐热性和耐腐蚀性的效果。另一方面,加入超过0.8%的这种元素可能得不到高反射率、高透射率、低吸收率和高热导率。因此,如果加入Bi,Bi的含量优选为0.005%-0.8%,更优选为0.01%-0.6%,还更优选为0.05%-0.4%。
向本发明的Ag基合金半反射膜和反射膜中加入总量为0.1%-2%的至少一种选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的稀土金属元素,特别是Nd和Y中的至少一种,对于进一步改善抗粘结性和耐热性也是有效的。但是,当这样的稀土金属元素加入总量小于0.1%时,达不到进一步改善抗粘结性和耐热性的效果。另一方面,加入超过2%的这样的元素得不到高反射率、高透射率、低吸收率和高热导率。因此,这样的元素的总含量优选为0.1%-2%,更优选为0.2%-1%,还更优选为0.3%-0.5%。
向本发明的Ag基合金半反射膜和反射膜中加入至少一种选自Cu、Au、Rh、Pd和Pt的元素对于进一步改善耐腐蚀性也是有效的。但是,当至少一种选自Cu、Au、Rh、Pd和Pt的元素的加入总量小于0.1%,达不到进一步改善耐腐蚀性和耐热性的效果。另一方面,这样的元素的加入量超过3%得不到高反射率、高透射率、低吸收率和高热导率。因此,这样的元素的加入总量为0.1%-3%,优选为0.2%-2%,更优选为0.3%-1%。
要指出的是,本发明用于光学信息记录介质的Ag基合金半反射膜是单面多层光盘中的一种薄膜,该薄膜的功能是使激光束能够在除最远离激光束入射侧的记录层外的记录层处透射和反射,并且这种膜的透射率可以为约45%-80%,反射率可以为约5%-30%。其厚度可以是适当确定的、使透射率和反射率在预定范围内的任一厚度。但是,Ag基合金半反射膜的膜厚度通常可以为5-25nm。
要指出的是,本发明用于光学信息记录介质的Ag基合金反射膜是单面单层光盘的反射膜或者是单面多层光盘中最远离激光束入射侧的反射膜,这种膜的反射率可以为约50%或更大,而透射率基本上为0%。其厚度可以是适当确定的、使反射率和透射率在预定范围内的任一厚度。但是,Ag基合金反射膜的膜厚度通常可以为50-250nm。
本发明Ag基合金半反射膜和反射膜是通过将上述Ag基合金沉积在基片上而制造的,所采用的是各种薄膜沉积技术,例如真空沉积,离子电镀法和溅射法,推荐用膜沉积的溅射法来制造该膜。与通过其他薄膜沉积技术形成的膜相比,通过溅射法形成的Ag基合金半反射膜和反射膜在合金组成、合金元素分布以及膜平面中膜厚度的均匀性方面更优良,因此,在作为半反射膜和反射膜的性能方面(包括高反射率、高透射率、低吸收率、高热导率、高抗粘结性、高耐光性和高耐热性)也更优良,从而能够制造具有优异录写/读取性能和长期可靠性的光学信息记录介质。
在溅射法中,可以使用包含Li含量为0.01%-10%的Ag基合金的溅射靶(以下简称为“靶”)来沉积具有所需合金组成的反射膜。靶的Li含量为0.01%-10%,优选为0.05%-8%,更优选为0.1%-6%。
为了沉积还包含0.005%-0.8%Bi的Ag基合金半反射膜或者反射膜,靶中应当还包含0.02%-8%,优选0.1%-6%,更优选0.2%-4%的Bi。靶中的Bi含量高于半反射膜或者反射膜中的Bi含量,这是因为在使用包含含Bi的Ag基合金的靶通过溅射进行膜沉积的过程中,所得到的半反射膜或者反射膜中Bi的数量减少到靶中存在的Bi的数量的百分之几到百分之几十。这种减少据估计是由如下原因造成的由于Ag和Bi的熔点差异巨大,在膜沉积过程中Bi从膜表面再次蒸发;由于Ag的溅射率比Bi高,难以溅射Bi;以及由于Bi的反应性比Ag高,只有Bi在靶表面被氧化。反射膜中Bi含量与靶相比有大幅度的减少是在其他Ag基合金,例如Ag-稀土金属合金中没有发现的。因此,靶中的Bi含量应当比将要沉积的半反射膜或者反射层中的Bi含量有所增加。
当还要将0.1%-2%的至少一种选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的稀土金属元素,特别是Nd和Y中的至少一种加到半反射膜或者反射膜中时,可以将这些元素加到靶中。加入稀土金属元素,特别是加入Nd和Y中的至少一种时,其总含量可以为0.1%-2%,优选为0.2%-1%,更优选为0.3%-0.5%。
当要将0.1%-3%的至少一种选自Cu、Au、Rh、Pd和Pt的元素加到半反射膜或者反射膜中时,可以将这些元素加到靶中。加入的至少一种选自Cu、Au、Rh、Pd和Pt的元素的总含量可以为0.1%-3%,优选为0.2%-2%,更优选为0.3%-1%。
本发明Ag基合金溅射靶的制造方法可以是包括熔化和浇铸、粉末烧结和喷射成型的任何一种方法,其中优选通过真空熔化和浇铸来制造靶,因为通过真空熔化和浇铸制造的Ag基合金溅射靶包含较少的氮、氧和其他杂质,而且使用这种溅射靶制造的半反射膜和反射膜有效地显示出优异性能,例如高反射率、高透射率、低吸收率、高热导率、高抗粘结性、高耐光性和高耐热性,从而能够制造具有优异录写/读取性能和长期可靠性的光学信息记录介质。
本发明的光学记录介质被用作光学信息记录介质时,对其构造没有特别的限制,只要含有本发明的Ag基合金半反射膜和/或Ag基合金反射膜即可,并且可以采用任何一种光学信息记录介质领域已知的构造。例如,如上所述的包含Ag基合金的半反射膜或者反射膜具有高反射率、高透射率、低吸收率、高热导率、高抗粘结性、高耐光性和高耐热性,因此,这些膜非常适合用于当前的只读的、可录写一次的和可重写的光学信息记录介质,以及下一代的高存储容量光学信息记录介质。
实施例
下面将参照如下实验实施例对本发明进行更详细地描述,但是这些实施例绝无限制本发明范围的含义。在不偏离本发明范围的情况下对这些实施例进行的任何更改都在本发明的技术范围之内。
(1)薄膜的沉积
在Shimadzu Corporation制造的溅射仪HSM-552中,通过使用溅射靶,将每一个样品薄膜(样品号1-139)沉积到聚碳酸酯基片(直径为50mm,厚度为1.0mm)上,溅射方法为DC磁控管溅射,溅射条件如下基准压为0.27×10-3Pa或者更小,Ar气压为0.27Pa,Ar气流速为30sccm,溅射能为DC 200W,靶和基片之间的距离为52mm,基片温度为室温。此处使用的溅射靶是纯Ag溅射靶(直径为101.6mm,厚度为5mm),Ag-Li合金溅射靶(直径为101.6mm,厚度为5mm),Ag-Li-Bi合金溅射靶(直径为101.6mm,厚度为5mm),复合溅射靶(直径为101.6mm,厚度为5mm),该复合溅射靶包含Ag-Li合金溅射靶或者Ag-Li-Bi溅射靶以及安排在Ag-Li合金溅射靶或者Ag-Li-Bi溅射靶上的预定数量的合金元素(Nd、Y、Cu或者Au)芯片(宽度为5mm,长度为5mm,厚度为1mm),或者Ag合金溅射靶(直径为101.6mm,厚度为5mm)。用于膜组成分析和抗粘结性(由加热引起的粘结以及由卤素引起的粘结)、耐热性和热导率评估的样品薄膜的厚度为100nm,与光学信息记录介质中使用的反射膜厚度一致。用于耐光性、反射率、透射率和吸收率评估的样品膜的厚度为15nm,与光学信息记录介质中使用的半反射膜厚度一致。
(2)膜组成分析
在这样沉积的薄膜中,用电感耦合等离子体(ICP)质谱对Ag合金薄膜(样品号2-139)的膜组成进行分析。更具体而言,分析是这样进行的将被分析的Ag合金薄膜溶解在酸溶液中(硝酸∶纯水=1∶1),在200℃的电热板上加热该酸溶液,在确认所有被分析样品都已经溶解在酸溶液中之后,将溶液冷却到室温,用Seiko Instrument Inc.制造的ICP质谱仪SPQ-8000测量Ag合金薄膜中合金元素的数量。样品的膜组成分析结果见表1,其膜结构分析和各种性能评估的结果见下述的表2-7。
表1
(3)耐光性评估
对用UV可固化树脂薄膜覆盖这样沉积的薄膜(样品号1-139)而得到的样品,使用JASCO制造的UV-Vis-NIR分光光度计V-570DS,在400-800nm的波长范围内测定其光谱反射率和光谱透射率。然后使用SugaTest Instruments Co.,Ltd.制造的Super Xenon Fading Apparatus SX75F,对样品进行UV/可见光照射测试,其中使用氙弧灯,以120W/m2照度的UV/可见光在80℃的温度下照射样品144小时,试验后测定光谱反射率和光谱透射率。耐光性的评估结果见表2。
表2
表2中,采用典型地用于蓝光盘和HD DVD的波长为405nm的激光束,测定样品对该激光束的反射率,在照射试验前后反射率的变化小于1%的样品被认为具有高的耐光性,评为“A”,变化为1%或者更大的样品被认为耐光性低,评为“B”。
表2显示Ag薄膜(1号样品)、Ag-Au薄膜(2号样品)、Ag-Pd薄膜(3号样品)和Ag-Pt薄膜(4号样品)未能表现出高耐光性。
相反,5-139号样品的薄膜由于结合了Li而表现出高耐光性。加入Rh、Pd和Pt的作用等同于加入Cu和Au。
(4)抗粘结性的评估(加热引起的粘结)
使用Digital Instruments制造的Nanoscope IIIa扫描探针显微镜,以原子力显微镜(AFM)观测方式测量这样沉积的薄膜(样品号1-139)的平均表面粗糙度Ra。在80℃的温度和相对湿度为90%RH的条件下对这些薄膜进行高温和高湿试验48小时,在该试验完后再次测量平均表面粗糙度Ra。抗粘结性(加热引起的粘结)的评估结果见表3。
表3
表3中,高温高湿试验前后平均表面粗糙度变化小于1.5nm的样品被认为具有高抗粘结性,评为“A”,而平均表面粗糙度变化大于或等于1.5nm的样品被认为不具有这种高抗粘结性,评为“B”。
如表3中所证明的,所有包含Li的Ag合金薄膜(样品号5-139)都显示出高抗粘结性,而那些不含Li的薄膜,即Ag薄膜(1号样品)、Ag-Au薄膜(2号样品)、Ag-Pd薄膜(3号样品)和Ag-Pt薄膜(4号样品)未能显示出这样的高抗粘结性。加入Rh、Pd和Pt的作用和加入Cu和Au是相同的。
(5)抗粘结性评估(卤素引起的粘结)
使用Digital Instruments制造的Nanoscope IIIa扫描探针显微镜,以原子力显微镜(AFM)观测方式测量这样沉积的薄膜(样品号1-139)的平均表面粗糙度Ra。对这些薄膜进行盐水浸泡试验,试验使用的盐水浓度(NaCl浓度)为0.05mol/l,盐水温度为20℃,浸泡时间为5分钟。在该试验完后,再次测量平均表面粗糙度Ra。抗粘结性(卤素引起的粘结)的评估结果见表4。
表4
表4中,盐水浸泡试验前后平均表面粗糙度变化小于3nm的样品被认为具有高抗粘结性,评为“A”,而平均表面粗糙度变化大于或等于3nm的样品被认为不具有这种高抗粘结性,评为“B”。
如表4中所证明的,Ag-Au薄膜(2号样品)、Ag-Pd薄膜(3号样品)和Ag-Pt薄膜(4号样品)和包含Li的Ag合金薄膜(5-139号样品)都显示出高抗粘结性,而Ag薄膜(1号样品)没有显示出这样的高抗粘结性。加入Rh、Pd和Pt的作用和加入Cu和Au是相同的。
(6)耐热性评估
使用Digital Instruments制造的Nanoscope IIIa扫描探针显微镜,以原子力显微镜(AFM)观测方式测量这样沉积的薄膜(样品号1-139)的平均表面粗糙度Ra。使用在Naruse Scientific Machines制造的旋转磁场中的热处理仪,在真空度小于或等于0.27×10-3Pa和300℃温度的条件下,对这些薄膜进行真空加热试验0.5小时,试验完后再次测量平均表面粗糙度Ra。耐热性评估结果见表5。
表5
表5中,真空加热试验前后平均表面粗糙度变化小于1.5nm的样品被认为具有优异的耐热性,评为“A”,平均表面粗糙度变化大于或等于1.5nm并且小于3.0nm的样品被认为具有高耐热性,评为“B”,而平均表面粗糙度变化大于或等于3.0nm的样品被认为是不具有这种高耐热性的样品,评为“C”。
Ag薄膜(1号样品)、Ag-Au薄膜(2号样品)、Ag-Pd薄膜(3号样品)和Ag-Pt薄膜(4号样品)没有显示出高耐热性。
相反,5-139号样品的薄膜显示出高耐热性。其中,包含Nd和Y中至少一种的薄膜显示出更高的耐热性。加入Rh、Pd和Pt的作用和加入Cu和Au是相同的。
(7)反射率、透射率和吸收率的评估
使用JASCO制造的UV-Vis-NIR分光光度计V-570DS测量这样沉积的薄膜(样品号1-139)在400-800nm波长范围内的光谱反射率和光谱透射率,并由测量的反射率和透射率,按照如下等式计算吸收率
吸收率=100%-(反射率+透射率)
对典型地用于蓝光盘和HD DVD的波长为405nm的激光束的反射率、透射率和吸收率进行评估的结果显示于表6中。
表6
表6中,反射率大于或等于15%、透射率大于或等于60%、且和反射率为18%及透射率为68%相关的吸收率小于25%,以及纯Ag吸收率为14%的样品被认为具有优异的光学性能,这样的样品被评为“A”,而反射率小于15%、透射率小于60%且吸收率大于或等于25%的样品被认为不具有优异的光学性能,这样的样品被评为“B”。
Ag-16%Li薄膜(8号样品)由于Li含量过高,未能显示出高反射率、高透射率和低吸收率。
相反,其他样品薄膜显示出高反射率、高透射率和低吸收率。加入Rh、Pd和Pt的作用和加入Cu和Au是相同的。
(8)热导率的评估
采用如下所述的方法测量这样沉积的薄膜(样品号1-139)的热导率。即,热导率测量方法为使用HIOKIE.E.CORPORATION制造的3226mΩHi TESTER用DC四探针技术测量薄膜电阻Rs;使用TENCORINSTRUMENTS制造的alpha-step 250测量膜厚度t;按照如下等式ρ=薄膜电阻Rs×膜厚度t,计算电阻率ρ(μΩcm);然后,根据维德曼-弗兰兹定律按照如下等式κ=2.51×(绝对温度T)/(电阻率ρ)计算在300K绝对温度(约27℃)下的热导率κ(W/(m·K))。热导率评估结果见表7。
表7
表7中,热导率大于或等于160W/(m·K),相当于纯Ag薄膜热导率320W/(m·K)的50%或更高,这样的样品被认为具有优异的热导率,评为“A”,而热导率小于160W/(m·K)的样品被认为不具有优异的热导率,评为“B”。
Ag-16%Li薄膜(8号样品)由于其Li含量过高,未能显示出高热导率。
相反,其他样品薄膜显示出高热导率。加入Rh、Pd和Pt的作用和加入Cu和Au是相同的。
尽管已经参照目前被认为是优选的实施方案对本发明进行了描述,应当理解,本发明不局限于所公开的实施方案。相反,本发明意在覆盖包括在所附权利要求的宗旨和范围之内的各种更改和等价方案。如下权利要求的范围和最广泛的解释是一致的,以包含所有这样的更改以及等价结构和功能。
权利要求
1、一种包含Ag基合金的用于光学信息记录介质的半反射膜或者反射膜,其中Ag基合金包含0.01-10原子百分比的Li。
2、权利要求1的半反射膜或者反射膜,其中Ag基合金还包含0.005-0.8原子百分比的Bi。
3、权利要求1的半反射膜或者反射膜,其中Ag基合金还包含总量为0.1-2原子百分比的至少一种选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的稀土金属元素。
4、权利要求3的半反射膜或者反射膜,其中稀土金属元素是Nd和Y中的至少一种。
5、权利要求1的半反射膜或者反射膜,其中Ag基合金还包含总量为0.1-3原子百分比的至少一种选自Cu、Au、Rh、Pd和Pt的元素。
6、一种含有权利要求1的半反射膜的光学信息记录介质。
7、一种含有权利要求1的反射膜的光学信息记录介质。
8、一种Ag基合金溅射靶,该溅射靶包含Ag和0.01-10原子百分比的Li。
9、权利要求8的Ag基合金溅射靶,该靶还包含0.02-8原子百分比的Bi。
10、权利要求8的Ag基合金溅射靶,该靶还包含总量为0.1-2原子百分比的至少一种选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的稀土金属元素。
11、权利要求10的Ag基合金溅射靶,其中稀土金属元素是Nd和Y中的至少一种。
12、权利要求8的Ag基合金溅射靶,该溅射靶还包含总量为0.1-3原子百分比的至少一种选自Cu、Au、Rh、Pd和Pt的元素。
全文摘要
用于光学信息记录介质的各种半反射膜或者反射膜以及一种Ag基合金溅射靶包含Li含量为0.01-10原子百分比的Ag基合金。该Ag基合金显示出高抗粘结性、高耐光性、高耐热性、高反射率、高透射率、低吸收率和高热导率,这些性能是用纯Ag或者常规的Ag合金不能获得的。所得到的包含Ag基合金的用于光学信息记录介质的半反射膜和反射膜显示出优异的录写/读取性能和长期可靠性。半反射膜和反射膜沉积中使用光学信息记录介质用溅射靶。使用该半反射膜和/或反射膜制造光学信息记录介质。
文档编号G11B7/259GK1725334SQ20051007917
公开日2006年1月25日 申请日期2005年6月28日 优先权日2004年6月29日
发明者高木胜寿, 田内裕基, 中井淳一 申请人:株式会社神户制钢所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1