负极活性材料及其制备方法和包含该材料的可充电锂电池的制作方法

文档序号:6902482阅读:101来源:国知局

专利名称::负极活性材料及其制备方法和包含该材料的可充电锂电池的制作方法
技术领域
:本发明涉及一种用于可充电锂电池的负极活性材料、制备该负极活性材
背景技术
:可充电锂电池包含能在正极和负极可逆地嵌入或脱嵌锂离子的材料,并在正极和负极之间包含有机电解质溶液或聚合物电解质。可充电锂电池通过锂离子在正极和负极的氧化和还原反应来产生电能。诸如LiCo02、LiMn204、LiNi02、LiNi卜xC。x02(其中0<x<l)、LiMn02等的复合金属氧化物已经被研究作为正极活性材料。导致短路并且由于形成枝状晶体而引起潜在的爆炸威胁。因此,近来已经将诸如无定形碳、结晶碳等的碳材料用作负极活性材料以替代锂金属。然而,这种碳材料在前几个循环中会具有5%至30%的不可逆容量,这浪费锂离子,并防止活性材料充分地充电和放电。因此,碳负极活性材料具有差的能量密度。虽然诸如Si、Sn等的其它金属负极活性材料被认为具有高容量,但是它们具有不可逆的容量特性。诸如氧化锡的另一材料也被认为是替代碳材料负极活性材料的材料。然而,如果包含30%或更少的金属负极活性材料,则初始库仑效率降低。此外,随着锂离子不断地嵌入和脱嵌从而产生锂金属合金,容量进一步降低并且容量保持率在150次充电和放电循环之后显著地劣化,从而使其在商业上不可行。
发明内容本发明的一个实施例提供一种用于具有良好的循环寿命特性的可充电锂电池的负极活性材料。本发明的另一个实施例提供一种制备所述负极活性材料的方法。本发明的又一个实施例提供一种包含所述负极活性材料的可充电锂电池。根据本发明的一个实施例,提供一种用于可充电锂电池的负极活性材料,该材料包括至少一个大体上的球形组装体。所述球形组装体包括片形材料的布置,所述片形材料被布置为在球形组装体内形成中央孔。片形材料能掺杂和脱掺杂锂,并且片形材料可从由Si基材料、Sn基材料、Al基材料、Ge基围可为l(am至30nm并且片形材料的长宽比的范围可为1至3。所述孔是在形成球形组装体的过程中产生的空间。所述孔的平均直径范围可为O.l)am至5pm。在一个实施例中,球形组装体的孔隙率的范围在20%和80%之间。根据本发明的另一个实施例,提供一种制造用于可充电锂电池的负极活性材料的方法。该方法包括以下步骤制备能掺杂和脱掺杂锂的片形材料;将片形材料和聚合物粘合剂混合以形成混合物;在低温下焙烧所述混合物以形成其中具有孔的多个球形组装体。根据本发明的又一个实施例,提供一种可充电锂电池,该可充电锂电池包括包含上述负极活性材料的负极;包含能可逆地嵌入和脱嵌锂离子的正极活性材料的正极;电解质。所述负极活性材料在由能掺杂和脱掺杂锂的片形材料形成的球形组装体中包括孔,这帮助改善电池的循环寿命特性。附图和说明书一起示出了本发明的示例性实施例,并且,附图和说明书一起用于解释本发明的原理。图1是示出制备根据本发明一个实施例的用于可充电锂电池的负极活性材料的步骤的流程图2A示出了根据本发明一个实施例的在制备负极活性材料的工艺过程中形成的包括聚合物粘合剂与能掺杂和脱掺杂锂的多种片形材料的结构;图2B示出了根据本发明一个实施例的在制备负极活性材料的工艺过程中形成的球形组装体;图3是根据本发明一个实施例的可充电锂电池的分解透视图4是根据示例1制备的负极活性材料的放大5000倍的SEM照片。6材料(例如Si基或Sn基负极活性材料)已经被积极地研究用作高容量负极活性材料。Si基或Sn基负极活性材料具有高容量,但是由于在充电和放电循环过程中体积膨胀而出现裂紋,从而导致循环寿命劣化。因此,它们还没有商业化。因此,在本发明的一个实施例中,提供了一种高容量负极活性材料。该高容量负极活性材料可防止在充电和放电循环过程中物理晶格体积膨胀和收缩,因此可减少或防止关于Si基或Sn基负极活性材料的循环寿命劣化的问题。根据本发明的一个实施例的负极活性材料包含球形组装体,所述球形组装体被设置为在球形组装体的内部形成孔。所述球形组装体包含能掺杂和脱掺杂锂的片形材料。合适的片形材料的非限制性示例包括Si基、Sn基材料、Al基、Ge基材料、它们的合金以及它们的组合。可以以带式薄板形状提供片形材料。在一个实施例中,片形材料的平均厚度范围为lpm至30pm。在另一实施例中,片形材料的平均厚度范围为lpm至20|im。在又一实施例中,片形材料的平均厚度范围为ljmi至10(im。如果平均厚度小于ljim,则强度会降低,因此片形材料会容易破裂。如果平均厚度大于30^m,则在掺杂和脱掺杂工艺过程中锂离子扩散距离会增加,从而降低动力学性能。片形材料的长宽比的范围可以是1至3。在一个实施例中,片形材料的长宽比的范围是1至2。如果长宽比在上述指定范围内,则可以控制球形组装体的尺寸。如果长宽比不在该范围内,则难以提供具有适当尺寸的孔的组装体。球形组装体的平均粒径的范围可以是lpm至15jam。在一个实施例中,平均粒径的范围是4pm至12pm。当组装体的平均粒径小于lpm时,比表面积过大,使得初始效率会劣化。当组装体的平均粒径大于15nm时,会形成过多的孔,从而降低电极密度。孔是在片形材料组装过程中形成的空间。孔的平均直径范围可以是0.1pm至5pm。在一个实施例中,孔的平均直径范围是0.5jim至2pm。当孔7的平均直径在上述指定范围内时,能有效地吸收活性材料的体积膨胀。当平均直径小于0.1|im时,难以有效地吸收活性材料的体积膨胀。如果平均直径大于5iim,则强度会劣化。球形组装体的孔隙率可以在20%至80%之间。在一个实施例中,球形组装体的孔隙率在30%至70%之间。当孔隙率在上述范围内时,可以有效地抑制活性材料的体积膨胀。如果孔隙率小于20%,则难以抑制活性材料的体积膨胀。如果孔隙率大于80%,则电极板的能量密度会劣化。负极活性材料还可包含聚合物粘合剂。合适的聚合物粘合剂的非限制性示例包括聚酰亚胺、聚乙烯醇、羧曱基纤维素、羟丙基纤维素、二乙酰纤维素、聚氯乙烯、聚乙烯吡咯烷酮、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯及其组合。在一个实施例中,聚酰亚胺被用作粘合剂。如上所述,通过具有形成在球形组装体内的孔,负极活性材料可在充电和放电循环过程中防止体积膨胀。孔在形成球形组装体的过程中形成。因此,根据另一实施例,提供一种制备负极活性材料的方法。图l是示出根据图Z、。''、"'—本发明的另一实施例提供一种制备用于可充电锂电池的负极活性材料的方法,该方法包括以下步骤制备能掺杂和脱掺杂锂的片形材料(S1);将片形材料和在低温下可挥发或可固化的聚合物粘合剂混合(S2);在低温下焙烧该混合物以形成其中具有孔的球形组装体(S3)。首先,制备能掺杂和脱掺杂锂的片形材料(S1)。合适的片形材料的非限制性示例包括Si基、Sn基、Al基、Ge基材料以及它们的组合。可以以带式薄板形状提供片形材料。片形材料可由金属或金属的合金利用熔纺、机械球磨或双辊技术制备。在一个实施例中,使用了熔纺。当通过熔纺合金基材料制备片形材料时,由于合金基材料的结晶度低并且是无定形的,所以应当在1000rpm或大于1000rpm下进行淬火。在一个实施例中,在1000rpm至5000rpm下进行淬火。随后,将片形材料和聚合物粘合剂混合(S2)。能掺杂和脱掺杂锂的片形材料与上面所描述的材料相同。聚合物粘合剂可在400。C或400。C以下去除。在一个实施例中,聚合物粘合剂可在150。C至40(TC下去除。合适的聚合物粘合剂的非限制性示例包括丙烯酸酯类聚合物、丁二烯类橡胶以及它们的组合。合适的丙烯酸酯类聚合物的一夂限制性示例包括聚曱基丙烯酸曱酯,合适的丁二烯类橡胶的非限制性示例包括聚丁二烯橡胶。,此外,也可使用其它可在低温下固化的聚合物。可以以95:5至50:50的重量比使用能掺杂和脱掺杂锂的片形材料和聚合物粘合剂。当所4吏用的重量比在上述范围内时,组装体具有适当的强度。当重量比不在该范围内时,组装体的强度低,或者会降低组装体的反应性。在一个实施例中,还可将第二粘合剂添加到所述混合物。合适的第二粘合剂的非限制性示例包括聚酰亚胺、聚乙烯醇、羧曱基纤维素、羟丙基纤维素、二乙酰纤维素、聚氯乙烯、聚乙烯吡咯烷酮、聚四氟乙烯、聚偏二氟乙烯、诸如聚乙烯或聚丙烯的聚烯烃以及它们的组合。在一个实施例中,使用聚酰亚胺。在一个实施例中,可以以范围为30:70到80:20的重量比使用所述聚合物粘合剂和第二粘合剂。如果重量比不在指定范围内并且第二粘合剂的量过多,则组装体的孔隙率会劣化。如果聚合物粘合剂的量在指定范围以上,则由于过多的孔,所以组装体的强度也会劣化。图2A示出了根据本发明一个实施例的在负极活性材料的制备步骤过程中形成的能掺杂和脱掺杂锂的各种片形材料2与聚合物粘合剂4的一个可能的构造。参照图2A,聚合物粘合剂4设置在空间3中,空间3形成在能掺杂和脱掺杂锂的片形材料2之间。聚合物粘合剂4附着到片形材料2的每个单元,从而在低温焙烧之后提供球形组装体的形状的稳定结构。混合物在低温下焙烧以使聚合物粘合剂挥发并形成包含球形组装体的负极活性材料(S3),在球形组装体中具有孔。在小于或等于40(TC的温度下执行焙烧工艺。在一个实施例中,在150。C至400。C下执行焙烧工艺。当焙烧工艺在小于或等于400。C下执行时,可减小或防止颗粒结晶度劣化。当焙烧温度大于40(TC时,金属薄板的结晶度会被损坏。在焙烧之后,填充在片形材料之间的空间中的聚合物粘合剂挥发,以形成包含片形材料和其中具有孔的球形组装体。图2B示出了根据本发明一个实施例的在负极活性材料的制备步骤过程中形成的球形组装体。片形材料12彼此接触以形成球形组装体10,在球形组装体10中包含孔13。根据本发明的另'一实施例,提供了一种包含该负极活性材料的可充电锂电池。该可充电锂电池可包括负极、正极和电解质。正极可包括能可逆地嵌入和脱嵌锂离子的正极活性材料(嵌锂化合物)。正极活性材料的合适的示例包括复合氧化物,所述复合氧化物包括锂和从钴、锰、镍或它们的组合中选择的化合物。化学式lLiaA卜bMbD2,其中,0.95^a^1.1,0^b^0.5。化学式2LiaE,—bMb02-cXc,其中,0'95《a《1.1,(Kb《0.5,(Kc《0.05。化学式3UE2—bMb04-cXc,其中,(Kb《0.5,(Kc《0.05。化学式4LiaNU。bMcDa,其中,0.95《a<l.l,0《b《0.5,0《c《0.05,0<"2。化学式5Li艮b-cC0bMc02-aXa,其中,0.95《a《l.l,0《b《0.5,0<c《0.05,0<a<2。化学式6Li艮b—cCObMc02—aX2,其中,0.95<a《l.l,CKb《0.5,0《c《0.05,0<a<2。化学式7LiaNi!-b-cMnbMcDa,其中,0.95《a<l.l,(Kb《0.5,0《c《0.05,0<"2。化学式8其中,0.95《a《1.1,化学式9其中,0.95《a《l丄化学式10其中,0.9(Ka<l.l,化学式11其中,0.9(Ka《1.1,化学式12其中,0.9(Ka《l丄化学式13其中,0.9(Ka《l丄化学式14其中,0.9(Ka《l丄化学式15其中,0.9CKa<1.1,化学式16化学式17化学式18化学式19LiaNit-b-cMnbMcOpXa(Kb<0.5,(Kc《0.05,LiaNi!-b-cMnbMc02-aX2(Kb《0.5,(Kc《0.05'LiaNibEcGd02,(Kb<0.9,(Kc《0.〗LiaNibCocMndGeO0《b《0.9,(Kc《0.5LiaNiGb02,0.001《b《0丄LiaCoGb02,0.001《b《0丄LiaMnGb02,0.001<b《0.1。LiaMn2Gb04,0.001<b<0.1。Q02QS2LiQS2V2050<a<2。0<a<2。0.001《cKO丄(KcKO.5,0.001《e《0丄化学式20LiV205化学式21LiZ02,化学式22LiNiV04化学式23Li(3—0J2(P04)3(0<f《3)化学式24Li(3-f)Fe2(P04)3(0《f《2)在上面的式1至式24中A从由Ni、Co、Mn及它们的组合组成的组中选^^;M从由A1、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、稀土元素及它们的组合组成的组中选择;D从由O、F、S、P及它们的组合组成的组中选择;E从由Co、Mn及它们的组合組成的组中选择;X从由F、S、P及它们的组合组成的组中选择;G从由A1、Cr、Mn、Fe、Mg、La、Ce、Sr、V及它们的组合组成的组中选择;Q从由Ti、Mo、Mn及它们的组合组成的组中选择;Z从由Cr、V、Fe、Sc、Y及它们的组合组成的组中选择;J从由V、Cr、Mn、Co、Ni、Cu及它们的组合组成的组中选择。从由单质硫、Li2Sn(其中论l)、溶解在阴极电解液中的Li2Sn(其中论l)、有机硫化合物、碳-硫聚合物(C2S丄(其中x为2.5至50,n》2)组成的组选择的硫基材料可被用作活性材料。如下制备负极和正极。将活性材料、导电剂和粘合剂在溶剂中混合以提供活性材料组合物,将所述组合物涂覆到集流体上。各种制造电极的方法是本领域公知的,因此将不作描述。只要不引起任何化学变化,任何导电材料都可以用作导电剂。合适的导电材料的非限制性示例包括天然石墨、人造石墨、碳黑、乙炔黑、科琴黑(ketjenblack)、碳纤维和金属粉末或金属纤维,所述金属粉末或金属纤维包括铜、镍、铝、银等。也可使用其它类型的导电材料。在一个实施例中,一种或多种导体(例如,聚苯撑衍生物)的混合物被用作导电剂。合适的粘合剂的非限制性示例包括聚乙烯醇、羧曱基纤维素、羟丙基纤维素、二乙酰纤维素、聚氯乙烯、聚乙烯吡咯烷酮、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯以及它们的组合。合适的溶剂的一个非限制性示例包括N-曱基吡咯烷酮。在一个实施例中,电解质包含非水有机溶剂和锂盐。非水有机溶剂作为在电池的电化学反应中传输离子的媒介。合适的非水有机溶剂的非限制性示例包括碳酸酯类溶剂、酯类溶剂、醚类溶剂、酮类溶剂、醇类溶剂或非质子溶剂。合适的碳酸酯类溶剂的非限制性示例包括碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲丙S旨(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酉旨(MEC)、碳酸乙曱酯(EMC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)等。合适的酯类溶剂的非限制性示例包括乙酸曱酯、乙酸乙酯、乙酸正丙酯、丙酸曱酯、丙酸乙酯、Y-丁内酯、癸内酯、戊内酯、曱瓦龙酸内S旨(mevalonolactone)、己内酯等。合适的醚类溶剂的非限制性示例包括二丁醚、四甘醇二曱醚、二甘醇二曱醚、乙二醇二甲醚、2-曱基四氢呋喃、四氢呋喃等。合适的酮类溶剂的非限制性示例包括环己酮等。合适的醇类溶剂的非限制性示例包括乙醇、异丙醇等。合适的非质子溶剂的非限制性示例包括腈,例如X-CN(其中,X是C2至C50的直链烃、支链烃或环烃、双键、芳香环或醚键);酰胺,例如二曱基曱酰胺;二氧戊环,例如1,3-二氧戊环;环丁^5风等。有机溶剂时,可根据期望的电池性能来控制混合比。在一个实施例中,环状碳酸酯和链状碳酸酯优选地以1:1至1:9范围内的体积比混合在一起。当环状碳酸酯和链状碳酸酯在上述范围内混合并且将混合物用做电解质时,可提高电解质的性能。本发明的电解质还可包括碳酸酯类溶剂和芳香烃溶剂的混合物。在一个实施例中,碳酸酯类溶剂和芳香烃溶剂以1:1至30:1范围内的体积比混合在一起。芳香烃类有机溶剂可以是由下式25表示的芳香烃类化合物。化学式25RIL'l豕h其中,R,至R6中的每个独立地从由下面的物质组成的组中选择氬、卣素、Q至do的烷基、d至do卣代烷基以及它们的组合。合适的芳香烃类有机溶剂的非限制性示例包括苯、氟代苯、1,2-二氟代苯、1,3-二氟代苯、1,4-二氟代苯、1,2,3-三氟代苯、1,2,4-三氟代苯、氯代苯、1,2-二氯代苯、1,3-二氯代苯、1,4-二氯代苯、1,2,3-三氯代苯、1,2,4-三氯代苯、捵代苯、1,2-二碘代苯、1,3-二碘代苯、1,4-二碘代苯、1,2,3-三碘代苯、1,2,4-三碘代苯、曱苯、氟代甲苯、1,2-二氟代曱苯、1,3-二氟代曱苯、1,4-二氟代曱苯、1,2,3-三氟代曱苯、1,2,4-三氟代曱苯、氯代曱苯、1,2-二氯代甲苯、1,3-二氯代曱苯、1,4-二氯代曱苯、1,2,3-三氯代曱苯、1,2,4-三氯代曱笨、碘代甲笨、1,2-二碘代甲苯、1,3-二碘代曱苯、1,4-二碘代曱苯、1,2,3-三碘代曱苯、1,2,4-三碘代曱苯、二曱苯以及它们的组合。电解质还可包含过充电抑制添加剂,例如碳酸亚乙酯、焦碳酸酯等。电解质可以是固态电解质。合适的固态电解质的非限制性示例包括聚氧化乙烯聚合物电解质;具有聚有机硅氧烷支链或聚氧化烯支链的聚合物电解质;硫化物电解质,例如Li2S-SiS2、Li2S-GeS2、Li2S-P2S5和Li2S-B2S3;或无机电解质,例如Li2S-SiSrLi3PO^pLi2S-SiS2-Li3S04。图3示出了根据本发明实施例的可充电锂电池的分解透视图。参照图3,可充电锂电池100包括电极组件110,在电极组件110中设置有正极112和负极113以及正极112和负极113之间设置的隔膜114;壳体120,在壳体120的一侧的端部形成有开口,以允许电极组件110和电解质溶液设置在壳体120中。盖组件140安装在壳体120的开口上,以密封所述开口。图3示出了根据本发明的一个实施例的可充电锂电池的圓柱形电池,但是可充电锂电池的形状不限于此,并且可充电锂电池可具有诸如棱柱形或袋形的其它形状。下面的示例具体示出了各种实施例。然而,应该理解的是,这些示例不限制本发明。示例1根据电弧熔炼法将硅基合金熔化并熔纺,并且以4000rpm的速度进行淬火以制备平均厚度为5pm并且长宽比为2的带式薄板。得到的带式薄板和聚曱基丙烯酸曱酯以85:15的重量比混合。所述混合物在氮气氛下在400。C下焙烧,以提供平均孔径大小为O.liim或更大并且孔隙率为65%的负极活性材料。示例2除了带式薄板、聚曱基丙烯酸曱酯和聚酰亚胺粘合剂以85:7.5:7.5的重量比混合之外,根据与示例1相同的步骤制备负极活性材料。示例3除了使用聚丁二烯橡胶代替聚曱基丙烯酸甲酯之外,根据与示例l相同的步骤制备负极活性材料。示例4除了使用羧曱基纤维素代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。示例5除了使用二乙酰纤维素代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。示例6除了使用羟丙基纤维素代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。示例7除了使用聚氯乙烯代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。示例8除了使用聚乙烯吡咯烷酮代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。示例9除了使用聚四氟乙烯代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。示例10除了使用聚偏二氟乙烯代替聚酰亚胺之外,根据与示例2相同的步骤制15备负极活性材料。示例11除了使用聚乙烯代替聚酰亚胺之外,根据与示例2相同的步骤制备负极活性材料。对比示例1将硅类合金粉末用作负极活性材料。SEM照相测量拍摄由示例1至示例11制备的负极活性材料中的每种材料的SEM照片(5000X),并且示例1的SEM照片(5000X)在图4中示出。参照图4,负极活性材料由平均粒径为大约10|im的球形组装体形成。在所述组装体内部形成有粒径为0.1pm的孔。同样检测示例2至示例11的其它负极活性材料,这些负极活性材料的孔尺寸相似。放电容量和电极循环寿命的测量结果在利用根据示例l至示例ll和对比示例1中的每个制备的负极活性材料制造纽扣电池之后,测量所述纽扣电池以确定电池特性。示例1至示例4和对比示例1的结果在表1中示出。利用示例1至示例11和对比示例1的负极活性材料制造的每个纽扣电池以0.1C进行充电和放电一个循环,并执行化成工艺(formationprocess),在反复充电和放电100次循环之后,计算相对于第一次充电和放电之后的放电容量的放电容量保持率(%)。表1<table>tableseeoriginaldocumentpage16</column></row><table>参照表1,在负极活性材料内部形成有孔的示例1至示例4在100次循环之后具有非常高的70%或更高的放电容量保持率。这表明包含具有特定范围的直径的孔的负极活性材料提高了循环寿命特性。虽然已经在上文结合特定的示例性实施例详细描述了本发明的实施例,但是应该理解的是,本发明不限于公开的示例性实施例,而是相反,本发明意图覆盖包含在本发明的精神和范围内的各种修改和/或等同布置,本发听的范围也在权利要求中限定。权利要求1、一种用于可充电锂电池的负极活性材料,所述负极活性材料包括至少一个包括多个片形材料的大体上的球形组装体,所述片形材料能掺杂和脱掺杂锂,并且所述片形材料被布置成限定中央孔的大体上的球形。2、如权利要求1所述的负极活性材料,其中,片形材料从由Si基材料、Sn基材料、Al基材料、Ge基材料、它们的合金以及它们的组合组成的组中选择。3、如权利要求1所述的负极活性材料,其中,片形材料的平均厚度范围为ljam至30jam。4、如权利要求1所述的负极活性材料,其中,片形材料的长宽比的范围为1至3。5、如权利要求1所述的负极活性材料,其中,大体上的球形组装体的孔的平均直径范围为O.lfim至5fim。6、如权利要求5所述的负极活性材料,其中,球形组装体的孔的平均直径范围为0.5|im至2pm。7、如权利要求1所述的负极活性材料,所述负极活性材料包括孔隙率在20%和80%之间的多个大体上的球形组装体。8、如权利要求7所述的负极活性材料,其中,所述孔隙率在30%和70%之间。9、如权利要求1所述的负极活性材料,所述的负极活性材料还包括从由聚酰亚胺、聚乙烯醇、羧曱基纤维素、羟丙基纤维素、二乙酰纤维素、聚氯乙烯、聚乙烯吡咯烷酮、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯以及它们的组合组成的组中选择的聚合物粘合剂。10.一种制造用于可充电锂电池的伏击活性材料的方法,该方法包括以下步骤制备能掺杂和脱掺杂锂的片形材料;将片形材抖和聚合物粘合剂混合以形成混合物;在低温下焙烧所述混合物以形成至少一个其中具有孔的大体上的球形组装体。11、如权利要求IO所述的方法,其中,在将所述片形材料和所述聚合物粘合剂混合的过程中,还添加另外的聚合物粘合剂。12、如权利要求IO所述的方法,其中,片形材料从由Si基材料、Sn基材料、Al基材料、Ge基材料、它们的合金以及它们的组合组成的组中选择。13、如权利要求IO所述的方法,其中,所述聚合物粘合剂在40(TC或更低的温度下挥发。14、如权利要求13所述的方法,其中,所述聚合物粘合剂在15(TC至400'C下挥发。15、如权利要求IO所述的方法,其中,所述聚合物粘合剂从由丙烯酸酯类聚合物、丁二烯类橡胶以及它们的组合组成的组中选择。16、如权利要求11所述的方法,其中,所述另外的聚合物粘合剂从由聚酰亚胺、聚乙烯醇、羧曱基纤维素、羟丙基纤维素、二乙酰纤维素、聚氯乙烯、聚乙烯吡咯烷酮、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯以及它们的组合组成的组中选择。17、如权利要求IO所述的方法,其中,所述能掺杂和脱掺杂锂的片形材料和聚合物粘合剂以95:5和50:50之间的重量比存在。18、如权利要求IO所述的方法,其中,焙烧温度为40(TC或更低。19、一种可充电锂电池,包括具有负极活性材料的负极,所述负极活性材料包括至少一个包括多个片形材料的球形组装体,所述片形材料能掺杂和脱掺杂锂,并且所述片形材料被布置成限定中央孔的大体上的球形组装体;包含正极活性材料的正极,所述正极活性材料能可逆地嵌入和脱嵌锂离子;电解质。20、如权利要求19所述的可充电锂电池,其中,所述片形材料从由Si基材料、Sn基材料、Al基材料、Ge基材料、它们的合金以及它们的组合组成的组中选4奪。21、如权利要求19所述的可充电锂电池,其中,片形材料的平均厚度范围为lfam至30jim。22、如权利要求19所述的可充电锂电池,其中,片形材料的长宽比的范围为1至3。23、如权利要求19所述的可充电锂电池,其中,球形组装体的孔的平均直径范围为0.1(^m至5(im。24、如权利要求19所述的可充电锂电池,其中,所述组装体的孔隙率在20%和80%之间。25、如权利要求19所述的可充电锂电池,还包括从由聚酰亚胺、聚乙烯醇、羧曱基纤维素、羟丙基纤维素、二乙酰纤维素、聚氯乙烯、聚乙烯吡咯烷酮、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯以及它们的组合组成的组中选择的聚合物粘合剂。全文摘要本发明提供了一种用于可充电锂电池的负极活性材料及其制备方法和包含该材料的可充电锂电池。用于可充电锂电池的负极活性材料包括至少一个具有片形材料的大体上的球形组装体,所述片形材料能掺杂和脱掺杂锂,并且所述片形材料被布置成限定中央孔的大体上的球形。所述负极活性材料提供改善的循环寿命特性。文档编号H01M4/02GK101447563SQ20081018157公开日2009年6月3日申请日期2008年11月27日优先权日2007年11月27日发明者姜龙默,崔南顺,成旻锡,李相旻,郑求轸,里夫·克里斯滕森,金性洙申请人:三星Sdi株式会社;3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1