一种沟槽金属氧化物半导体场效应管的制作方法

文档序号:7045030阅读:99来源:国知局
一种沟槽金属氧化物半导体场效应管的制作方法
【专利摘要】本发明公开一种具有自对准特点的沟槽金属氧化物半导体场效应管,可以在节省掩模版的同时,降低开启电阻。根据本发明的沟槽金属氧化物半导体场效应管包括一个介电质侧墙,包围沟槽式源体接触区的上部分,可以降低开启电阻并改善雪崩特性。
【专利说明】一种沟槽金属氧化物半导体场效应管
[0001]相关申请的交叉引用
[0002]本申请案要求对于2013年3月27日提交的美国专利申请第13 / 851,185号的优先权,该专利申请披露的内容通过全文引用而结合与本文中。

【技术领域】
[0003]本发明涉及一种半导体功率器件的器件结构和制造过程。特别涉及一种改进的沟槽金属氧化物半导体场效应管(M0SFET,下同)的器件构造及制造方法,该沟槽MOSFET具有自对准的特点,并且能够节省掩模版的使用,并降低开启电阻。

【背景技术】
[0004]在美国专利号为US6,888,196和US7,816,720中,揭示了一种沟槽MOSFET结构,如图1所示。该沟槽M0SFET100的有源区中,η+源区101位于P型体区102的上部,并围绕着沟槽栅103。同时,沟槽式源体接触区104的宽度,与绝缘层106中接触区开口的宽度相同。与大部分沟槽MOSFET相同,在沿着与N型外延层105上表面等距的方向上,所述的η+源区101具有相同的掺杂浓度和相同的结深。
[0005]同样在现有技术的美国专利号为US7,816,720中,揭示了另一种沟槽M0SFET200,如图2Α所示,该沟槽M0SFET200利用图2Β和图2C中所示的结构和方法,使用接触掩模版作为自对准的源区掩模版,可以节省源区掩模版。在图2Β中,用于形成η+源区201的源区离子注入是通过一个接触开口 210进行的,该接触开口的宽度为“CO”,如图2Β所示。接着在图2C中,进行干法硅刻蚀,使得该接触开口延伸入外延层中,并且该接触开口位于外延层中的宽度为“SBC0”,从图2C中可以看出,C0=SBC0。然后,进行P型离子注入形成一个p+体接掺杂区202,其包围该接触开口 210的底部。再一次参考图2A可以发现,在于N型外延层205的上表面等距离处,所述的η+源区201沿沟槽式源体接触区203附近的浓度和结深都大于其靠近沟槽栅204附近的沟道处。并且,沿从所述的沟槽式源体接触区203到所述的沟道处,η+源区201的浓度呈现高斯分布,因此,源区201的寄生电阻Rln+可能大于如图1所示的结构中的源区寄生电阻R2n+,导致图2所示的结构具有高的开启电阻Rdson。同时,该问题在P沟道沟槽MOSFET中的影响尤为明显,这是因为P沟道器件中,源区掺杂剂硼的固溶度分别约为磷和砷的五分之一到七分之一。要解决高RdSon的问题,一个方法是可以增大接触开口的宽度,允许更多的掺杂剂离子注入源区,使其经过扩散后更加靠近临近的沟道区。然而,该方法会导致P+体接触区与临近的沟道区之间的距离Scp+变小,使得阈值电压Vth变高,同时会导致在低Vgs下源漏电阻Rds变高。更进一步,接触区开口宽度变大容易导致栅源之间出现短接,导致成品率过低。
[0006]因此,在半导体功率器件领域中,尤其是在沟槽MOSFET器件的设计和制造领域中,需要提出一种新颖的器件构造以解决上述问题,即可以节省源区掩模版的同时,不会产生高的开启电阻Rdson。


【发明内容】

[0007]本发明克服了现有技术中存在的缺点,提供了一种改进的具有自对准特点的沟槽M0SFET,既可以节省源区掩模版,同时又可以减小开启电阻。
[0008]根据本发明的实施例,提供了一种沟槽金属氧化物半导体场效应管包括:
[0009](a)第一导电类型的外延层;
[0010](b)多个第一类沟槽栅,位于有源区,由第一导电类型的源区和第二导电类型的体区围绕;
[0011](C)接触绝缘层,位于所述外延层的上表面;
[0012](d)多个沟槽式源体接触区,穿过所述的接触绝缘层和所述的源区,并延伸入所述的体区,将所述的源区和所述的体区连接至源极金属层,其中多所述的沟槽式源体接触区位于所述的接触绝缘层中的部分围绕有介电质侧墙;和
[0013](e)在与所述的外延层上表面等距离处,所述的源区位于所述的介电质侧墙下方的掺杂浓度和结深大于其靠近相邻的沟道区的掺杂浓度和结深。
[0014]在一些优选的实施例中,所述的第一导电类型是N型,所述的第二导电类型是P型。在另一些优选的实施例中,所述的第一导电类型是P型,所述的第二导电类型是N型。
[0015]在一些优选的实施例中,还包括一个靠近有源区的连接沟槽栅,其宽度大于所述的第一类沟槽栅,其中所述的连接沟槽栅通过一个沟槽式栅接触区而连接至栅极金属层,其中所述的沟槽式栅接触区也穿过所述的接触绝缘层,并且也围绕有所述的介电质侧墙。
[0016]在一些优选的实施例中,还包括一个由多个具有悬浮电压的沟槽栅构成的终端区,其中所述的多个具有悬浮电压的沟槽栅由所述体区围绕,并且在所述终端区中不存在所述的源区。更优选的,还包括至少一个沟槽式沟道截止栅,其位于所述的终端区,并围绕所述的具有悬浮电压的沟槽栅的外围,每个所述的沟槽式沟道截止栅都连接至至少一个切割沟槽栅,其中每个所述的切割沟槽栅都延伸穿过一条锯切线。更优选的,所述的至少一个沟槽式沟道截止栅和所述的至少一个切割沟槽栅都短接至所述终端区中的漏区和体区。
[0017]在一些优选的实施例中,所述的接触绝缘层包括一层未掺杂的硅化物玻璃层,该硅化物玻璃层可以为富硅氧化物。在另一些优选的实施例中,所述的接触绝缘层包括一层未掺杂的娃化物玻璃层和一层硼磷娃玻璃层。
[0018]在一些优选的实施例中,还包括一个第二导电类型的体接触掺杂区,其位于所述体区且至少包围每个所述的沟槽式源体接触区的底部。
[0019]在一些优选的实施例中,所述的源极或栅极金属衬有一层降阻层,其中所述的源极或栅极金属为铝合金或者铜,所述的降阻层为Ti或者Ti / TiN0
[0020]在一些优选的实施例中,所述的沟槽式源体接触区和所述的沟槽式栅接触区都填充以钨插塞并衬有一层势垒层,并且所述的钨插塞连接至所述的源极金属层或所述栅极金属层。
[0021]根据本发明的实施例,还提供了一种半导体功率器件版图结构,由双沟槽金属氧化物半导体场效应管组成,其中每个所述的切割沟槽栅都延伸穿过所述的双沟槽金属氧化物半导体场效应管之间的空间,并连接至所述的双沟槽金属氧化物半导体场效应管的沟槽式沟道截止栅。
[0022]在一些优选的实施例中,所述的双沟槽金属氧化物半导体场效应管之间的空间宽度等于切割道的宽度。
[0023]在一些优选的实施例中,晶片切割之后,所述的沟槽式沟道截止栅和所述的切割沟槽栅都短接至所述的双沟槽金属氧化物半导体场效应管的漏区。
[0024]在一些优选的实施例中,每个所述的沟槽金属氧化物半导体场效应管中只存在一个沟槽式沟道截止栅,并连接至至少一个所述的切割沟槽栅。
[0025]根据本发明的实施例,还提供了一种制造沟槽金属氧化物半导体场效应管的制造方法,包括:
[0026](a)在第一导电类型的外延层中形成多个由第二导电类型的体区包围的沟槽栅;
[0027](b)淀积接触绝缘层,并刻蚀形成多个接触开口,暴露一部分外延层的上表面,其中所述的接触开口位于每两个相邻的所述沟槽栅之间;
[0028](C)通过所述的接触开口进行源区掺杂剂的离子注入;
[0029](d)在器件上表面淀积一层介电质层;
[0030](e)进行源区掺杂剂的离子扩散,以形成所述的源区;
[0031](f)刻蚀所述的介电质层,形成位于所述的接触开口侧壁的介电质侧墙;和
[0032](g)刻蚀外延层,使得所述的接触开口进一步穿过所述的源区并延伸入所述的体区。

【专利附图】

【附图说明】
[0033]本发明的这些和其他实施方式的优点将通过下面结合附图的详细说明如后,其中:
[0034]图1A为现有技术揭示的沟槽MOSFFT的剖视图。
[0035]图2A到图2C为现有技术揭示的另一个沟槽MOSFET及其制造方法的部分剖视图。
[0036]图3A为根据本发明的一个具体实施例的沟槽MOSFET的剖视图。
[0037]图3B到图3E为制造图3A中所揭示的具体实施例中的侧墙和源区的过程剖视图。
[0038]图4为根据本发明的另一个具体实施例的沟槽MOSFET的剖视图。
[0039]图5A为根据本发明的另一个具体实施例的沟槽MOSFET的剖视图。
[0040]图5B为根据本发明的另一个具体实施例的沟槽MOSFET的剖视图。
[0041]图6A为根据本发明的另一个具体实施例的沟槽MOSFET的剖视图。
[0042]图6B为根据本发明的另一个具体实施例的沟槽MOSFET的剖视图。
[0043]图7A为根据本发明的具体实施例的沟槽MOSFET的剖视图,同时也是图7B中所示结构沿A-B-C方向的一个剖视图。
[0044]图7B为根据本发明的一个具体实施例的一个双晶片结构的版图。
[0045]图7C为根据本发明的一个具体实施例的两个双晶片结构的版图。
[0046]图7D为根据本发明的一个具体实施例的多个双晶片结构的版图。
[0047]图8A-8E为根据图5A所示的本发明实施例的沟槽MOSFET制作过程的剖视图。

【具体实施方式】
[0048]下面参照附图更详细地说明本发明,其中示出了本发明的优选实施例。但是本发明不局限于在此所述的实施例。例如,这里的说明更多地引用N沟道的半导体集成电路,但是很明显其他器件也是可能的。下文是通过参考各个附图来对实施本发明的优选实施例进行详细描述。一些方向术语,例如“顶部”、“底部”、“前”、“后”、“上方”、“下方”等,是参考各个附图的方向进行描述的。由于实施例中的元件可以被放置在许多不同的方向,因此,本发明中的方向术语只是用于描述而不能被视为对本发明的限制。应该理解的是,实施例中各种结构或者逻辑上的替代和修改都应该被涵盖在本发明的真正精神和范围内。因此,以下的详细描述不能被视为对本发明的限制,本发明的涵盖范围由权利要求界定。应该理解的是,本发明中所描述的各个优选实施例的技术特征可以相互结合,有特别说明的除外。
[0049]图3A揭示了根据本发明的一个具体的实施例的N沟道沟槽M0SFET300。其形成于一个N型外延层301中,并位于一个N+衬底302之上,该N+衬底302底部衬有漏极金属层303(此处的导电类型并不做限制性的解释,即该具体的实施例也可以为P沟道沟槽M0SFET,形成于P型外延层并位于P+衬底之上)。在所述的N型外延层301中,有源区形成有多个沟槽栅304,每个沟槽栅304侧壁周围都围绕有η+源区305和其下方的P型体区306。所有的沟槽栅304都填充以掺杂的多晶硅层307,其衬有一层栅极氧化层308。该N沟道沟槽M0SFET300进一步包括一个沟槽式源体接触区309,其填充以一个接触金属插塞310,同时穿过一个接触绝缘层311、η+源区305并延伸入P型体区306,其中所述的接触金属插塞310可以为衬有势垒层Ti / TiN或Co / TiN或Ta / TiN的钨插塞,所述的接触绝缘层311可以为未掺杂的硅化玻璃(NSG),例如富硅氧化物(SRO)。应该注意的是,所述的沟槽式源体接触区309的上部分侧壁穿过所述的接触绝缘层311的同时,也被一层介电质侧墙312所包围,即该介电质侧墙312位于所述的沟槽式源体接触区309和所述的接触绝缘层311之间,该介电质侧墙312可以为氧化物、氮化物或者氮氧化合物。因此,接触开口上部分的宽度CO’ =SBCOj +2Ssw,其中SBC0’为所述的接触开口下部分的宽度,Ssw为所述的介电质侧墙的厚度。与此同时,在与N型外延层301的上表面等距处,所述的η+源区305沿沟道处的浓度和结深都分别小于其位于所述的介电质侧墙312下方的浓度和结深,同时,所述的η+源区305的掺杂浓度沿从位于所述的介电质侧墙312下方到所述的沟道处呈现高斯分布。一个P+体接触掺杂区315形成于P型体区306中,且至少包围所述沟槽式源体接触区309的底部以进一步减少接触金属插塞310和P型体区306之间的接触电阻。该N沟道沟槽M0SFET300进一步包括源极金属314,其通过所述的沟槽式源体接触区309而连接至所述的η+源区305和P型体区306,其中,所述的源极金属314可以为铝合金或者铜,并在下方衬有降阻层?或Ti / TiN0利用该结构,η+源区305的寄生电阻Rn+小于现有技术,并且P+体接触掺杂区与沟道区之间的距离Scp+保持不变,可以避免产生高的阈值电压Vth。
[0050]图3B到3E揭示了图3A中所述的介电质侧墙和η+源区形成过程的一系列剖视图。在图3Β中,先进行干氧刻蚀以定义接触开口 320位于所述的接触绝缘层311中的宽度CO’。接着通过该接触开口 320进行源区的掺杂剂离子注入,使得η+源区305形成于P型体区306上方。之后,在图3C中,现沿器件上表面淀积一层介电质层321,再进行源区的离子扩散步骤,使得η+源区305中的掺杂剂离子进一步扩散入P型体区306。在图3D中,先进行干氧刻蚀步骤,以在所述的接触开口 320的侧壁形成介电质侧墙312,并且该介电质侧墙312的厚度为Ssw。在图3E中,沿着所述介电质侧墙312向下进行干法硅刻蚀,使得所述的接触开口 320进一步延伸入所述的η+源区305和P型体区中,并且该接触开口 320位于P型体区中306中的宽度为SBCO’。然后通过该接触开口 320进行体接触掺杂区的离子注入,以在该接触开口底部周围形成P+体接触掺杂区315。从图3E中很容易可以看出,CO’ =SBCO' +2Ssw0
[0051]图4揭示了根据本发明的另一个优选的沟槽M0SFET400,其与图3中的沟槽M0SFET300具有相似的结构,除了在图4中,所述的沟槽M0SFET400为P沟道沟槽M0SFET,而在图3中的沟槽M0SFET300为N沟道沟槽M0SFET。所述的P沟道沟槽M0SFET400形成于一个P型外延层401中,并位于一个P+衬底402之上。该P沟道沟槽M0SFET400进一步包括:p+源区403,其位于N型体区404的上方;n+体接触掺杂区405,其至少包围沟槽式源体接触区406的底部。
[0052]图5A揭示了根据本发明的另一个优选的N沟道沟槽M0SFET500,其与图3中所示的沟槽M0SFET300具有相似的结构,除了在图5中,沟槽M0SFET500进一步包括一个靠近有源区的连接沟槽栅501,其宽度大于位于有源区的其他沟槽栅的宽度。该连接沟槽栅501通过一个沟槽式栅接触区504而连接至位于接触绝缘层503上方的栅极金属层502,其中,所述的沟槽式栅接触区504穿过所述的接触绝缘层503,并延伸入位于连接沟槽栅501内的多晶硅层505,其中,所述的沟槽式栅接触区504的上部分也包围有介电质侧墙506。与此同时,该沟槽式M0SFET500进一步包括一个终端区,其包括多个具有悬浮电压的沟槽栅507,该多个沟槽栅507由P型体区508围绕,并且位于所述终端区的该P型体区508上方不存在η+源区。同时,所述的接触绝缘层503为一层未掺杂的硅化玻璃层(NSG)。
[0053]图5B揭示了根据本发明的另一个优选的N沟道沟槽M0SFET500 ’,其与图5A中的N沟道沟槽M0SFET500具有相似的结构,除了在图5B中,接触绝缘层503’除了包括一层NSG层,还包括一层位于其上方的硼磷娃玻璃层(BPSG)。
[0054]图6A揭示了根据本发明的另一个优选的沟槽M0SFET600,其与图5中的N沟道沟槽M0SFET500具有相似的结构,除了图6A中的结构为P沟道沟槽M0SFET,其形成于一个P型外延层601中,并位于一个P+衬底602之上。该P沟道沟槽M0SFET600进一步包括:p+源区603,其位于N型体区604上方;n+体接触掺杂区605,其至少包围沟槽式源体接触区606的底部。
[0055]图6B揭示了根据本发明的另一个优选的沟槽M0SFET600’,其与图5中的N沟道沟槽M0SFET500’具有相似的结构,除了图6B中的结构为P沟道沟槽M0SFET,其形成于一个P型外延层601’中,并位于一个P+衬底602’之上。该P沟道沟槽M0SFET600’进一步包括:P+源区603’,其位于N型体区604’上方;n+体接触掺杂区605’,其至少包围沟槽式源体接触区606’的底部。
[0056]图7A揭示了根据本发明的一个优选的P沟道沟槽M0SFET700,同时其也是图7B所示的版图中沿A-B-C方向的一个剖视图。该沟槽M0SFET700与图6A中所示的沟槽M0SFET600具有相似的结构,除了在图7A中,沟槽M0SFET700进一步包括至少一个沟槽式沟道截止栅701 (SCTG),其形成于终端区并围绕多个具有悬浮电压的沟槽栅702 (TFG)的外围。其中,每个所述的沟槽式沟道截止栅701都连接至至少一个切割沟槽栅703 (SffTG),且每个切割沟槽栅703都延伸穿过一个锯切线(sawing line)。同时,通过切割沟槽栅703锯切晶片之后,每个所述的沟槽式沟道截止栅701和每个切割沟槽栅703都短接至漏区和N型体区704。
[0057]图7B揭示了根据本发明的双晶片版图结构,其由两个晶片组成,还包括一个沟槽M0SFET,其终端区包括具有悬浮电压的沟槽栅(TFGs)和至少一个沟槽式沟道截止栅(CSTG)。其中,所述的两个晶片通过多个切割沟槽栅(SWTGs)相连接,并且两个晶片之间的距离Sdd与切割道的宽度Wsl (如图7C所示)相同。图7D揭示了根据本发明的包括多个双晶片结构的实施例。沿锯切线且通过切割沟槽栅切割之后(如虚线所示),双晶片结构将会被分离开。
[0058]图8A到图8E揭示了制造图5A中的沟槽M0SFET500的一系列剖面图。在图8A中,N型外延层512生长于重掺杂的N+衬底513之上。接着,提供沟槽掩模版(未示出)并进行沟槽刻蚀以在N型外延层512中形成多个栅沟槽510’,501’和507’。然后,生长一层牺牲氧化层(未示出)并通过去除该牺牲氧化层来移除沟槽刻蚀过程中可能造成的硅损伤。之后,在所有的栅沟槽内表面和N型外延层512的上表面形成一层栅极氧化层509。接着,在所有的栅沟槽内填充掺杂的多晶硅层并进行多晶硅的回刻或者化学机械抛光,使得多晶硅层留在所述的栅沟槽内部,以形成:位于有源区的多个沟槽栅510,一个连接沟槽栅501和多个位于终端区的具有悬浮电压的沟槽栅507。之后,在不提供掩模版的情况下进行P型体区的掺杂剂离子注入和扩散,以在N型外延层512的上部分形成多个P型体区508。
[0059]在图SB中,先沿器件的上表面淀积一层接触绝缘层503。然后,提供接触掩模版(未示出)并进行干氧刻蚀,以形成多个接触开口 520,同时曝露中一部分N型外延层512的上表面以进行源区的掺杂剂离子注入。
[0060]在图SC中,先沿器件的上表面淀积一层介电质层514,其包括硅化物、氧化物或者硅氧化合物。然后,在不提供掩模版的情况下进行源区掺杂剂的离子注入以在P型体区508的上表面形成η+源区515。
[0061]在图8D中,先刻蚀形成介电质侧墙514’,再进行干法硅刻蚀,进一步刻蚀所述的接触开口 520使其分别延伸入P型体区508和连接沟槽栅501。接着,进行体接触掺杂区的离子注入和快速热退火(RTA),形成位于η+源区515下方的ρ+体接触掺杂区516,并且其至少包围所述接触开口 520的底部。
[0062]在图8Ε中,先沿器件的整个上表面淀积一层势垒层Ti / TiN或Co / TiN或Ta /TiN,并进行快速热退火以形成硅化物。然后,在势垒层上方淀积金属钨并填充入所述的接触开口中。之后,不需要的金属钨和势垒层被刻蚀,分别形成:填充于沟槽式源体接触区518中的接触金属插塞517-1,和填充于沟槽式栅接触区504中的接触金属插塞517-2。接着,在接触绝缘层503上淀积一层衬有降阻层的金属层,其中,降阻层可以是Ti或者TiN,金属层可以是铝合金或者铜。之后,提供金属掩模版(未示出)并刻蚀所述的金属层和降阻层,形成栅极金属层502和源极金属层521。
[0063]尽管在此说明了各种实施例,可以理解,在不脱离本发明的精神和范围内可以对本发明作出各种修改。例如,可以用本发明的方法形成其导电类型与文中所描述的相反的导电类型的各种半导体区域的结构,但所作出的修改应包涵在本发明要求保护的权利要求范围之内。
【权利要求】
1.一种沟槽金属氧化物半导体场效应管,包括: 第一导电类型的外延层; 多个第一类沟槽栅,位于有源区,由第一导电类型的源区和第二导电类型的体区围绕; 接触绝缘层,位于所述外延层的上表面; 多个沟槽式源体接触区,穿过所述的接触绝缘层和所述的源区,并延伸入所述的体区,将所述的源区和所述的体区连接至源极金属层,其中所述的沟槽式源体接触区位于所述的接触绝缘层中的部分围绕有介电质侧墙;和 在与所述的外延层上表面等距离处,所述的源区位于所述的介电质侧墙下方的掺杂浓度和结深大于其靠近相邻的沟道区的掺杂浓度和结深。
2.根据权利要求1所述的沟槽金属氧化物半导体场效应管,其中所述的第一导电类型是N型,所述的第二导电类型是P型。
3.根据权利要求1所述的沟槽金属氧化物半导体场效应管,其中所述的第一导电类型是P型,所述的第二导电类型是N型。
4.根据权利要求1所述的沟槽金属氧化物半导体场效应管,还包括一个靠近有源区的连接沟槽栅,其宽度大于 所述的第一类沟槽栅,其中所述的连接沟槽栅通过一个沟槽式栅接触区而连接至栅极金属层,其中所述的沟槽式栅接触区也穿过所述的接触绝缘层,并且也围绕有所述的介电质侧墙。
5.根据权利要求1所述的沟槽金属氧化物半导体场效应管,还包括一个由多个具有悬浮电压的沟槽栅构成的终端区,其中所述的多个具有悬浮电压的沟槽栅由所述体区围绕,并且在所述终端区中不存在所述的源区。
6.根据权利要求1所述的沟槽金属氧化物半导体场效应管,其中所述的接触绝缘层包括一层未掺杂的娃化物玻璃层,该娃化物玻璃层可以为富娃氧化物。
7.根据权利要求1所述的沟槽金属氧化物半导体场效应管,其中所述的接触绝缘层包括一层未掺杂的娃化物玻璃层和一层硼磷娃玻璃层。
8.根据权利要求5所述的沟槽金属氧化物半导体场效应管,还包括至少一个沟槽式沟道截止栅,其位于所述的终端区,并围绕所述的具有悬浮电压的沟槽栅的外围,每个所述的沟槽式沟道截止栅都连接至至少一个切割沟槽栅,其中每个所述的切割沟槽栅都延伸穿过一条锯切线。
9.根据权利要求8所述的沟槽金属氧化物半导体场效应管,其中所述的至少一个沟槽式沟道截止栅和所述的至少一个切割沟槽栅都短接至所述终端区中的漏区和体区。
10.根据权利要求1所述的沟槽金属氧化物半导体场效应管,还包括一个第二导电类型的体接触掺杂区,其位于所述体区且至少包围每个所述的沟槽式源体接触区的底部。
11.根据权利要求1所述的沟槽金属氧化物半导体场效应管,其中所述的源极金属衬有一层降阻层,其中所述的源极金属为铝合金或者铜,所述的降阻层为Ti或者Ti / TiN0
12.根据权利要求4所述的沟槽金属氧化物半导体场效应管,其中所述的栅极金属衬有一层降阻层,其中所述的栅极金属为铝合金或者铜,所述的降阻层为Ti或者Ti / TiN0
13.根据权利要求1所述的沟槽金属氧化物半导体场效应管,其中所述的沟槽式源体接触区填充以钨插塞并衬有一层势垒层,并且所述的钨插塞连接至所述的源极金属层。
14.根据权利要求4所述的沟槽金属氧化物半导体场效应管,其中所述的沟槽式栅接触区填充以钨插塞并衬有一层势垒层,并且所述的钨插塞连接至所述的栅极金属层。
15.一种半导体功率器件版图结构,由双沟槽金属氧化物半导体场效应管组成,其中每个沟槽金属氧化物半导体场效应管如权利要求8所述,其中每个所述的切割沟槽栅都延伸穿过所述的双沟槽金属氧化物半导体场效应管之间的空间,并连接至所述的双沟槽金属氧化物半导体场效应管的沟槽式沟道截止栅。
16.根据权利要求15所述的半导体功率器件版图结构,其中所述的双沟槽金属氧化物半导体场效应管之间的空间宽度等于切割道的宽度。
17.根据权利要求15所述的半导体功率器件版图结构,其中晶片切割之后,所述的沟槽式沟道截止栅和所述的切割沟槽栅都短接至所述的双沟槽金属氧化物半导体场效应管的漏区。
18.根据权利要求15所述的半导体功率器件版图结构,其中每个所述的沟槽金属氧化物半导体场效应管中只存在一个沟槽式沟道截止栅,并连接至至少一个所述的切割沟槽栅。
19.一种制造权利要求1所述的沟槽金属氧化物半导体场效应管的制造方法,包括: 在第一导电类型的外延层中形成多个由第二导电类型的体区包围的沟槽栅; 淀积接触绝缘层,并刻蚀形成多个接触开口,暴露一部分外延层的上表面,其中所述的接触开口位于每 两个相邻的所述沟槽栅之间; 通过所述的接触开口进行源区掺杂剂的离子注入; 在器件上表面淀积一层介电质层; 进行源区掺杂剂的离子扩散,以形成所述的源区; 刻蚀所述的介电质层,形成位于所述的接触开口侧壁的介电质侧墙;和 刻蚀外延层,使得所述的接触开口进一步穿过所述的源区并延伸入所述的体区。
20.根据权利要求19所述的沟槽金属氧化物半导体场效应管的制造方法,不需要提供体区掩模版。
【文档编号】H01L29/78GK104078507SQ201410116708
【公开日】2014年10月1日 申请日期:2014年3月26日 优先权日:2013年3月27日
【发明者】谢福渊 申请人:力士科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1