锂离子二次电池用外壳及其制造方法与流程

文档序号:11531503阅读:230来源:国知局
锂离子二次电池用外壳及其制造方法与流程
本发明涉及以不锈钢箔作为外壳的原材料的锂离子二次电池用外壳和其制造方法。
背景技术
:锂离子二次电池由于具有高能量,被用于移动通信设备用电源、便携式信息终端用电源等。另外,近年来,也开始被用于作为地球温暖化对策推广普及的混合动力汽车、电动汽车的驱动用电源等。以往,这样的锂离子二次电池的外壳使用以铝薄板、不锈钢薄板作为原材料,深冲压加工(深絞り加工)成圆筒状、方筒状的外壳。一般地,这种情况的原材料板厚为0.5-0.8mm。然而,为谋求轻量化,使用以板厚0.1mm以下的铝箔作为基材,在该基材的表面叠层了聚丙烯等树脂膜的铝叠层材料作为外壳原材料的锂离子二次电池逐渐变得被使用。在此,关于锂离子二次电池的制造方法(工序)的一例进行说明时,首先,对铝叠层材料进行冲压加工成形为带凸缘的杯物件,此杯内收纳夹着间隔件的正负极电极的同时,正极和负极的电极端子由杯物件的凸缘部导出。另一方面,使用与杯物件同样的原材料,准备杯状或平板状的盖部件,使杯物件与盖部件重合后,在凸缘部通过对铝叠层的树脂膜加压加热使其熔融的热封而接合。该接合结束后,向外壳内注入电解液完成锂离子二次电池。这样的使用了铝叠层材料的电池外壳,虽然能够谋求轻量化,但由于基材是铝,所以对外力的强度低,因此存在需要另外设置保护该电池外壳的增强板的课题。另外,还有电解液由通过热封得到的接合部渗漏、电池性能下降的课题。因此,为了解决现有的锂离子二次电池用外壳的对外力强度不足,专利文献1提出了以奥氏体系不锈钢箔作为原材料,杯物件与盖部件的接合使用缝焊的方法。此方法中,原材料为比铝叠层材料强度强的奥氏体系不锈钢箔,接合使用缝焊,因此可以解决使用了铝叠层材料作为原材料的电池用外壳那样的对外力强度不足及从热封部的电解液渗漏。但是,由于缝焊时在杯内外产生焊接飞溅(スパッタ),因此存在发生电池的内部短路的可能性。现有技术文献专利文献专利文献1:日本特开2004-52100号公报技术实现要素:发明所要解决的课题如此,专利文献1所公开的锂离子二次电池用外壳,通过以奥氏体系不锈钢箔为原材料使用缝焊进行接合,虽然可以解决轻量化和对外力的强度、进一步的电解液渗漏的问题,但是存在无法在缝焊时无焊接飞溅地完成接合的课题。因此,本发明的目的在于,提供可以无焊接飞溅的接合,可以对外力具有强度的锂离子二次电池用外壳和其制造方法。用于解决课题的方案为达成其目的,本发明的锂离子二次电池用外壳1,使用不锈钢箔作为杯部件2和盖部件3的原材料,其接合部通过扩散接合进行接合,由此实现无焊接飞溅的接合。即,锂离子二次电池用外壳1,其特征在于,具备杯部件2和盖部件3,其中,所述杯部件2包含奥氏体系不锈钢箔,开口部的周边形成了凸缘8,所述盖部件3包含升温过程中的奥氏体相变开始温度ac1点保持在650-950℃,奥氏体+铁素体2相温度区域保持在880℃以上的范围的2相系不锈钢箔,覆盖所述杯部件2的开口部,在所述杯部件2的纵壁部7设有电极端子导出用的空孔6,并且使所述杯部件2的凸缘8与盖部件3直接接触通过扩散接合而一体化。另外,本发明的锂离子二次电池用外壳1的制造方法,其特征在于,使不锈钢箔彼此直接接触通过扩散接合而使其一体化时,相接触的不锈钢箔的杯物件2的原材料,由于伴有冲压加工,使用奥氏体系不锈钢箔,另外,盖部件3的原材料适用升温过程中的奥氏体相变开始温度ac1点保持在650-950℃,奥氏体+铁素体2相温度区域保持在880℃以上的范围的2相系不锈钢箔。并且,在加热温度880-1080℃的温度范围,一边伴有2相系不锈钢箔的铁素体相向奥氏体相相变时的晶界移动一边进行扩散接合。上述各发明中,特别是,盖部件3所使用的2相系不锈钢箔,优选适用具有下述的化学组成,并且奥氏体+铁素体2相温度区域保持在880℃以上的范围的2相系不锈钢箔。以质量%计,包含c:0.0001-0.15%,si:0.001-1.0%,mn:0.001-1.0%,ni:0.05-2.5%,cr:13.0-18.5%,cu:0-0.2%,mo:0-0.5%,al:0-0.05%,ti:0-0.2%,nb:0-0.2%,v:0-0.2%,b:0-0.01%,n:0.005-0.1%,余部fe及不可避免的杂质,下述(1)式所示的x值为650-950。x值=35(cr+1.72mo+2.09si+4.86nb+8.29v+1.77ti+21.4al+40.0b-7.14c-8.0n-3.28ni-1.89mn-0.51cu)+310…(1)上述x值是,在奥氏体+铁素体2相温度区域保持在880℃以上的范围的2相系不锈钢箔中,可以高精度地推定升温过程中奥氏体相变开始温度ac1点的指标。一般地,不锈钢基于常温下的金相组织,分为奥氏体系不锈钢、铁素体系不锈钢、马氏体系不锈钢等,但本说明书中所说的“2相系不锈钢”是指在ac1点以上的温度区域成为奥氏体+铁素体2相组织的钢。这样的2相系不锈钢中包含铁素体系不锈钢、马氏体系不锈钢。另外,在上述发明中,扩散接合时的加热温度设置为880-1080℃的温度范围。这是因为加热温度低于880℃的情况下,得不到足够的接合强度,反过来,加热温度超过1080℃的情况下,接合强度虽然足够,但存在由于用于升温至所述温度而给予接合对象部分的电流,产生焊接飞溅的可能。发明效果本发明的锂离子二次电池用外壳中,由于原材料使用了不锈钢箔,与以往的使用了以铝为基材的铝叠层材料的外壳相比,原材料自身的强度提高,因此外壳对外力的强度也提高,由此电池自身变形也变得困难。另外,由于电极端子由设在杯部件纵壁部的空孔导出,因此不再需要在杯部件与盖部件的接合区域叠层用于付与热封、绝缘性能的树脂膜。因此,收纳电极及间隔件的杯部件和盖部件的接合可以仅通过不产生焊接飞溅的扩散接合来实施。进一步地,成形杯部件时,由于以比铝等强度高的不锈钢箔做原材料,因此存在凸缘部产生小波动的可能性,但即使在凸缘部产生了小波动,由于扩散接合时通过上下电极一边加压一边接合,因此可以进行可靠性高的接合。也就是说,根据本发明,可以提供可以无焊接飞溅的接合、可以对外力具有强度的锂离子二次电池用外壳和其制造方法。附图说明图1是本发明的实施方式中的锂离子二次电池用外壳的示意图。图2是本发明的实施方式中的外壳部件的示意图。图3是本发明的实施方式中的装置的示意图。图4是示出调查了飞溅飞散状况的外壳部件的示意图。图5是飞溅飞散状况的调查方法的示意图。具体实施方式以下,关于本发明的实施方式,参照附图详细地进行说明。(实施方式)图1是本发明的实施方式的锂离子二次电池用外壳1的示意图,图2是构成所述锂离子二次电池用外壳1的杯部件2。该杯部件2是以奥氏体系不锈钢箔为原材料进行冲压加工成为杯状的部件,进一步地穿透设有用于导出电极端子4,5的空孔6。通过将其与盖部件3扩散接合,成为锂离子二次电池用外壳1。应予说明,在后面会有详述,图示的实施方式中,所述空孔6设在杯部件2的纵壁部7。杯部件2与盖部件3使用不锈钢箔作为原材料。杯部件2所使用的不锈钢箔由于伴有冲压加工,使用奥氏体系不锈钢箔。另一方面,盖部件3所使用的不锈钢箔为了进行无焊接飞溅的扩散接合,使用2相系不锈钢箔。两不锈钢箔的板厚没有特别限定,但通常为0.1mm以下。杯部件2是将不锈钢箔冲压加工为带凸缘8的杯状的部件,在其纵壁部7的短边侧的一面,形成了左右一对导出正极的电极端子4和负极的电极端子5的空孔6。应予说明,该空孔6的形成方法,例如可以通过冲孔加工进行。另外,图示实施方式的杯部件2中,示出了空孔6的形状是矩形的空孔,但空孔6的形状不限定于此,例如也可以是圆形等。该杯部件2内,虽然没有图示,但收纳着成为正极和负极的夹着间隔件的一对电极,连接到所述各电极的电极端子4及5从空孔6导出。因此,空孔6的大小形成为比电极端子4及5多少大一点的尺寸,电极端子4及5和空孔6之间的间隙,为了谋求杯部件2和电极端子4及5之间的绝缘而装有绝缘部件9。该绝缘部件9的材质,虽然没有特别限定,但适宜使用聚丙烯等合成树脂制品。应予说明,该绝缘部件9,根据需要也可以形成为使其熔接、固接,提高导出电极端子4及5的空孔6的密闭度。接下来,使用锂离子二次电池用外壳1,制造如图1所示的锂离子二次电池a时,首先一开始,如上述将电极端子4及5从空孔6导出后,将具有与凸缘8的外缘大致同等大小的薄板状的盖部件3与杯部件2的开口部分重合,在所述凸缘8的部分将杯部件2和盖部件3扩散接合而使其接合一体化。这种情况下的扩散接合,使用例如如图3所示的缝焊机11。该缝焊机11,为了避免扩散接合时使用的电极与电极端子4,5冲突,作为在杯部件2侧配置的电极使用截面形状为四边形等的棒状电极11a,作为在盖部件3侧配置的电极使用圆盘状的电极轮11b。并且,杯部件2侧的棒状电极11a固定,使另一方的盖部件3侧的电极轮11b旋转以进行接合。之后,使绝缘部件9熔融·固接以填充导出了的电极端子4及5与空孔6的间隙,从图中没有示出的注入口注入电解液后,密封该注入口完成锂离子二次电池a。实施例以下,列举实施例对本发明进行更具体的说明,但本发明不限于实施例。作为杯部件2的原材料,使用了作为奥氏体系不锈钢的sus304的箔(板厚0.1mm)。另外,作为盖部件3的原材料,使用了板厚0.1mm的2相系不锈钢箔。各自的合金成分在表1中示出。应予说明,表1中的“-”是“无分析值”的意思。表1(质量%)csimnnicrcumoaltinbnx值sus3040.0640.490.778.0718.300.230.15---0.031-142相系钢0.0610.530.292.0016.300.050.050.0140.003-0.012682杯部件2的尺寸设置为杯部的宽度为150mm,深度100mm,高度20mm,并且凸缘8的宽度设置为10mm。杯部件2的制造通过坯料冲孔加工、冲压加工、空孔冲孔加工、凸缘整理加工这4个工序进行。在用这样的工序制造的杯部件2中,收纳夹着间隔件的电极,从空孔6将电极端子4,5导出。之后,将杯部件2和盖部件3重合使用缝焊机11进行扩散接合,形成了扩散接合部10。作为用于扩散接合的电极,杯部件2侧的电极设置为截面形状是正方形,1边的长度为8mm的棒状电极11a,盖部件3侧的电极设置为直径100mm,宽度5mm的圆盘状电极轮11b。并且,对于扩散接合条件,加压力设置为150n,焊接速度设置为1.0m/min,焊接电流设置为(a)0.5ka,(b)1.0ka,(c)2.0ka的连续通电。此条件下,推定接合部的温度为(a)850℃,(b)1050℃,(c)1250℃。之后,向电极端子4,5和空孔6的间隙,填充作为绝缘部件9的聚丙烯制膜,将该膜在120℃加热熔融将电极端子4,5在与杯部件2绝缘的状态下固接,由此制造了外壳部件。最后,向外壳部件的内部,从图中没有示出的注入孔注入以六氟磷酸锂为基底的电解液,制造了锂离子二次电池a。将所制造的锂离子二次电池a在1个月间,反复充放电评价了有无液体渗漏等的电池状态。该评价的结果,没有产生来自扩散接合部10的液体渗漏、焊接飞溅引起的短路。接下来,分别在上述(a)-(c)的3种接合条件下,如图4所示,制造多个仅接合了凸缘8的一边的外壳部件,从其中抽出各10个,调查了飞溅的飞散状况。飞溅的飞散状况的调查方法是,向洗净了的容器12中加入1000ml超纯水13(具有0.2μm以上的粒径的粒子为1个/ml以下),将扩散接合部浸渍在超纯水中施加了5分钟的超声波(参照图5)。超声波的施加使用了超声波洗净器(本多电子制w-118,频率45khz,功率600w)。之后,将得到的抽出液中的粒子用孔径0.1μm的过滤器收集,在sem-edx测定中进行了飞溅飞散状况的观察。其结果,接合条件(a)、(b)没有确认到金属元素,接合条件(c)确认了金属元素。另外,用显微镜观察扩散接合部的截面,调查了盖部件3侧的金相组织,其结果,接合条件(a)、(b)接合部的界面是无焊核的扩散接合,(c)接合部界面熔融形成了焊核。工业实用性本发明所涉及的锂离子二次电池,适宜作为聚合物型锂离子二次电池使用。符号说明a:锂离子二次电池1:锂离子二次电池用外壳2:杯部件3:盖部件4:(正极的)电极端子5:(负极的)电极端子6:空孔7:纵壁部8:凸缘9:绝缘部件10:扩散接合部11:缝焊机11a:棒状电极11b:电极轮12:容器13:超纯水权利要求书(按照条约第19条的修改)1.一种锂离子二次电池用外壳(1)的制造方法,其特征在于,其为使杯部件(2)与盖部件(3)直接接触,通过扩散接合而一体化的锂离子二次电池用外壳(1)的制造方法,所述杯部件(2)是将奥氏体系不锈钢箔冲压加工成为杯状而成,在开口部的周边形成凸缘(8),且在纵壁部(7)设有电极端子导出用的空孔(6),所述盖部件(3)包含升温过程中的奥氏体相变开始温度ac1点保持在650-950℃,奥氏体+铁素体2相温度区域保持在880℃以上的范围的2相系不锈钢箔,覆盖所述杯部件(2)的开口部,所述扩散接合时,使用缝焊机(11),在所述杯部件(2)侧配置截面为四边形的棒状电极(11a),在所述盖部件(3)侧配置圆盘状的电极轮(11b),加热温度在880-1080℃的温度范围,一边伴有所述2相系不锈钢箔的铁素体相向奥氏体相相变时的晶界移动一边进行扩散接合。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1