倒锥型大功率硅锗光电探测器及提高入射光功率的方法与流程

文档序号:12478881阅读:308来源:国知局
倒锥型大功率硅锗光电探测器及提高入射光功率的方法与流程

本发明涉及光通信集成器件领域,具体是涉及一种倒锥型大功率硅锗光电探测器及提高入射光功率的方法。



背景技术:

硅锗光电探测器制作在SOI(Silicon-On-Insulator,绝缘衬底上的硅)晶圆上,具有与硅基光电子工艺兼容、集成度高的优点。目前,传统硅锗光电探测器主要用于探测功率低于5dBm的光,当光功率高于5dBm时,器件出现饱和甚至烧毁的现象。对于微波光子学应用,需要探测的光功率大于5dBm,从而提高光-微波转换效率,减少对微波放大器的需求,降低成本,因此有必要研究一种高功率的硅锗光电探测器。



技术实现要素:

本发明的目的是为了克服上述背景技术的不足,提供一种倒锥型大功率硅锗光电探测器及提高入射光功率的方法,能够有效提高硅锗光电探测器的入射光功率。

本发明提供一种倒锥型大功率硅锗光电探测器,制作在SOI晶圆上,该探测器包括入射波导、第一重掺杂区、第二重掺杂区、第一轻掺杂区、第二轻掺杂区、锗波导、本征区,光从入射波导入射,所述第一重掺杂区、第二重掺杂区、第一轻掺杂区、第二轻掺杂区、本征区组成有两层台阶的单脊波导结构,第一轻掺杂区、第二轻掺杂区、本征区的横截面围成梯形,在梯形与入射波导连接处,梯形宽度与入射波导宽度相等,梯形沿着光传播方向宽度由宽变窄;锗波导的横截面为梯形,宽度沿着光传播方向由窄变宽;本征区的横截面为梯形,宽度沿着光传播方向由宽变窄。

在上述技术方案的基础上,所述第一轻掺杂区和第二轻掺杂区之间有本征区,第一轻掺杂区、第二轻掺杂区、本征区均在锗波导下方,且均与锗波导接触,第一重掺杂区与第一轻掺杂区接触,第二重掺杂区与第二轻掺杂区接触。

在上述技术方案的基础上,所述入射波导的纵截面为有两层台阶的单脊波导结构,其中,下层台阶的高度为h1,上层台阶的高度为h2

在上述技术方案的基础上,所述第一重掺杂区、第二重掺杂区的高度为h1

在上述技术方案的基础上,所述第一轻掺杂区、第二轻掺杂区、本征区的高度为h1+h2

在上述技术方案的基础上,所述入射波导、第一重掺杂区、第二重掺杂区、第一轻掺杂区、第二轻掺杂区、本征区的材料均为硅。

在上述技术方案的基础上,所述第一重掺杂区的掺杂类型与第二重掺杂区的掺杂类型相反;第一轻掺杂区的掺杂类型与第一重掺杂区掺杂类型相同;第二轻掺杂区的掺杂类型与第二重掺杂区的掺杂类型相同。

在上述技术方案的基础上,所述第一轻掺杂区的掺杂浓度d5比第一重掺杂区的掺杂浓度d3低,10<d3/d5<103

在上述技术方案的基础上,所述第二轻掺杂区的掺杂浓度d6比第二重掺杂区的掺杂浓度d4低,10<d4/d6<103

本发明还提供一种应用于上述倒锥型大功率硅锗光电探测器的提高入射光功率的方法,包括以下步骤:

光从入射波导入射后,进入第一重掺杂区、第二重掺杂区、第一轻掺杂区、第二轻掺杂区、本征区组成的单脊波导结构,光功率主要集中在第一轻掺杂区、第二轻掺杂区和本征区形成的范围内,由于第一轻掺杂区、第二轻掺杂区、本征区在光传播方向上是由宽变窄的梯形结构,而锗波导在光传播方向上是由窄变宽的梯形结构,在光功率的传播的途中,缓慢而逐渐从第一轻掺杂区、第二轻掺杂区和本征区形成的范围耦合进入锗波导,因此,在光传播的途中,光功率逐渐的被锗波导吸收,提高硅锗光电探测器的入射光功率。

与现有技术相比,本发明的优点如下:

(1)本发明中的硅锗光电探测器包括入射波导、第一重掺杂区、第二重掺杂区、第一轻掺杂区、第二轻掺杂区、锗波导、本征区,第一轻掺杂区、第二轻掺杂区、本征区在光传播方向上组成由宽变窄的梯形结构,而锗波导在光传播方向上是由窄变宽的梯形结构。由于采用了宽度渐变的硅光波导和锗波导结构,使得在光传播的途中,逐渐的被锗波导吸收,从而降低了单位时间内锗波导内吸收的光功率,而不是瞬间的吸收高的光功率,能够有效提高硅锗光电探测器的入射光功率。

(2)器件全部制作在SOI晶圆上,能够兼容硅基光子工艺。

附图说明

图1是本发明实施例中倒锥型大功率硅锗光电探测器的俯视图。

图2是图1除去锗波导部分的俯视图。

图3是图1中截面I的侧视图。

图4是图1中截面II的侧视图。

图5是图1中截面III的侧视图。

附图标记:1-SOI晶圆,2-入射波导,3-第一重掺杂区,4-第二重掺杂区,5-第一轻掺杂区,6-第二轻掺杂区,7-锗波导,8-本征区。

具体实施方式

下面结合附图及具体实施例对本发明作进一步的详细描述。

参见图1、图2所示,本发明实施例提供一种倒锥型大功率硅锗光电探测器,制作在SOI晶圆1上,该探测器包括入射波导2、第一重掺杂区3、第二重掺杂区4、第一轻掺杂区5、第二轻掺杂区6、锗波导7、本征区8,光从入射波导2入射,第一轻掺杂区5、第二轻掺杂区6、本征区8的横截面围成梯形,在梯形与入射波导2连接处,梯形宽度与入射波导2宽度w1相等,梯形沿着光传播方向宽度由宽变窄,图1、图2中的光传播方向为从左至右。锗波导7的横截面为梯形,宽度沿着光传播方向由窄变宽。本征区8的横截面为梯形,宽度沿着光传播方向由宽变窄。

参见图3所示,入射波导2的纵截面,即图1中的截面I,为有两层台阶的单脊波导结构,其中,下层台阶的高度为h1,上层台阶的高度为h2

参见图4、图5所示,第一轻掺杂区5和第二轻掺杂区6之间有本征区8,第一轻掺杂区5、第二轻掺杂区6、本征区8均在锗波导7下方,且均与锗波导7接触,第一重掺杂区3与第一轻掺杂区5接触,第二重掺杂区4与第二轻掺杂区6接触。第一重掺杂区3、第二重掺杂区4、第一轻掺杂区5、第二轻掺杂区6、本征区8组成有两层台阶的单脊波导结构。第一重掺杂区3、第二重掺杂区4的高度为h1,第一轻掺杂区5、第二轻掺杂区6、本征区8的高度为h1+h2

入射波导2、第一重掺杂区3、第二重掺杂区4、第一轻掺杂区5、第二轻掺杂区6、本征区8的材料均为硅。

第一重掺杂区3的掺杂类型与第二重掺杂区4的掺杂类型相反。

第一轻掺杂区5的掺杂类型与第一重掺杂区3掺杂类型相同。

第一轻掺杂区5的掺杂浓度d5比第一重掺杂区3的掺杂浓度d3低,10<d3/d5<103

第二轻掺杂区6的掺杂类型与第二重掺杂区4的掺杂类型相同。第二轻掺杂区6的掺杂浓度d6比第二重掺杂区4的掺杂浓度d4低,10<d4/d6<103

本发明实施例还提供一种应用于上述倒锥型大功率硅锗光电探测器的提高入射光功率的方法,包括以下步骤:

光从入射波导2入射后,几乎无损耗的进入第一重掺杂区3、第二重掺杂区4、第一轻掺杂区5、第二轻掺杂区6、本征区8组成的单脊波导结构,光功率主要集中在第一轻掺杂区5、第二轻掺杂区6和本征区8形成的范围内,轻掺杂引起的损耗非常小。由于第一轻掺杂区5、第二轻掺杂区6、本征区8在光传播方向上是由宽变窄的梯形结构,而锗波导7在光传播方向上是由窄变宽的梯形结构,在光功率的传播的途中,缓慢而逐渐从第一轻掺杂区5、第二轻掺杂区6和本征区8形成的范围耦合进入锗波导7,因此,在光传播的途中,光功率逐渐的被锗波导7吸收,从而降低了单位时间内锗波导7吸收的光功率,而不是瞬间的吸收高的光功率,从而提高了硅锗光电探测器的入射光功率。

本领域的技术人员可以对本发明实施例进行各种修改和变型,倘若这些修改和变型在本发明权利要求及其等同技术的范围之内,则这些修改和变型也在本发明的保护范围之内。

说明书中未详细描述的内容为本领域技术人员公知的现有技术。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1