利用具有随机配置空隙的纳米粒子层的增强型粘合的制作方法

文档序号:17981537发布日期:2019-06-22 00:08阅读:149来源:国知局
利用具有随机配置空隙的纳米粒子层的增强型粘合的制作方法

本文大体上涉及半导体装置,且更确切地说,涉及一种为了增强型粘合而应用于封装半导体装置的具有可控孔隙率的多组分纳米粒子层的结构和制造方法。



背景技术:

基于其功能,半导体封装包含多种不同材料。采用形成为引线框和接合部的金属以用于机械稳定性以及导电性和导热性,且如聚合模制化合物的绝缘体用于包封和外观尺寸。在封装制造流程中,常规实践将半导体芯片附接到引线框带,以便将芯片连接到其各别引线,且随后以将组装的芯片包封在封装中,所述封装保护包封部分免受机械性损坏和如湿气和光的环境影响,同时提供无障碍电连接。在包封步骤后,封装芯片通过调整和形成步骤与引线框带分隔到离散单元中。

流行包封技术是传递模塑法。具有附接和连接的芯片的引线框带放置在钢模中,所述钢模在每一组装的芯片周围形成空腔。半粘稠热固性聚合化合物经按压穿过引线框带上的流道以经由闸门进入每一空腔。在填充空腔后,允许所述化合物通过聚合硬化。最后,在去浇口(degating)步骤中,流道中的化合物在每个闸门处与填充所述空腔的化合物断开。

为了确保封装的整体性和一致性,预期金属材料和非金属材料在产品的使用寿命期间与彼此粘合,同时耐受机械振动、温度波动和湿气变化。失败粘合使得湿气进入到封装中,从而导致因电泄漏和化学腐蚀所致的装置故障。其可进一步引起半导体芯片与衬底的附接故障、线接合断裂和焊料凸块破裂以及劣化的热能与电能耗散。

常规半导体技术采用多种提升多样化材料之间的粘合水平使得封装通过加速测试和使用条件而不剥离的方法。做出的尝试有以化学方式纯化模制化合物,仅在模制工艺之前如利用等离子体来活化引线框金属表面,以及通过使基底金属氧化来增强引线框金属对聚合化合物的亲和力。此外,如凹口、凹槽或突出部、悬垂部及其它三维特征的设计特征经添加到引线框表面以用于与封装材料的改良互锁。

增大半导体封装中的引线框、芯片和包封化合物之间的粘合的常规技术的另一实例是通过在根据金属片来冲压或蚀刻图案后化学地蚀刻引线框表面引起的整个引线框表面的粗糙化。化学蚀刻是使用蚀刻剂的减材工艺。化学蚀刻形成具有约1μm或更小粗糙度的微晶金属表面。使引线框的仅一个表面粗糙化对非粗糙化引线框而言增加约10%到15%成本。

获得粗糙表面的又一常规方法是使用沉积粗糙金属(如镍)层的特定金属电镀浴,如镍电镀浴。这种方法是增材法,所形成的表面粗糙度是约1到10μm。引线框表面的粗糙化可存在一些不期望的副作用。表面的普遍粗糙化不利地影响线接合,因为视觉系统难以看到粗糙化表面、粗糙表面缩短毛细管使用寿命且粗糙表面上的微小污染物降低接合密实度。通常,当树脂组分与芯片附接化合物的块体分离且在芯片衬垫的表面上方扩散时,粗糙表面往往允许更多的渗出。树脂渗出转而可降低湿度灵敏度且干扰向下接合在芯片衬垫上。有时采用涉及可重复使用硅酮橡胶掩模或密封垫的选择性粗糙化技术;因此,选择性粗糙化是昂贵的。举例来说,将化学粗糙化限制于所选引线框区域的保护掩模对非粗糙化引线框而言增加约35%到40%成本。

所有这些尝试的成效具有限制性,尤其因为当实施装置小型化的另一缩减步骤时粘合剂有效性进一步减弱。



技术实现要素:

在所描述实例中,通过沉积溶剂浆料的层来修改具有第一材料的衬底的表面,所述溶剂浆料包括第二材料的纳米粒子和第三材料的纳米粒子,所述第二材料的纳米粒子具有提供在比块状第二材料的熔点温度更低的温度下的熔点的大小,所述第三材料的纳米粒子具有至少与第二材料的纳米粒子大小一样大的大小和在比第二材料的熔点温度更高的温度下的熔点。第二材料的纳米粒子具有比第三材料的纳米粒子更高的重量百分比。在第二材料的熔点温度下将第二材料的纳米粒子烧结在一起。通过去除第三材料的纳米粒子在具有第二材料的层中形成空隙。所述空隙具有随机分布和随机三维配置。

附图说明

图1是概述根据一实施例的形成具有结构性和牺牲性纳米粒子的增材层且将所述层转换为具有随机三维配置和分布的空隙的结构的工艺流程的图式。

图2说明根据一实施例的具有结构性和牺牲性纳米粒子的增材层的形成。

图3示出根据一实施例的图2中的具有喷嘴的注射器的一部分的放大,其中用溶剂中的结构性和牺牲性纳米粒子混合的浆料填充注射器。

图4描绘根据一实施例的在烧结结构性纳米粒子后而牺牲性纳米粒子保持在所述层中的随机三维配置和分布的巢中的增材层。

图5说明根据一实施例的在去除牺牲性纳米粒子后的经烧结结构性纳米粒子的增材层,所述层具有随机三维配置和分布的空隙。

图6示出根据一实施例的利用填充增材层的空隙的封装化合物进行的增材层的包封。

图7描绘随纳米粒子直径而变的金属的标准化熔融曲线;tm是粒子的熔融温度,tmb是块体的熔融温度[维基百科(wickipedia)后,“熔点降低”]。

图8说明根据一实施例的具有引线框的封装半导体装置,其中引线框的部分由具有随机配置的孔隙纳米粒子层覆盖从而增强金属引线框与塑料封装之间的粘合。

具体实施方式

在不同材料主体(如聚合物和金属)之间的粘合和机械接合中,可利用所述主体之间沉积的增材金属层的特性。当增材层由金属纳米粒子构成且所述层在沉积后经烧结时,纳米粒子有助于利用金属相互扩散、与聚合化合物的改良化学接合的粘合以及利用孔隙率的粘合。当考虑到纳米粒子的大小和化学性质时,孔隙率和相互扩散可增强。材料的结构性纳米粒子具有足够小以呈现相对于块体材料的熔点的更低熔点的大小,且牺牲性纳米粒子由在形成增材层后易于由加热或蚀刻去除的化合物构成。

举例来说,结构性纳米粒子可从包含直径在约10nm与20nm之间的金属的群组中选出,如铜、金、银、铝、锡、锌和铋;其它选择包含金属氧化物(如氧化铜)和陶瓷。这一大小范围内的金属纳米粒子具有比块体金属的普通熔点低约30%和40%的较低熔点,且可在比材料的块体形式的熔融温度低超过90%的温度下颈缩在一起。

牺牲性纳米粒子可从包含以下各项的群组中选出:聚合物(如固体碳类脂族和环状化合物),金属氧化物和常用氧化物,以及陶瓷。牺牲性纳米粒子与溶剂或分散剂中的结构性纳米粒子互混。分散系统或混合浆料可应用于如利用计算机可控注射器的半导体技术中所使用的衬底,如金属引线框。方法包含喷墨印刷、丝网印刷、凹版印刷、浸涂和喷涂。

能量(热、光子、电磁、化学)源施加于分散系统以便(通过粒子之间的颈缩)将结构性纳米粒子烧结为具有不规则三维大小和减小表面的集群结构,且以使得结构性纳米粒子扩散到衬底表面中(金属相互扩散)。基于牺牲性纳米粒子大小、重量百分比、所施加能量和氛围,经烧结纳米粒子层具有用牺牲性纳米粒子填充的具有随机三维配置和分布的巢;一些巢可类似于具有窄入口的球形凹部。在烧结工艺期间可去除分散剂,且另外,结构性纳米粒子的熔点逐渐升高到正常值。

在冷却之后,固体化结构性集群和巢保持,而牺牲性纳米粒子可通过加热、蚀刻(气相或液相)或其它去除方法去除,从而将所述巢转换为孔隙。固体化结构层中所留下的孔隙具有呈随机三维形式的配置和分布。

随后,半导体芯片可组装在衬底上;此外,可形成聚合化合物的封装以包封芯片以及衬底的至少部分。举例来说,用于封装的化合物可作为待接合到增材金属层的环氧类模制化合物。归因于孔隙,由于化合物流入纳米粒子粘合层的孔隙中,因此所述化合物经历改良的机械性粘合,从而将封装锚定到增材金属层。通过调整孔隙率,可以定制方式改良/调整不同材料主体之间的机械性粘合。

所描述的实例包含用于增强由不同材料(如金属和聚合物)制成的物品之间的粘合和机械接合的方法。方法包括在所述物品之间形成和锚定具有高表面孔隙率的增材层。图1是概述一实施例的图式。在其上建构增材层的物品在本文中被称作衬底,而需要改良对衬底的粘合的另一物品在本文中被称作封装。作为实例,在图2中将衬底标示为201,且在图6中将封装标示为601。

图1中示出的工艺流程的应用可应用于半导体装置的制造技术。在半导体技术中,衬底通常是金属引线框或由多个交替电绝缘层和导电层构成的层合衬底。在图1的过程101中,选择由第一材料制成且具有以二维形式延伸的表面的衬底。在衬底是引线框(图8)时,优选地由如铜、铜合金、铁镍合金、铝、kovartm等的基底金属的薄片以120到250μm常见厚度范围来蚀刻或标记引线框。如本文中所使用,术语基底金属具有起始材料的内涵且并不暗示化学特征。一些引线框可具有镀覆到基底金属的完整或部分表面区域上的额外金属层;实例是铜引线框上所镀覆的锡、银、镍、钯和金层。

引线框提供稳定支撑衬垫(图8中的801)以用于稳固地定位半导体芯片(810)。此外,引线框提供大量导电引线(803)以使得各种电导体紧密接近芯片。引线的尖端与芯片端子之间的任何其余间隙通常由薄接合线(830)桥连;或者,在倒装芯片技术中,芯片端子可由金属凸块连接到引线。对于引线框,由初始金属片来蚀刻或标记衬垫、引线所需的形状和其它几何特征。

较佳地,引线框特征有助于与所附接芯片和与封装化合物的可靠粘合(图8中的870)。除模制化合物与引线框的金属修整面层之间的化学亲和力以外,可靠粘合使引线框表面粗糙度成为必要,尤其鉴于缩小封装尺寸的技术趋势,其提供用于粘合的较少表面区域。另外,使用无铅焊料的需求使得回焊温度范围大致为约260℃,使得更加难以在高温下维持与引线框的模制化合物的粘合。

参考图1的工艺流程,在过程102中,提供溶剂浆料,其包括包含两种不同纳米粒子的分散剂或溶剂。溶剂浆料的实例说明于图3中且表示为301。被称为第二材料的纳米粒子302或也称为结构性纳米粒子的一种类型的纳米粒子由第二材料制成且在浆料301中由第一重量百分比定量地表示。被称为第三材料的纳米粒子303或称为牺牲性纳米粒子的另一种类的纳米粒子由第三材料制成且在浆料301中由小于第一重量百分比的第二重量百分比定量地表示。

在本说明书中,纳米粒子可包含无机或有机化合物的、一维导线的、二维晶体和片层的以及纳米管的球形或由原子或分子构成的其它三维集群。

第二材料可从包含以下各项的群组中选出:金属、金属氧化物、氧化物和陶瓷。金属可包含金、银、铜、铝、锡、锌和铋,且金属氧化物可包含氧化铜,其作为不同比率的二价铜与氧化亚铜的混合物提供比铜更好的与模制化合物的化学粘合。第三材料可从包含以下各项的群组中选出:聚合物、氧化物、陶瓷、金属和金属氧化物。在第二材料的第二纳米粒子存在下,第三材料的纳米粒子需要由加热、气相蚀刻或液相蚀刻相对容易地去除。

第二材料的纳米粒子302具有优选地在10nm到20nm直径范围内的第二大小,以便提供与块体第二材料的温度tmb下的较高熔点相比较在较低温度tm下的较低熔点。在块体材料的熔融温度不取决于材料的样本大小时,近年来的研究已显示熔融温度随着在低于大致50nm的范围内的材料尺寸按比例升降。纳米尺度材料具有比块体材料大得多的表面与体积比,从而减小用于位于或接近表面处的原子的内聚能。如图7的实例针对金所示出,相比于块体金的熔融温度tmb,熔融温度tm对直径约20nm的球形金粒子来说降低大致20%,且对直径约10nm的球形金粒子来说降低大致40%。

如本文中所使用,tm是指与材料的块体形式的熔融温度tmb相比较的材料的纳米粒子的较低熔融温度。

当一定体积的熔融纳米粒子烧结在一起时,其形成颈缩连接,其中熔融粒子的表面呈现与体积之间的颈部类似的收缩范围。直径<10nm到20nm的大小范围内的纳米粒子可在比材料的块体大小主体的颈缩所需的温度低超过90%的温度下颈缩在一起;小粒子的熔融可在比块体熔融温度低超过90%的温度下发生。与球形粒子形状的偏差改变内聚表面能,且因此熔点降低。如琢面、边缘、片层和芯线形状的偏差往往减少熔点降低且使熔点更接近块体熔点。

第三材料的纳米粒子303具有至少与第二材料的纳米粒子302的大小一样大的大小。因此,纳米粒子303的熔融温度比第二材料的纳米粒子302的较低熔融温度更高。

参考图1的工艺流程,在工艺的步骤103期间,溶剂浆料301的层200叠加地沉积于图2中所示出的衬底201的二维表面201a上。层200可在可用二维表面区域上方延伸,或其可通过取决于溶剂浆料的液滴大小而形成从0.1μm延伸到100μm的岛状物来覆盖表面区域的仅部分。如上文所描述,溶剂浆料301包含第二纳米粒子302与第三纳米粒子303于溶剂或分散剂中的混合物;第二材料的纳米粒子具有第二大小以用于材料的抑制熔点,且第三材料的纳米粒子具有至少与第二大小一样大的第三大小和在比第二材料的纳米粒子的抑制熔点更高的温度下的熔点。

过程103描绘于图2中。设备优选地包含具有含有喷嘴211的移动注射器210的计算机可控喷墨打印机,浆料的离散液滴310从所述喷嘴释放。自动喷墨打印机可选自多个可商购打印机;替代地,定制喷墨打印机可经设计为适用于具体浆料。可使用任何叠加法,其包含丝网印刷、凹版印刷、柔性版印刷、浸涂、喷涂和喷墨印刷,所述喷墨印刷包括压电、热、声学和静电喷墨印刷。

如所陈述,沉积层200可沿整个衬底201的横向尺寸延伸,或可如图2中作为实例长度202和203所描绘,包含延伸约0.1μm到100μm长度的岛状物。在金属引线框中,层200可覆盖一或多个引线的整个引线框表面区域,或选定部分,如芯片附接衬垫。从注射器210的重复运行的汇集液滴中积累高度,层200可优选地具有在约100nm与500nm之间的高度200a,但可更薄或显著地更厚。

在图1中所示的工艺的步骤104期间,提供能量以将温度升高到第二材料的纳米粒子302的较低熔点的温度。所需能量可由多个来源提供:热能、光子能、电磁能和化学能。在较低熔融温度下,纳米粒子302通过在粒子之间颈缩为包围第三纳米粒子303的液体网络结构来烧结在一起。图4中由经烧结粒子402指示所述液体网络结构。经烧结纳米粒子402包围未改变的第三纳米粒子303。如图4所指示,未改变的纳米粒子303使得经烧结纳米粒子402形成随机分布且三维随机配置的结构。

在第二材料的纳米粒子402的烧结同时,一些第二材料通过原子相互扩散扩散到邻接衬底201的表面201a的区域的第一材料中。图4中,相互扩散到接近衬底201的表面201a的区域中的第二材料表示为402a。图4中扩散区(扩散深度)表示为402b。原子相互扩散到衬底中形成相互扩散接合,其将经烧结第二纳米粒子的层锚定到衬底201中。

在图1中所示出的工艺的步骤105期间,使第二材料的液体网络结构402固体化以形成包围第三纳米粒子303的具有第二材料402的固体层400。经烧结纳米粒子302的增大大小驱使经烧结实体的熔融温度沿图7中所显示的特征函数关系升高。因为硬化网络结构400保持在衬底表面处作为固体层,所以第二材料的纳米粒子402可称作结构性纳米粒子。

在图1中所示出的工艺的步骤106期间,空隙或孔隙通过去除第三纳米粒子303而形成于经烧结纳米粒子402的固体层400中。去除第三纳米粒子的方法从包含以下各项的群组中选出:加热、气相蚀刻和液相。因为可去除纳米粒子303,所以第三材料的纳米粒子可称作牺牲性纳米粒子。包含多个空隙501的具有第二材料的固体经烧结纳米粒子的保留层500的实例说明于图5中。固体层500的厚度表示为500a。

如图5所示出,许多空隙或孔隙501具有随机分布和随机三维配置。空隙501中的一些显示穿过固体化材料402的错综复杂的路径,且三维空隙中的一些具有含有窄入口的球形形状,如由图5中的空隙501a所例示。为了改变层500的最终孔隙率,牺牲性纳米粒子的重量百分比和大小可改变。通过改变孔隙率,可改良并调整待粘合到表面201a的任何材料的机械性粘合。

在图1中所示出的工艺的步骤107期间,具有第二材料的固体和多孔层500以及具有第一材料的衬底的至少部分包封到聚合化合物的封装中。工艺说明于图6中,其中聚合化合物标示为601。由聚合化合物包封的优选方法是使用热固性环氧类模制化合物的传递模塑技术。因为化合物在模制工艺期间在高温下具有低粘度,所以聚合化合物可易于填充具有第二材料的层500中的孔隙501a。由聚合材料填充孔隙在任何孔隙上进行,而不论其以有序图案或以随机分布排列,且不论其是浅的或呈包含具有窄入口的类似于球形凹部的孔隙的随机三维配置。

在化合物已聚合且冷却到环境温度后,封装中以及孔隙中的聚合化合物601硬化。在塑料材料硬化后,聚合填充孔隙表示层500中的封装的强力锚件。此外,如上文所描述,层500利用金属相互扩散来锚定于金属衬底201中。作为总体产物,多孔层500改良塑料封装601与金属衬底201之间的粘合。已测量到数量级的粘合改良。

封装化合物601与衬底金属201的强力粘合由层500的表面孔隙率的量表示。指示孔隙率的量的参数是表面积比,其被定义为表面区域(三维)比几何学上平坦的表面面积(二维)。定量参数值基于表面轮廓的详细分析。

精确地说,上文所描述的两种不同材料的粘合是由这些材料制成的主体之间的机械性粘合。应强调,除了机械性粘合之外,可通过化学粘合来改良两种不同材料之间的总体粘合。因此,可选择第二材料的纳米粒子以增强化学粘合。举例来说,氧化铜纳米粒子具有比金纳米粒子更好的与聚合模制化合物的化学粘结。

另一实施例是包含具有二维表面的衬底的装置,其中衬底由第一材料制成。在衬底的二维表面上是具有第二材料的固体层。此外,邻接二维表面的衬底区包含第二材料于第一材料中的混杂物。第二材料的固体层包含具有随机分布和随机三维配置的孔隙。这些三维配置可包含具有窄入口的类似于球形凹部的孔隙。装置进一步包含由聚合化合物制成的封装。封装定位于第二材料的固体层上;因此,聚合化合物填充具有第二材料的层中的孔隙且借此将所述封装锚定于所述层中。锚定在固体层中的封装和锚定在衬底中的固体层引起封装与衬底的良好粘合。

图8说明在实例半导体装置中利用具有随机配置孔隙的纳米粒子层的增强型粘合的实例实施例,所述半导体装置包含金属引线框和塑料封装。实例半导体装置的引线框包含用于组装半导体芯片810的衬垫801、将衬垫801连接到封装的侧壁的联接条802以及多个引线803。在本说明书中,所述联接条称为绑带。芯片端子由接合线830连接到引线803,所述接合线通常包含球接合831和针脚式接合832。在图8的实例中,引线803成形为悬臂式引线;在其它实施例中,引线可具有如方形扁平无引线(quadflatno-lead;qfn)装置中或小外形无引线(smalloutlineno-lead;son)装置中所使用的平坦引线形状。沿其纵向延伸部,图8中的实例装置的绑带802包含弯曲和阶梯,因为衬垫801和引线803不在相同平面中。在其它装置中,绑带802是平坦和平整的,因为衬垫801和引线803在相同平面中。

在图8中,包含在由纳米粒子制成的层500中且具有随机分布和随机三维配置的空隙的引线框的部分由虚线部分870标示。因为实例装置800包含用于包封芯片810和线接合830的封装870,所以层500的孔隙由聚合化合物填充。优选地,封装870由在模制工艺中形成且通过聚合处理硬化的如环氧类热固性聚合物的聚合化合物制成。通过具有随机三维配置的孔隙的多孔层500来改良封装870的聚合化合物与引线框之间的粘合。其它装置可具有由多孔层500覆盖的引线框的更多和更大区域。

举例来说,在半导体技术中,所描述的实施例适用于具有低和高引脚数的有源半导体装置,如晶体管和集成电路,且还适用于引线框衬垫上的有源组件与无源组件的组合。

作为另一实例,所描述的实施例适用于硅基半导体装置,且还适用于使用砷化镓、氮化镓、硅锗和行业中所采用的任何其它半导体材料的装置。此外,所描述的实施例适用于具有悬臂式引线的引线框且适用于qfn型和son型引线框。

此外,所描述的实施例适用于引线框,适用于待接合到非金属主体的层合衬底和任何其它衬底或支撑结构。

在权利要求书的范围内,对所描述实施例的修改是可能的,且其它实施例是可能的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1