一种双碳载氧硫化铜钴尖晶石型碳材料、制备方法及应用与流程

文档序号:22475940发布日期:2020-10-09 22:15阅读:99来源:国知局
一种双碳载氧硫化铜钴尖晶石型碳材料、制备方法及应用与流程
本发明涉及一种双碳载氧硫化铜钴尖晶石型碳材料的制备与应用,属于电化学氧化还原双功能催化剂的制备和应用
技术领域

背景技术
:为应对日益严重的环境污染和能源短缺问题,在太阳能、风能、核能等清洁能源中,电化学能源存储和转换系统逐渐被开发和深入研究。特别是锌-空气可充电电池,由于其工作温度低、比能高、环境友好、寿命长等特点引起各国研究者的关注。为了追求更卓越的氧还原(oer)和氧析出(orr)性能,人们通常使用铂碳(pt/c)、二氧化钌(ruo2)和二氧化铱(iro2)等贵金属催化剂,但由于这些催化剂极其昂贵,且储量极低,因此需要开发更为廉价的双功能催化剂[sustainableenergyfuels,2018,2(1):91-95]。同样地,由于单一元素的贵金属催化剂无法提供均衡的orr和oer催化活性,因此过渡金属催化剂(氧化物和硫化物、氮化物等)成为研究热点。其中,过渡金属硫化物和尖晶石型硫碳复合催化剂由于其突出的催化性能而收到青睐。此外,杂原子(n,s)掺杂碳骨架也因其较低的材料成本、优异的催化活性和较大的表面积而被广泛使用。但由于催化剂的稳定性还有待提高,所以无法完全取代贵金属催化剂[inorgchemfront,2016,3(12):1501-1509]。因此,开发高效、稳定、低成本的双功能催化剂,探索其催化机理能够更有效地解决双功能催化剂的问题。随着氮掺杂碳材料的发展,包括吡啶-n、石墨-n和金属-氮配位(m-nx)材料的研究取得了很大进展。研究显示,独特而奇异的结构会产生大量的缺陷和活性位点,对提高催化剂orr的性能起着重要作用。其中,硫作为杂原子掺杂后,使得金属硫化物有了更加优异的oer性能并且增强了cnts和金属硫化物之间的界面相互作用[advfunctmater,2014,24(38):5956-5961]。此外,硫的掺杂可以增加吡啶-n的含量。因此,cnts和石墨烯中n和s的共掺杂结构的协同效应加速了电催化反应速率,暴露出更多的活性位点,这可以极大地促进orr和oer的双功能性能。然后将尖晶石形式的过渡金属co加入到具有优异电活性的杂原子(n,s)掺杂的碳材料中,其高自旋co3+也会显著提高催化剂的oer性能。另一方面,铜可以表现出仿生化学性,添加铜和钴基催化剂将提供额外的协同性能,激活催化中心和影响氧化还原电位[acsapplmaterinter,2019,11(4):3937-3945]。与单金属体系相比,双金属合金具有更好的催化活性,且双金属的偶联协同作用在能量转换领域具有优异的电化学性能。因此,在杂原子(n,s)掺杂碳材料中合成具有丰富孔洞和大比表面积的cu和co双金属合金,对设计具有显著性能的双功能电催化剂具有重要意义。技术实现要素:本发明所要解决的技术问题是:提供一种具有双功能活性的双碳载氧硫化铜钴尖晶石型碳材料的制备方法。为了解决上述问题,本发明提供了一种双碳载氧硫化铜钴尖晶石型碳材料((cu,co)3os3@cnt-c3n4)的制备方法,其特征在于,包括以下步骤:步骤1):将尿素放入石英碗中,置于马弗炉中煅烧制备c3n4;步骤2):将co(no3)2·6h2o和cu(no3)2·6h2o加入含有氨水和乙醇的去离子水中,再加入硫粉,超声分散,获得混合溶液;步骤3):将c3n4和cnt加入到聚四氟乙烯内衬中,然后加入步骤2)得到的混合溶液;步骤4):将聚四氟乙烯内衬放入到水热反应釜中,利用烘箱升温进行水热反应;步骤5):将步骤4)反应得到的溶液用乙醇、去离子水洗涤多次,得到的黑色粉末样品烘干;步骤6):将步骤5)得到的样品在管式炉氮气条件下高温煅烧,除去杂质,自然冷却至室温后得到双碳载氧硫化铜钴尖晶石型碳材料。优选地,所述步骤1)中的煅烧条件为:氮气条件下,以2.5℃/min速率升温至550℃,保温3h。优选地,所述步骤2)中co(no3)2·6h2o与cu(no3)2·6h2o的质量比为2:1;所述混合溶液中氨水、乙醇、去离子水的体积比为1:5:30;所述硫粉与混合溶液的比例为1g:30~40ml。优选地,所述步骤3)中c3n4与cnt的质量比为1:1。优选地,所述步骤4)中水热反应条件为:密封条件下,在160℃的烘箱中反应6h。优选地,所述步骤5)中分别用乙醇和去离子水离心洗涤3次;所述烘干的温度为60℃。优选地,所述步骤6)中煅烧的条件为:在氮气条件下,以5℃/min速率升温至350℃,保温1h。本发明还提供了上述双碳载氧硫化铜钴尖晶石型碳材料的制备方法制备的双碳载氧硫化铜钴尖晶石型碳材料。优选地,所述材料的平均尺寸为3.4nm,且其具有析氧/析氢催化活性。本发明还提供了上述双碳载氧硫化铜钴尖晶石型碳材料((cu,co)3os3@cnt-c3n4)在制备锌空电池阴极催化剂中的应用。本发明在c3n4和碳纳米管材料表面负载氧硫化铜钴纳米颗粒以形成双金属和双掺杂来同步提升复合材料的电催化氧还原以及析氧能力。本发明与现有的技术相比,具有的有益效果是:(1)本发明采用简单的水热法一步获得orr/oer复合材料,通过使用含氮的c3n4和多壁碳纳米管作为氮源和碳源,在前驱体中引入钴盐和铜盐,并加入硫粉作为硫源,经碳化后可制得“蜂巢状”的纳米级碳材料。免去了高温煅烧过程中引入硫源的不稳定性及复杂性,制备过程清洁环保,可重复性好,并且能够规模化制备。(2)本发明针对c3n4易团聚的特点,本发明利用硫元素与氮元素共掺杂的效应,将c3n4薄片分散,呈现出一种“蜂巢状”的结构,这种特殊的结构极大地增加了比表面积和接触面积,更有利于反应的进行。(3)本发明在前驱体的制备中加入钴盐和铜盐,并在水热反应中与硫粉反应生成尖晶石型的碳材料,相比于单金属碳材料,cu和co双金属的协同效应使得催化剂有着更加优秀的双功能性能。此外,硫原子置换氧原子形成氧空穴,可增加更多的反应活性位点。因而制备出的双碳载氧硫化铜钴尖晶石型碳材料(cu,co)3os3@cnt-c3n4具有优异的双功能特性,并且应用于锌空电池表现出更高的稳定性和循环性能。(4)本发明合成的双碳载氧硫化铜钴尖晶石型碳材料在电化学orr和oer测试中,其orr性能可达0.80v,oer性能可达1.66v,电势差为0.86v。附图说明图1为(cu,co)3os3@cnt-c3n4催化剂不同比例sem图的对比图;图2为实施例1-5的orr性能示意图;图3为实施例1-5的oer性能示意图。具体实施方式为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。性能测定:本发明实施例产物的微观形貌通过tem(jeoljem-2100fsystem),sem(hitachis-4800)来进行测试,元素分析利用xps((rbdupgradedphie5000cecsasystem(perkinelmer))来进行测定。半电池性能测试利用三电极体系在辰华chi760d电化学工作站上进行测试。单电池测试在ct2001a蓝电电池测试系统上进行。本发明实施例中使用试剂的厂家及规格如表1所示。表1试剂名称生产厂家规格六水合硝酸钴国药集团化学试剂有限公司分析纯六水合硝酸铜国药集团化学试剂有限公司分析纯沉降硫(硫粉)国药集团化学试剂有限公司化学纯尿素国药集团化学试剂有限公司分析纯氨水国药集团化学试剂有限公司化学纯多壁碳纳米管中科时代纳米10-20nm实施例1本实施例提供了一种双碳载氧硫化铜钴尖晶石型碳材料((cu,co)3os3@cnt-c3n4)的制备方法,具体制备步骤如下:步骤1:将5g尿素放入石英碗中,置于马弗炉中,空气条件下以2.5℃/min速率升温至550℃,保温3h,制备出淡黄色的c3n4备用;步骤2:将0.582gco(no3)2·6h2o和0.242gcu(no3)2·6h2o加入混合有1ml氨水、5ml乙醇和30ml去离子水中,再加入1g硫化钠,超声分散30分钟后获得混合溶液;步骤3:将0.05gc3n4和0.05gcnt加入到聚四氟乙烯内衬中,再向聚四氟乙烯内衬中加入步骤2得到的混合溶液;步骤4:将聚四氟乙烯内衬放入到水热反应釜中,利用烘箱升温至160℃,保温6h,进行水热反应;;步骤5:将步骤4反应得到的溶液分别用乙醇和去离子水离心3次,得到黑色粉末样品在烘箱中60℃烘干过夜;步骤6:将步骤5烘干后的样品置于管式炉中,在氮气条件下,以5℃/min速率升温至350℃,保温1h,自然冷却至室温后,得到双碳载氧硫化铜钴尖晶石型碳材料(cu,co)3os3@cnt-c3n4。实施例2本实施例提供了一种双碳载氧硫化铜钴尖晶石型碳材料((cu,co)3os3@cnt-c3n4)的制备方法,具体制备步骤如下:步骤1:将5g尿素放入石英碗中,置于马弗炉中,空气条件下以2.5℃/min速率升温至550℃,保温3h,制备出淡黄色的c3n4备用;步骤2:将0.582gco(no3)2·6h2o和0.242gcu(no3)2·6h2o加入混合有1ml氨水、5ml乙醇和30ml去离子水中,再加入1g硫粉,超声分散30分钟后获得混合溶液;步骤3:将0.05gc3n4和0.05gcnt加入到聚四氟乙烯内衬中,再向聚四氟乙烯内衬中加入步骤2得到的混合溶液;步骤4:将聚四氟乙烯内衬放入到水热反应釜中,利用烘箱升温至160℃,保温6h,进行水热反应;;步骤5:将步骤4反应得到的溶液分别用乙醇和去离子水离心3次,得到黑色粉末样品在烘箱中60℃烘干过夜;步骤6:将步骤5烘干后的样品置于管式炉中,在氮气条件下,以5℃/min速率升温至350℃,保温1h,自然冷却至室温后,得到双碳载氧硫化铜钴尖晶石型碳材料(cu,co)3os3@cnt-c3n4(如图1所示)。图1中,(a)使用硫粉进行硫化得到的目标产物(命名为(cu,co)3os3@cnt-c3n4)催化剂2μm的sem图;(b)使用硫粉进行硫化得到的目标产物命名为((cu,co)3os3@cnt-c3n4)催化剂500nm的sem图。从图1中(a)可以观察到催化剂整体呈“蜂巢状”的碎枝结构,而从图1中(b)可以发现c3n4与cnt很好地交织在一起,且c3n4没有出现明显的团聚现象,这些凹凸不平的“蜂巢”结构可以暴露出更大的比表面积和接触面积,可以促进电解质的渗透,暴露出更多的活性位点,从而提高催化剂的电催化活性。实施例3本实施例提供了一种双碳载氧硫化铜钴尖晶石型碳材料(cuco2s4@c3n4-cnt)的制备方法,具体制备步骤如下:步骤1:将5g尿素放入石英碗中,并将石英碗置于马弗炉中,在空气条件下,以2.5℃/min速率升温至550℃,保温3h,制备出淡黄色的c3n4备用;步骤2:将0.582gco(no3)2·6h2o和0.242gcu(no3)2·6h2o加入混合有1ml氨水、5ml乙醇和30ml去离子水中,再加入1g硫代硫酸钠,超声分散30分钟后获得混合溶液;步骤3:将0.05gc3n4和0.05gcnt加入到聚四氟乙烯内衬中,再向聚四氟乙烯内衬中加入步骤2得到的混合溶液;步骤4:将聚四氟乙烯内衬放入到水热反应釜中,利用烘箱升温至160℃,保温6h,进行水热反应;;步骤5:将步骤4反应得到的溶液分别用乙醇和去离子水离心3次,得到黑色粉末样品在烘箱中60℃烘干过夜;步骤6:将步骤5烘干后的样品置于管式炉中,在氮气条件下,以5℃/min速率升温至350℃,保温1h,自然冷却至室温后,得到双碳载氧硫化铜钴尖晶石型碳材料(cu,co)3os3@cnt-c3n4。实施例4本实施例提供了一种双碳载氧硫化铜钴尖晶石型碳材料((cu,co)3os3@cnt-c3n4)的制备方法,具体制备步骤如下:步骤1:将5g尿素放入石英碗中,置于马弗炉中,在空气条件下以2.5℃/min速率升温至550℃,保温3h,制备出淡黄色的c3n4备用;步骤2:将0.582gco(no3)2·6h2o和0.242gcu(no3)2·6h2o加入混合有1ml氨水、5ml乙醇和30ml去离子水中,再加入1g硫代乙酰胺,超声分散30分钟后获得混合溶液;步骤3:将0.05gc3n4和0.05gcnt加入到聚四氟乙烯内衬中,再向聚四氟乙烯内衬中加入步骤2得到的混合溶液;步骤4:将聚四氟乙烯内衬放入到水热反应釜中,利用烘箱升温至160℃,保温6h,进行水热反应;;步骤5:将步骤4反应得到的溶液分别用乙醇和去离子水离心3次,得到黑色粉末样品在烘箱中60℃烘干过夜;步骤6:将步骤5烘干后的样品置于管式炉中,在氮气条件下,以5℃/min速率升温至350℃,保温1h,自然冷却至室温后,得到双碳载氧硫化铜钴尖晶石型碳材料(cu,co)3os3@cnt-c3n4。实施例5本实施例提供了一种双碳载氧硫化铜钴尖晶石型碳材料((cu,co)3os3@cnt-c3n4)的制备方法,具体制备步骤如下:步骤1:将5g尿素放入石英碗中,并将石英碗置于马弗炉中,在空气条件下,以2.5℃/min速率升温至550℃,保温3h,制备出淡黄色的c3n4备用;步骤2:将0.582gco(no3)2·6h2o和0.242gcu(no3)2·6h2o加入混合有1ml氨水、5ml乙醇和30ml去离子水中,加入1g硫脲,超声分散30分钟后获得混合溶液;步骤3:将0.05gc3n4和0.05gcnt加入到聚四氟乙烯内衬中,再向聚四氟乙烯内衬中加入步骤2得到的混合溶液;步骤4:将聚四氟乙烯内衬放入到水热反应釜中,利用烘箱升温至160℃,保温6h,进行水热反应;;步骤5:将步骤4反应得到的溶液分别用乙醇和去离子水离心3次,得到黑色粉末样品在烘箱中60℃烘干过夜;步骤6:将步骤5烘干后的样品置于管式炉中,在氮气条件下,以5℃/min速率升温至350℃,保温1h,自然冷却至室温后,得到双碳载氧硫化铜钴尖晶石型碳材料(cu,co)3os3@cnt-c3n4。图2中,分别为使用硫化钠、硫粉、硫代硫酸钠、硫代乙酰胺和硫脲作为硫化剂合成出的催化剂的orr性能示意图;图3中,分别为使用硫化钠、硫粉、硫代硫酸钠、硫代乙酰胺和硫脲作为硫化剂合成出的催化剂的oer性能示意图。图2、3可以看出,用硫粉作为硫化剂合成的(cu,co)3os3@cnt-c3n4的双功能性能最佳,其中orr性能为0.80v,oer性能为1.66v,电势差仅为0.86v。(cu,co)3os3@cnt-c3n4t具有显著的电催化活性和优异的电导率,这主要是由于双金属的耦合效应和n、s杂原子共掺杂的协同效应。其中,cu2+可取代co2+进入尖晶石晶相,而高自旋态的co3+可以提高oer活性。s元素的掺杂部分取代了o,暴露出更多的缺陷和无序基团,引入更多有益于orr性能的吡啶-n,并修饰了催化剂的形貌。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1