燃料电池用分隔件和燃料电池的制作方法_4

文档序号:9872607阅读:来源:国知局
>[0049]冷却水流路槽204形成于上述的燃料气体流路部分200a?202d之间,在第二连结流路槽202c的形成区域,在槽路径方向上,在外观上形成有封闭的冷却水流路槽204。然而,如图4所说明那样,在相邻的冷却水流路槽204之间,由各个燃料气体流路槽202中的深槽部206和浅槽部208形成有许多容许冷却水的通过的连通流路槽205,所以通过相邻的冷却水流路槽204之间的冷却水流通,从而冷却水也进入在槽路径方向上封锁的冷却水流路槽204,并沿着该冷却水流路槽流动。
[0050]本实施方式的阳极侧分隔件120在图3所示的分隔件中央区域121的左右两端的转换区域A具有图4?图5所说明的槽形态,所以在从冷却水供给孔126IN到冷却水排出孔1260T的范围,以如下方式使冷却水通过。图6是示意性地示出阳极侧分隔件120的冷却面侧的冷却水的流动的情形的说明图。如图所示,从冷却水供给孔126IN的各供给孔供给的冷却水经由连通流路槽205进入供给孔侧的转换区域A的冷却水流路槽204。此时的冷却水的流动接受引导凸部127和供给孔间凸部128(参照图4)处的整流,所以成为从位于阳极侧分隔件120的图中的右方下端侧的冷却水供给孔126 IN朝向大致斜上方的水流。
[0051 ]在转换区域A,容许相邻的冷却水流路槽204之间的冷却水通过的连通流路槽205(参照图4)已形成完毕,所以作为整体的冷却水的流动在转换区域A中转变为朝向冷却水排出孔1260T侧的水平方向。即,阳极侧分隔件120产生由作为深槽部206和浅槽部208的散布配置的结果的连通流路槽205引起的上述的冷却水的流动。除此之外,阳极侧分隔件120在从冷却水供给孔1261N向在分隔件中央区域121 (参照图3)的上下方沿水平延伸的各个冷却水流路槽204导入冷却水时,在燃料气体供给孔122IN侧的转换区域A,通过引导凸部127、供给孔间凸部128、以及散布配置于燃料气体流路槽202的深槽部206和浅槽部208改变从外缘部123的冷却水供给孔126IN供给的冷却水的流向,而将该冷却水扩散导入各个冷却水流路槽204的槽内。在该情况下,在分隔件中央区域121的燃料气体供给孔122IN侧的角部、即在分隔件中央区域121的上端侧且冷却水供给孔126IN侧的分隔件中央区域角部的周边,产生朝向分隔件中央区域121的上端侧的冷却水的流动。
[0052]对于与冷却水供给孔126IN侧的转换区域A相接的燃料气体流路200,构成该流路的各个燃料气体流路槽202沿着图中的水平方向(X方向)延伸。因而,在转换区域A转变为水平方向的冷却水沿着燃料气体流路槽202在水平方向上流动。并且,在冷却水排出孔1260T侧的转换区域A,作为整体的冷却水的流动方向因已述的连通流路槽205而成为从水平方向朝向各个冷却水排出孔1260T的方向,阳极侧分隔件120—边由引导凸部127和供给孔间凸部128(参照图4)对冷却水进行整流,一边将冷却水从冷却水流路槽204的槽内向燃料气体排出孔1220T引导。
[0053 ]接着,对分隔件中央区域121的燃料气体供给孔1221N侧的角部的流路结构进行详细叙述。图7是从冷却面侧俯视图5所示的燃料气体供给孔122IN侧的分隔件中央区域121的角部DC的流路槽的形成状况并进而将其放大示出的说明图,图8是从冷却面侧观察分隔件中央区域121的角部DC的流路槽的形成状况并将其放大示出的概略立体图。
[0054]如图所示,阳极侧分隔件120在分隔件中央区域121的上端沿着水平方向(X方向)延伸的端部第一槽202t具有下沉角凹处202tb。该下沉角凹处202tb与设置于燃料气体流路槽202的浅槽部208同样,深度比端部第一槽202t中的其他部分深度浅。在图7中,针对深度浅的浅槽部208和下沉角凹处202tb以剖面线示出了其位置。并且,下沉角凹处202tb与浅槽部208同样地,不与MEGA110接触,所以气体面侧的端部第一槽202t使燃料气体沿着该流路槽路径在X方向上通过。另外,阳极侧分隔件120使该下沉角凹处202tb的外周面、图8的图示中的顶棚面与浅槽部208同样地不与阴极侧分隔件130接触。因而,该下沉角凹处202tb将在图7中端部第一槽202t的下方沿着X方向延伸的冷却水流路槽204和比端部第一槽202t靠上方的外缘部123连通。由此,流入到端部第一槽202t的下方的冷却水流路槽204的冷却水能够经由下沉角凹处202tb通过而到达分隔件中央区域121的外缘的外缘部123侧。
[0055]接着,对燃料电池10中的单元电池100的层叠的情形进行说明。图9是沿着图3的C部放大部位的9-9线的燃料电池1的概略截面。如图所示,燃料电池1通过将多个单元电池100层叠而构成,单元电池100由阳极侧分隔件120和阴极侧分隔件130夹持MEGA110。此外,在该图9中,MEGAl 1以由阳极侧气体扩散层11OA和阴极侧气体扩散层11OC夹持MEAl 1D的形式示出,该MEA110D通过在电解质膜的两膜面接合有催化剂电极层而成。并且,各个单元电池100中,使阳极侧分隔件120向分隔件中央区域121的外侧延伸地配备的外缘部123(参照图2?图3)在MEGA110的发电区域112(参照图2?图3)的周缘与MEGA110接合。另外,各个单元电池100中,使已形成第一槽202和第二槽204的分隔件中央区域121与MEGAl 10的发电区域112相对地接合。由此,端部第一槽202t和其他部位的第一槽202的凹槽开口端被MEGA110封闭,作为如已述那样延伸的燃料气体流路槽202而发挥作用。
[0056]相邻地层叠的单元电池100中,一方的单元电池100的阳极侧分隔件120所具有的第一槽202的底部壁202s与另一方的单元电池100的阴极侧分隔件130接触。由此,第二槽204的凹槽开口端被封闭,第二槽204作为如已述那样延伸的冷却水流路槽204而发挥作用。另外,相邻地层叠的单元电池100中,一方的单元电池100的阴极侧分隔件130所具有的腿131与另一方的单元电池100的阳极侧分隔件120的外缘部123接触。由此,腿131在阳极侧分隔件120的外缘部123作为各个单元电池100的支柱而发挥作用。除此之外,相邻地层叠的单元电池100中,将冷却水用密封件302和围着氧化剂气体排出孔1240T的氧化剂用密封件301在分隔件上端侧夹持于一方的单元电池100的阳极侧分隔件120与另一方的单元电池100的阴极侧分隔件130之间,所述冷却水用密封件302围着包括燃料气体供给孔122IN和冷却水流路槽204所开口的一侧的冷却面侧的分隔件中央区域121和燃料气体排出孔12 20T的冷却水流通区域(参照图3)。此外,在分隔件下端侧,冷却水用密封件302和围着氧化剂气体供给孔124IN的氧化剂用密封件301由一方的单元电池100的阳极侧分隔件120和另一方的单元电池100的阴极侧分隔件130夹持,在分隔件左右两端,冷却水用密封件302和围着燃料气体供给孔122IN的燃料气体用密封件300和围着燃料气体排出孔1220T的燃料气体用密封件300由一方的单元电池100的阳极侧分隔件120和另一方的单元电池100的阴极侧分隔件130夹持。像这样层叠有单元电池100的燃料电池10利用未图示的紧固轴等在单元电池层叠方向上被紧固。
[0057]本实施方式的燃料电池10在图9所示的层叠和堆叠化、以及紧固完成的时刻,接受从各个单元电池100中的阳极侧分隔件120的冷却水流路槽204的空气排出处理。即,在阳极侧分隔件120中,从冷却水供给孔126IN供给冷却水。这样供给的冷却水在分隔件中央区域121中到达了占据冷却水供给孔126IN侧的转换区域A后,通过利用该区域中的连通流路槽205使冷却水在相邻的冷却水流路槽204之间通过,从而冷却水从冷却水供给孔126IN扩散地进入各个冷却水流路槽204。由此,冷却水遍及到燃料气体供给孔122 IN侧的转换区域A的整个区域,所以根据本实施方式的燃料电池10,能够以高效率冷却伴随发电运转而供给的燃料气体保持未消耗的状态最初到达而发电反应容易变得活跃的燃料气体供给孔122IN的周边区域。
[0058]假设此时在槽内残留有空气,则这样进入冷却水流路槽204的冷却水在沿槽路径在冷却水流路槽204流动的期间,推动槽内的空气流动。并且,该转换区域A中的冷却水的流动如在图6中所说明那样,从朝向来自冷却水供给孔126IN的流向即斜上方的朝向变换为朝向冷却水排出孔1260T侧的水平方向。在冷却水在转换区域A中的冷却水流路槽204和连通流路槽205流动时,即使遇到这些槽内的空气,也借助冷却水的流动推动地流动,但如已述那样冷却水一边改变其流向一边通过,所以冷却水的水流有可能产生淤水。因而,若在冷却水流路槽204残留有空气,则根据冷却水的流动的淤水的状况,有可能空气未被冷却水推出而保持残留于冷却水流路槽204的状态。并且,在燃料气体供给孔122IN侧的转换区域A中,如图4、图8所示,具有在上下方向(y方向)延伸的冷却水流路槽204、与之相连的连通流路槽205,所以槽内的空气有可能向端部第一槽202t侧上升。图1O是从冷却面侧俯视对比例的阳极侧分隔件120H中的分隔件中央区域121的角部DC的流路槽的形成状况并进而将其放大示出的说明图。
[0059]图示的对比例的阳极侧分隔件120H中,将分隔件中央区域121的上端的端部第一槽202t设为不具备下沉角凹处202tb的单纯的凹槽形状。于是,假定在该端部第一槽202t的下方延伸的冷却水流
当前第4页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1