非必要代谢产物生成减少的代谢工程微生物的制作方法

文档序号:455448阅读:338来源:国知局
专利名称:非必要代谢产物生成减少的代谢工程微生物的制作方法
在低增值(low-value added)产品如乙醇、乳酸、柠檬酸、氨基酸和许多抗生素的代谢生成中,底物上产品的产量(yield),即消耗每单位底物形成的产物量(经常表示为消耗每kg底物形成的kg产物)和生产率(productivity),即单位反应体积和单位时间内形成的产物的量(经常表示为每m3反应体积、每小时形成的kg产物)是待优化的最重要的设计变量。为了获得高产量和生产率,必须引导碳以高速率从底物流向目的代谢物,并同时使所有可能的副产物的生成最小。这经常需要对中心碳代谢(central carbon metabolism)进行改造,由于细胞代谢这一部分的严紧调控,这种改造是困难的(Nielsen,2001)。
已经优化了许多发酵方法,从而主要形成所需的产物。但是,由于细胞代谢的复杂性,形成副产物是不可避免的。由于至少三个原因,这是不希望的·副产物可能对人类或动物有毒。
·副产物可能在后续的分离工艺中引发问题或对环境有害。
·副产物的形成导致碳流失,从而使原材料上产物的总产量低于理论最大值。
如果人类或动物直接或间接暴露于产物,第一个原因明显是麻烦的。通常,在制备用于人消费的产品时,人们选择不生成毒素的细胞系统,如使用不生成黄曲霉毒素的真菌细胞来生产食品级酶,使用不生成内毒素的大肠杆菌(E.coli)菌株来生产药品。如果副产物具有与所需产物非常相似的特征,第二个原因是特别麻烦的,因为活性产物的分离需要非常有效的分离原理,其经常成本较高。在某些情况下,副产物还可以导致其他类问题,如钝化所需的产物。生产低增值产品如乙醇、乳酸、氨基酸和许多抗生素时,碳流失到副产物中的问题是主要的问题。
举例来说,通过酿酒酵母(S.cerevisiae)的厌氧发酵来生产乙醇时,主要问题是大量形成作为副产物的甘油。在厌氧生产条件下,由生物质(biomass)形成所形成的胞质NADH只能够通过甘油的形成重新转化为NAD+(van Dijken and Scheffers,1986)。有两个基因GPD1和GPD2编码甘油-3-磷酸脱氢酶,所述的甘油-3-磷酸脱氢酶在将二羟基丙酮-磷酸转化为甘油-3-磷酸的同时将NADH重新生成NAD+。破坏GPD2导致甘油形成的一定程度减少,并且比生长速率也显著下降(Valadi et al.,1998;Nissen et al.,2000a)。gpd1gpd2双缺失突变株不能在厌氧条件下生长,因此尝试了通过在gpd1gpd2双缺失突变株中表达棕色固氮菌(Azotobacter vinelandii)的细菌转氢酶(催化NADH+NADP+<=>NAD++NADPH)引入再生NAD+的新途径(Nissen etal.,2000a)。但转氢酶的表达不能恢复厌氧条件下的生长。EP-A-0733712中也公开了转氢酶表达的增加。
WO99/46363报道了磷酸化脱氢酶表达导致活细胞中的净转氢酶活性,目的是提高产物形成。因此,通过超表达编码磷酸化NADH依赖型谷氨酸脱氢酶(EC1.2.1.12)的GDH2,他们试图增加始于木糖和葡萄糖的乙醇形成。使用同一概念的另一尝试是Verho等(2002)所述的表达真菌NADPH依赖型甘油醛脱氢酶。但是,在木糖上的生长过程中,重组细胞还大量生成较多的木糖醇。
在提高乙醇生成和降低甘油形成的另一方法中,Nissen等(2000b)改造了酿酒酵母中的氨同化作用。通过破坏编码NADPH依赖型谷氨酸脱氢酶的GDH1和超表达GDH2,与生物质的合成相关的NADH的生成显著减少,导致甘油产量的40%以上的减小(Nissen et al.,2000b)。另外,通过用于氨同化作用并且同样为NADH依赖型的GS-GOGAT通路在酿酒酵母中的超表达,实现了甘油产量的减小和乙醇产量的增加(Nissen et al.,2000b)。乙醇产量的这种增加缘自GS-GOGAT通路中ATP的额外消耗。该实例说明通过改造代谢的其他部分,具体通过调节氧化还原代谢可以实现通过中心碳代谢的流的再次定向,并且该方法对于提高其他产物的生成也是有作用的,因为NADPH对生物合成的供应经常限制生成能力。当几乎只有NADPH用作细胞内生物合成中的电子供体时,NADH主要用来产生自由能(经常以ATP中的高能磷酸键形式)。在某些条件下,如酿酒酵母在可发酵糖上厌氧生长,形成不能用于产生ATP的过量NADH,这导致形成副产物,主要是甘油。
Valverde等(1999)公开了经人工改造来表达含豌豆(Pisum sativum)GapN基因的cDNA的E.coli菌株,所述的Pisum sativum GapN基因编码非磷酸化甘油醛-3-磷酸脱氢酶GAPN或GAPDHN(EC 1.2.1.9)。该菌株中编码NAD依赖型磷酸化甘油醛-3-磷酸脱氢酶GAPDH的天然Gap-2基因通过插入物失活。发现GAPN的表达重新赋予该菌株在糖上厌氧生长的能力,但是该菌株仍不能进行厌氧发酵。
本发明现提供了一种代谢工程微生物(metabolically engineeredmicro-organiam),其具有可操作的第一代谢途径,其中在NAD作为第一种酶辅因子的反应中,第一代谢物转化为第二代谢物,所述的反应步骤产生NAPH;其中在第二种酶催化的反应中,所述的第二代谢物转化成至少一种其他代谢物,并且具有可操作的第二代谢途径,其特征在于关于催化NADP为辅因子、NADPH为产物的不可逆反应的第三种酶,酶活性超过天然水平,其中在没有所述第二种酶的参与下,所述的第一代谢物转化为所述的另一代谢物。
在上述的本发明微生物中,所述的第一代谢途径优选为天然途径。
在某些优选的实施方案中,所述的第一种酶是磷酸化脱氢酶。
在某些优选的实施方案中,包括前文所参考的实施方案中,所述的第二种酶是激酶。
在某些优选的实施方案中,包括在前面两段中所参考的实施方案中,所述的第三种酶是非磷酸化脱氢酶,例如所述的第三种酶是GAPN(EC 1.2.1.9)。
磷酸化脱氢酶第一种酶的例子是GAPDH(EC 1.2.1.12)。
在某些优选的实施方案中,包括上文参考的所有实施方案中,编码所述第三种酶的至少一拷贝基因序列已经重组导入到所述微生物中。
优选的是,编码所述第三种酶的基因序列可操作地连接于表达信号,所述的表达信号不与所述微生物中的所述基因序列天然相关。
本发明的微生物优选为酵母。其可以是生成乙醇的发酵酵母。其可以是酿酒酵母菌株。
更通常地说,微生物可以是属于酵母属(Saccharomyces)的物种,如酿酒酵母、S.Kluyveri、葡萄酒酵母(S.bayanus)、少孢酵母(S.exiguus)、S.sevazzi、葡萄汁酵母(S.uvarum);属于克鲁维酵母属(Kluyveromyces)的物种,如乳酸克鲁维酵母(K.lactis)、K.marxianus var marxianus、耐热克鲁维酵母(K.thermotolerans);属于假丝酵母属(Candida)的物种,如产朊假丝酵母(C.utilis)、热带假丝酵母(C.tropicalis);属于毕赤酵母属(Pichia)的物种,如P.stipidis、甲醇酵母(Pichia Pastoris)、P.sorbitophila或其他酵母物种,如汉逊氏德巴利酵母(Debaromyces hansenii)、多形汉逊酵母(Hansenula polymorpha)、适冷性海洋酵母(Yarrowia lipolytica)、接合酵母(Zygosaccharomyces rouxii)或粟酒裂殖酵母(Schizosaccharomyces pombe)。
对于其他的微生物(非酵母),非穷举的适当微生物的例子包括大肠杆菌(Escherichia coli)、谷氨酸棒杆菌(Corynebacterium glutamicum)、黑曲霉(Aspergillus niger)、泡盛曲霉(Aspergillus awamori)、米曲霉(Aspergillus oryzae)、构巢曲霉(Aspergillus nidulans)、产青霉菌(penicillium chrysogenum)、米根霉(Rhizopusoryzae)。
本发明包括基因转化的、含有与表达信号可操作连接的编码GAPN的一个或多个拷贝的异源DNA序列并对GAPDH(EC 1.2.12)具有功能性天然或异源表达能力的微生物。
在另一个方面中,本发明包括非必要代谢产物生成减少的代谢产物的生产方法,包括培养如上所述的本发明微生物。非必要代谢产物可以是甘油、乙酸或氨基酸,也可以是微生物分泌的其他代谢物。
所需的产物可以是乙醇、乳酸、柠檬酸、氨基酸或抗生素。
因此,本发明可以用于提高微生物体内乙醇的生成,也提高乙醇之外的代谢物的生成。因此,Porro等(1999)描述了在酵母中通过去除丙酮酸脱羧酶活性和表达乳酸脱氢酶异源活性来生成乳酸。在丙酮酸向乳酸的转化中,再生NAD+,和丙酮酸向乙醇的总体转化情况一样。因此,糖向乳酸的总体转化和糖向乙醇的转化具有高度相似性,所以本发明对乳酸的生成也具有积极效果。
在丝状真菌黑曲霉对柠檬酸的生成中,糖向柠檬酸的转化有NADH的净形成,即在甘油醛-3-P脱氢酶和丙酮酸脱氢酶的部位产生NADH。通过表达GAPN,可以用蛋白质合成所需的NADPH的净形成置换NADH的部分净形成。因此,以其他方式如通过戊糖磷酸途径(糖转化为二氧化碳,同时形成NADPH)产生NADPH形式的氧化还原力(power)的糖重新导向柠檬酸的形成,导致在糖上的产物的更高产量。类似的推理同样适用于其他代谢物如琥珀酸和苹果酸的生成。
在许多氨基酸的生成中,如谷氨酸棒杆菌对赖氨酸的生成中,氨基酸来源于中心碳代谢中的前体代谢物。因此,在细菌中,赖氨酸来源于草酰乙酸,还来源于丙酮酸或磷酸烯醇式丙酮酸。在糖向前体代谢物的转化中,存在有NADH的净生成,因此糖向赖氨酸的总体转化涉及NADH的净生成。在草酰乙酸向赖氨酸的转化中,存在有NADPH的净消耗(某些情况下,间接通过使用谷氨酸,其需要消耗NADP从2-酮戊二酸再生)。因此,GAPN的表达导致糖向赖氨酸的总体转化中NADH的净形成减少和NADPH的净消耗减少。类似的推理同样适用于其他氨基酸如异亮氨酸、苏氨酸和苯丙氨酸的合成。
在许多抗生素的生成中,如产青霉菌对青霉素的生成中,糖向抗生素的总体转化中也有NADH的净生成和NADPH的净消耗。对于这些过程,表达GAPN也将是有利的。
增加GAPN表达可以有利地和调节(增强或抑制)一种或多种其他酶表达或活性联合。上面已经提到了酵母中GAPN表达和乳酸脱氢酶表达之间的相互作用。通常,本发明可以用于改进戊糖的代谢。本发明可以用于提高木糖吸收,减少木糖醇分泌。在许多微生物中,木糖代谢涉及将木糖转化为木糖醇的木糖还原酶(XR)、将木糖醇转化为木酮糖的木糖醇脱氢酶(XDH),最后是将木酮糖磷酸化为进入戊糖磷酸途径的木酮糖-5-磷酸的木酮糖激酶。XR涉及NAPDH(使用NAD+和NADP+二者作为辅因子的酶,但它对NADP+具有偏向性)的形成,而XDH涉及NADH的消耗。因此,在吸收木糖时存在有NADPH的净消耗和NADH的净形成。所以,如果GAPN表达与木糖还原酶、木糖脱氢酶和木糖醇激酶表达相结合,增加GAPN表达会导致木糖吸收增加。
可以通过向微生物中导入一个或多个拷贝的、带有异源启动子或置于天然启动子序列的控制之下的酶的DNA编码序列,提供GAPN或另一种所述第三种酶的表达。合适的是,编码序列和有效表达信号以多拷贝质粒形式导入。
在优选的实施方案中,本发明特别针对功能性细胞中生成过多NADH的问题和NADPH供应受限制的问题。使细胞减少NADH形成的情况下增加NADPH的形成。例如,这通过在细胞中表达非磷酸化NADP+依赖型甘油醛-3-磷酸脱氢酶(GAPN)(EC1.2.1.9),以此作为改变细胞中氧化还原代谢的手段来实现。
GAPN催化甘油醛-3-磷酸和NADP+向3-磷酸甘油酸和NADPH的不可逆氧化。在多数细胞中,甘油醛-3-磷酸向3-磷酸甘油酸的转化仅由两种酶NAD+依赖型甘油醛-3-磷酸脱氢酶(GAPDH)(EC 1.2.1.12)和磷酸甘油酸激酶(PGK)(EC 2.7.2.3)的依次作用来催化,将NAD+和ADP转化为NADH和ATP(参见

图1)。将甘油醛-3-P转化为3-P-甘油酸的途径的净化学计量关系为GAPN甘油醛-3-磷酸+NADP+→3-磷酸甘油酸+NADPHGAPDH+PGK甘油醛-3-磷酸+NAD++ADP+P=3-磷酸甘油酸+NADPH+ATP因此,当与GAPDH和PGK催化的总反应相比时,GAPN催化的反应生成一个NADPH,而非生成一个NADH和一个ATP。
甘油醛-3-磷酸向3-磷酸甘油酸的转化是主要产能途径糖酵解的一部分,因此当细胞生长在含己糖或戊糖的基质上时该反应总是活跃的。
通过控制微生物细胞中gapN的表达量,可以对甘油醛-3-磷酸向3-磷酸甘油酸的转化中应有多大部分经由GAPN进行控制。因此,通过控制消耗一个NADH和ATP时形成一个NAPDH的量,可以操纵氧化还原代谢。
下面的实施例参照附图,其中图1说明实施例8中获得的关于生物质、葡萄糖和木糖浓度曲线(profile)的结果(表示木糖的符号为实心圆圈和空心菱形,两条曲线紧密相重叠);图2说明实施例8中获得的关于乙醇、木糖醇、甘油和乙酸浓度曲线(profile)的结果。(闭合的和开放的方框符号用于表示乙醇和乙酸。下面的闭合和开放方框限定的曲线为乙酸。上面的闭合和开放方框限定的曲线为乙醇。)为了在下面的实施例中进行说明,将含突变链球菌(streptococcus mutans)中非磷酸化NADP+依赖型甘油醛-3-磷酸脱氢酶基因(gapN)的核苷酸序列在酿酒酵母中于多拷贝质粒上表达。所得的菌株特征在于能够厌氧性地批量培养在己糖上(实施例3)和木糖上(实施例8),其中厌氧性地批量培养在己糖上是用于乙醇生产的典型方法。在实施例5中测定实施例1的gapN菌株和携带空质粒的参照株中NADP+依赖型甘油醛-3-磷酸脱氢酶活性。只能在gapN菌株中测定到GAPN活性,该活性约为NAD+依赖型甘油醛-3-磷酸脱氢酶活性的10%。
当与含空质粒的菌株相比较时,实施例1中gapN菌株的生长速率不受GAPN活性表达的影响。GapN菌株生成少43%的甘油,和多3%的乙醇。在实施例8中实现了乙醇生成的更大增加。
在厌氧生长过程中酿酒酵母形成甘油来维持胞质氧化还原平衡。在厌氧条件下,作为生成生物质和有机酸的结果生成的NADH只有通过形成甘油来氧化成NAD+,因为呼吸是不可能的,且乙醇的形成是一个氧化还原中性的步骤。因此甘油的形成是一个氧化还原问题,通过将gapN导入到酿酒酵母中,通过GAPN转化的每分子甘油醛-3-磷酸将减少一分子甘油的生成。通过具有足够高的通过GAPN的流可以完全消除甘油的生成,使流重新导向乙醇和/或生物质,从而增加乙醇产量。
通过在细胞中表达gapN来增加用于生物合成的NADPH的量,可以在NADPH供应有限的情况下增加诸如蛋白质的产物的生成。
示例性方法的优点包括·可以实现产量的更大变化。
·只需要一个遗传性改变。
·酶活性只影响其所催化的特定反应和氧化还原代谢——对代谢的其他部分没有影响,因此生长速率不受影响。
·可以消除用酵母生产乙醇的过程中副产物甘油的生成。
实施例1GAPN在酿酒酵母中的表达菌株用酿酒酵母(M4054,S288C MATa ura3gap1)来构建参照菌株和GAPN菌株。为了长期维持,含质粒的菌株在基本培养基(见下文)上的摇瓶培养物中生长至静止期。加入无菌甘油至浓度为20%(体积/体积)之后,于-80℃分装保存。这些冷冻的贮液用于在具有基本培养基的平板上获得单菌落(Verduyn et al.,1990),该平板保存于4℃,2周内用于预培养物接种。
参照菌株的构建通过电穿孔,将含URA3基因和TPI1启动子的空pYX212 2μ高拷贝载体转化到酿酒酵母(M4054)中。
GAPN菌株的构建gapN在含URA3基因和TPI1启动子的pYX212 2μ高拷贝载体上表达。通过共转染以及EcoRI消化的pYX212和由突变链球菌PCR扩增的gapN之间的同源重组,直接在酿酒酵母中构建所述的质粒。使用Expand High Fidelity(Roche)、与pYX212中TPI1启动子加上gapN第一部分相同的一个引物(gapN-START-EcoRI-TPI启动子5′-CTA CAA AAA ACA CAT ACA GGA ATT CATGAC AAA ACA ATA TAA AAA TTA TG)、与pYX212的MCS和包括终止密码子的agpN最后部分相同的第二引物(gapN-STOP-NcoI-BamHI-AvrII-ApaI 5′-GGG CCCTAG GAT CCA TGG TGAATT TTA TTA TTT GAT ATC AAA TAC GAC GG)对突变链球菌的基因组DNA进行PCR。因此gapN的ORF克隆到了pYX212中EcoRI和NcoI之间、TPI1启动子的下游。原起始密码子TTG替换为ATG,以使在酿酒酵母中的翻译成为可能。通过诊断PCR证实构建体。
实施例2摇瓶培养和预培养在带挡板的棉花塞住的500ml Erlenmeyer烧瓶中进行厌氧摇瓶培养,以筛选所获得的转化子。用于厌氧批量培养的预培养物生长在不具有挡板的类似烧瓶中。这些烧瓶每个含100ml规定的矿质培养基(defined mineralmedium),其含有7.5g/L(NH4)2SO4;14g/L KH2PO4;0.5g/L MgSO4·7H2O;50μl/Lantifoam(Sigma A-8436);2%(w/vol)葡萄糖;痕量金属(15mg/L EDTA;4.5mg/LZnSO4·7H2O;0.84mg/L MnCl2·2H2O;0.30mg/L CoCl2·6H2O;0.30mg/L CuSO4·H2O;0.40mg/L Na2MoO4·2H2O;4.5mg/L CaCl2·2H2O;3.0mg/L FeSO4·7H2O;1.0mg/LH3BO3和0.10mg/L KI)和维生素(0.05mg/L D(-)生物素;1.0mg/L D(+)泛酸钙;1.0mg/L烟酸;25mg/L肌醇;1.0mg/L盐酸硫胺(thiamine chloride hydrochloride);1.0mg/L盐酸吡哆醇(pyridoxol hydrochloride)和0.20mg/L对氨基苯甲酸)。矿质培养基的pH用NaOH调至6.5,和葡萄糖溶液分别高压灭菌。高压灭菌后,将维生素溶液通过除菌过滤加入到烧瓶中。将摇瓶和预培养物从平板培养物接种一个单菌落,于30℃以150rpm生长。使预培养物生长至指数期,用于接种厌氧批量培养物至起始浓度为1mg CDW/L。观察到了参照菌株和GAPN菌株的生长。
实施例3厌氧批量培养在工作体积为2升的良好控制的实验室发酵罐(B.Braun Biotech,Germany)中进行培养。使用规定的矿质培养基(Verduyn et al.,1990),其每升含40g葡萄糖;5.0g(NH4)2SO4;3.0g KH2PO4;0.5g MgSO4·7H2O;和摇瓶培养和预培养中所述的痕量金属和维生素。加入300μl/L antiform(Sigma A-8436),以免产生泡沫,向培养基添加酿酒酵母厌氧生长所必需的420mg/L Tween 80和10mg/L麦角固醇。葡萄糖溶液和矿质培养基分别高压灭菌,然后和含维生素的无菌滤液以及首先溶解在煮沸的无水乙醇中的Tween 80和麦角固醇一起加入到发酵罐中。
用速度为600rpm的搅拌器于30℃进行培养,然后以每分钟400ml的流量通氮气。为了使O2向培养物的扩散最小,生物反应器安装Norprene管。溶氧浓度用MettlerToledo极谱电极测定,并保持在检测限之下。通过自动添加4M KOH使pH保持在5.0。生物反应器安装冷凝器,放出的气体导向气体分析仪(INNOVA,Denmark),以测定CO2的含量。参照菌株和GAPN菌株发酵过程中的生物质浓度如图2所示。发现GAPN菌株的最大比生长速率和参照菌株的相同。
实施例4分析细胞外代谢物用来测定葡萄糖、乙醇、甘油、乙酸、丙酮酸和琥珀酸浓度的培养物样品在取样后马上通过0.45μm的醋酸纤维素滤器(Osmonics)进行过滤,将滤液于-20℃冷冻,待进行进一步分析。通过在保持于65℃的、用5mMH2SO4以0.6ml/min的速率洗脱的Aminex HPX-87Hm柱(Bio-Rad)上进行高压液相层析来测定代谢物的浓度。用Waters 486可变波长紫外检测器(Tumable AbsobanceDetector)在210nm处通过分光光度法检测乙酸和丙酮酸。用Waters 410示差折射计(Differential Refractometer)通过折射测定法检测葡萄糖、乙醇、甘油和琥珀酸。厌氧发酵过程中代谢物的测定值示于图3中。代谢物的终浓度列在下文中。可以看出GAPN菌株生成了更多的乙醇和更少的甘油。
根据葡萄糖的测定值,计算向不同代谢物的总体转化产量,如下文所示。
观察到乙醇产量提高了3%,甘油产量下降了40%。
实施例5测定酶活性如
等(2002)所述借助Fastprep FP120仪(SavantInstruments,New York)生成无细胞提取物。
在30℃,用分光光度计(来自Hewlett Packard的、带有Chemstation软件的HP8353 UV-VIS系统)在340nm处跟踪NADPH或NADH生成来分析酶活性。如Crow和Wittenberger(1979)所述测定1ml反应混合物中的甘油醛-3-磷酸脱氢酶活性。为了测定非磷酸化NADP+依赖型甘油醛-3-磷酸脱氢酶活性,反应混合物含有125mM三乙醇胺/HCl缓冲液(pH8.3)、1mM NADP+、5mM 2-巯基乙醇和无细胞提取物。用含125mM三乙醇胺/HCl缓冲液(pH8.3)、1mM NAD+、5mM半胱氨酸/HCl和无细胞提取物的反应混合物测定NAD+依赖型甘油醛-3-磷酸脱氢酶活性。通过加入DL-甘油醛-3-磷酸(从DL-甘油醛-3-磷酸二乙基乙缩醛制备,Sigma G-5376)至终浓度2mM来启动反应。通过Lowry法,使用无脂肪酸的BSA(Sigma A-6003)作为标准品来测定无细胞提取物中的蛋白质含量。酶活性的分析结果如下所示。可以看出参照菌株中没有NADP依赖型甘油醛脱氢酶的活性,而GAPN菌株中有一定的低活性(约为总甘油醛脱氢酶活性的10%)。
实施例6 GapN的测序为了证实2μ高拷贝数质粒中表达的gapN编码基因中没有发生突变,对含gapN的质粒部分进行测序。插到质粒中和其中实际存在的gapN序列为“atg aca aaa caa tataaa aat tat gtc aat ggc gag tgg aag ctt tca gaa aat gaa attaaa atc tac gaa ccg gcc agt gga gct gaa ttg ggt tca gtt cca
gca atg agt act gaa gaa gta gat tat gtt tat gct tca gcc aagaaa gct caa cca gct tgg cga tca ctt tca tac ata gaa cgt gctgcc tac ctt cac aag gta gca gat att ttg atg cgt gat aaa gaaaaa ata ggt gct gtt ctt tcc aaa gag gtt gct aaa ggt tat aaatca gca gtc agc gaa gtt gtt cgt act gca gaa atc att aat tatgca gct gaa gaa ggt ctt cgt atg gaa ggt gaa gtc ctt gaa ggcggc agt ttt gaa gca gcc agc aag aaa aaa att gcc gtt gtt cgtcgt gaa cca gta ggt ctt gta tta gct att tca cca ttt aac taccct gtt aac ttg gca ggt tcg aaa att gca ccg gct ctt att gcggga aat gtt att gct ttt aaa cca ccg acg caa gga tca atc tcaggg ctc tta ctt gct gaa gca ttt gct gaa gct gga ctt cct gcaggt gtc ttt aat acc att aca ggt cgt ggt tct gaa att gga gactat att gta gaa cat caa gcc gtt aac ttt atc aat ttt act ggttca aca gga att ggg gaa cgt att ggc aaa atg gct ggt atg cgtccg att atg ctt gaa ctc ggt gga aaa gat tca gcc atc gtt cttgaa gat gca gac ctt gaa ttg act gct aaa aat att att gca ggtgct ttt ggt tat tca ggt caa cgc tgt aca gca gtt aaa cgt gttctt gtg atg gaa agt gtt gct gat gaa ctg gtc gaa aaa atc cgtaa aaa gtt ctt gca tta aca att ggt aat cca gaa gac gat gcagat att aca ccg ttg att gat aca aaa tca gct gat tat gta gaaggt ctt att aat gat gcc aat gat aaa gga gcc act gcc ctt actgaa atc aaa cgt gaa ggt aat ctt atc tgt cca atc ctc ttt gataag gta acg aca gat atg cgt ctt gct tgg gaa gaa cca ttt ggtcct gtt ctt ccg atc att cgt gtg aca tct gta gaa gaa gcc att
gaa att tct aac aaa tcg gaa tat gga ctt cag gct tct atc tttaca aat gat ttc cca cgc gct ttt ggt att gct gag cag ctt gaagtt ggt aca gtt cat atc aat aat aag aca cag cgc ggc acg gacaac ttc cca ttc tta ggg gct aaa aaa tca ggt gca ggt att caaggg gta aaa tat tct att gaa gct atg aca act gtt aaa tcc gtcgta ttt gat atc aaa”,其与突变链球菌的gapN序列相同。
实施例7GAPN在酿酒酵母的木糖代谢株中的表达菌株用酿酒酵母(MATa SUC2 MAL2-8 pADH-XYL1 pPGK-XYL2 pPGK-XKS1ura3-)来构建表达GAPN的酿酒酵母的木糖代谢株。为了长期维持,含质粒的菌株在基本培养基(见下文)上的摇瓶培养物中生长至静止期。加入无菌甘油至浓度为20%(体积/体积)之后,于-80℃分装保存。这些冷冻的贮液用于在具有基本培养基的平板上获得单菌落(Verduyn et al.,1990),该平板保存于4℃,2周内用于预培养物接种。
参照菌株的构建通过LiAc法将含URA3基因和TPI1启动子的空pYX212 2μ高拷贝载体转化到酿酒酵母(MATa SUC2 MAL2-8 pADH-XYL1 pPGK-XYL2pPGK-XKS1 ura3-)中,在具有葡萄糖的合成性最低限度氨培养基上选择含有pYX2URA3 2μ质粒的阳性克隆。
GAPN菌株的构建通过LiAc法,将gapN编码基因前面含有URA3基因和TPI1启动子的pYX212 2μ高拷贝载体转化到酿酒酵母(MATa SUC2 MAL2-8 pADH-XYL1pPGK-XYL2 pPGK-XKS1 ura3-)中,并在具有葡萄糖的合成性最低限度氨培养基上选择URA 2μ中的TPI1启动子下游含gapN的阳性克隆。
在厌氧摇瓶中葡萄糖上测试多个转化子的生长速率和GAPN活性。选择具有未改变的生长速率和高GAPN活性的转化子,命名为Xy1GAPN菌株——参照菌株称作Xy1参照菌株。两种菌株具有位于预期范围内的类似木糖还原酶和木糖脱氢酶活性。
实施例8酿酒酵母的木糖代谢株的厌氧批量培养在工作体积为4升的良好控制的实验室发酵罐中进行培养。使用规定的矿质培养基(Verduyn et al.,1990),其每升含20g葡萄糖;50g木糖;5.0g(NH4)2SO4;3.0g KH2PO4;0.5g MgSO4·7H2O;和摇瓶培养和预培养中所述的痕量金属和维生素。加入500μl/Lantiform(SigmaA-8436),以免产生泡沫,向培养基添加酿酒酵母厌氧生长所必需的420mg/L Tween80和10mg/L麦角固醇。葡萄糖溶液和矿质培养基分别高压灭菌,然后和含维生素的无菌滤液以及首先溶解在煮沸的无水乙醇中的Tween 80和麦角固醇一起加入到发酵罐中。
用速度为500rpm的搅拌器于30℃进行培养,然后以每分钟800ml的流量通氮气。为了使O2向培养物的扩散最小,生物反应器安装Norprene管。通过自动添加2MNaOH使pH保持在5.0。生物反应器安装冷凝器,放出的气体导向气体分析仪(INNOVA,Denmark),以测定CO2的含量。Xy1参照菌株(闭合的符号)和Xy1 GAPN菌株(开放的符号)的生物质、葡萄糖和木糖的浓度曲线如图1所示。Xy1参照菌株(闭合的符号)和Xy1 GAPN菌株(开放的符号)的乙醇、木糖醇、甘油和乙酸的浓度曲线如图2所示。发现两种菌株中葡萄糖和木糖吸收大致相同,而Xy1 GAPN菌株与Xy1参照菌株相比生成更多的乙醇,更少的木糖醇和更少的甘油。发酵50小时之后,获得了代谢产物的下列浓度
这对应于乙醇浓度的15%增加,甘油浓度的45%减小和木糖醇浓度的45%减小。
在葡萄糖上的生长过程中,Xy1 GAPN菌株生成稍多的乙醇和较少的甘油(和实施例4的结果类似)。在木糖上的生长过程中,估算了总的产量系数,如下所示。
这些产量系数大致对应于乙醇产量的30%增加、甘油产量的40%降低和木糖醇产量的几乎50%降低。
实施例9酿酒酵母的木糖代谢株的厌氧恒化器培养在恒定工作体积为1.0升和稀释速率为0.05h-1(等于比生长速率)的良好控制的2升夹套生物反应器(B.Braun Biotech,Melsungen,Germany)中获得厌氧稳态恒化器培养物。用速度为500rpm的搅拌器于30℃进行培养,然后通纯氮气(0.2L·min-1)。通过自动添加2M NaOH使pH保持在5.0。为了使O2向培养物的扩散最小,生物反应器安装Norprene管。溶氧浓度用Mettler Toledo极谱电极测定,并保持在检测限之下。生物反应器安装冷凝器(5℃),放出的气体导向气体分析仪(INNOVA,Denmark),以测定CO2的含量。稳态假设处于开始连续培养后经历至少5个停留时间的时候,并通过跨2个停留时间的两个测定值处恒定的(±2%)生物质浓度、代谢物浓度和二氧化碳放出速率证实。向培养物供应与实施例8所述类似的规定培养基。
用于恒化器培养的预培养物于30℃、以160rpm在具有挡板的棉花塞住的500mlErlenmeyer烧瓶中生长16-24小时,所述烧瓶每个含有与发酵罐中类似的pH为6.5的100ml培养基,除了不同浓度的葡萄糖(20g·L-1)、(NH4)2SO4(7.5g·L-1)、KH2PO4(14g·L-1)和antifoam(50μl·L-1),并且不加Tween或麦角固醇。预培养物接种自30℃生长的平板培养物。连续培养物接种20ml指数生长的预培养物。
在稳态的恒化器培养物中,测定了乙醇、甘油和木糖醇的浓度,结果如下所示。
根据对糖的测定,计算向不同代谢物的总转化产量,如下所示。
观察到乙醇产量提高了24%,甘油产量减小了几乎60%,木糖醇产量减小了33%。
在该说明书中,除非另外特别指明,“或”一词用作在满足所述条件中一个或两个时返回真值的操作符(operator),不同于需要只满足一个条件的操作符“排他性或”。“包含”一词的意思是“包括”,而非“由……组成”。
参考文献Nielsen,J.(2001).Metabolic engineering.Appl.Microbiol.Biotechnol.55,263-283.
Nissen,T.L.,Hamann,C.W.,Kielland-Brandt,M.C.,Nielsen,J.,and Villadsen,J.(2000a).Anaerobic and aerobic batchcultivations of Saccharomyces cerevisiae mutants impaired inglycerol synthesis.Yeast 16,463-474.
Nissen,T.L.,Kielland-Brandt,M.C.,Nielsen,J.,andvilladsen,J.(2000b).Optimization of ethanol production inSaccharomyces cerevisiae by metabolic engineering of theammonium assimilation.Metabol.Eng.2,69-77.
Porro,D.,Bianchi,M.M.,Brambilla,L.,Menghini,R.,Bolzani,D.,Carrera;V.,Lievenze,J.,Liu,C.L.,Ranzi,B.M.,Frontali,L.,and Alberghina,L.(1999).Replacement of ametabolic pathway for large-scale production of lactic acidfrom engineered yeasts.Appl.Environ.Biotechnol.65,4211-4215.
Valadi,H.,Larsson,C.,and Gustafsson,L.(1998).Improvedethanol production by glycerol-3-phosphate dehydrogenasemutants of Saccharomyces cerevisiae.Appl.Microbiol.Biotechnol.50,434-439.
Valverde,F.,Losada,M.,and Serrano,A.(1999).Engineering acentral metabolic pathwayglycolysis with no netphosphorylation in an Escherichia coli gap mutantcomplemented with a plant GapN gene.FEBS Lett.449,153-158.Van Dijken,J.P.and Scheffers,W.A.(1986).Redox balances inthe metabolism of sugars by yeasts.FEMS Microbiol.Rev.32,199-224.
Verduyn,c.,Postma,E.,Scheffers,W.A.,and van Dijken,J.P.(1990).Physiology of Saccharomyces cerevisiae in anaerobicglucose-limited chemostat cultures.J.Gen.Microbiol.136,395-403.
Verho,R.,Richard,P.,Jonson,P.H.,Sundqvist,L.,Londesborough,J.,and Penttil,M.(2002)Identification ofthe first fungal NADP-GAPDH from Kluyveromyces lactis.Biochem.41,13833-13838
权利要求
1.一种代谢工程微生物,其具有可操作的第一代谢途径,其中在NAD作为第一种酶辅因子的反应中,第一代谢物转化为第二代谢物,所述的反应步骤产生NADH;其中在第二种酶催化的反应中,所述的第二代谢物转化成至少一种其他代谢物,并且具有可操作的第二代谢途径,其特征在于关于催化NADP为辅因子、NADPH为产物的不可逆反应的第三种酶,酶活性超过天然水平,其中在没有所述第二种酶的参与下,所述的第一代谢物转化为所述的另一代谢物。
2.权利要求1所述的微生物,其中所述的第一代谢途径为天然途径。
3.前述权利要求中任意一项所述的微生物,其中所述的第一种酶是磷酸化脱氢酶。
4.权利要求1或权利要求2所述的微生物,其中所述的第二种酶是激酶。
5.权利要求3所述的微生物,其中所述的第三种酶是非磷酸化脱氢酶。
6.权利要求5所述的微生物,其中所述的第三种酶是GAPN(EC 1.2.1.9)。
7.权利要求6所述的微生物,其中所述的第一种酶是GAPDH(EC 1.2.1.12)。
8.前述权利要求中任意一项所述的微生物,其中编码所述第三种酶的至少一拷贝基因序列已经重组导入到所述微生物中。
9.前述权利要求中任意一项所述的微生物,其中编码所述第三种酶的基因序列可操作地连接于表达信号,所述的表达信号不与所述微生物中的所述基因序列天然相关。
10.前述权利要求中任意一项所述的微生物,其是酵母。
11.权利要求10中所述的微生物,其是属于酵母属(Saccharomyces)、克鲁维酵母属(Kluyveromyces)、假丝酵母属(Candida)、毕赤酵母属(Pichia)、德巴利氏酵母属(Debaromyces)、汉逊酵母属(Hansenula)、海洋酵母属(Yarrowia)、接合酵母属(Zygosaccharomyces)或裂殖酵母属(Schizosaccharomyces)属的微生物。
12.权利要求10中所述的微生物,其是菌株酿酒酵母(Saccharomyces cerevisiae)、S.Kluyveri、葡萄酒酵母(S.bayanus)、少孢酵母(S.exiguus)、S.sevazzi、葡萄汁酵母(S.uvarum)、乳酸克鲁维酵母(Klyuveromyces lactis)、K.marxianus varmarxianus、耐热克鲁维酵母(K.thermotolerans)、产朊假丝酵母(Candida utilis)、热带假丝酵母(C.tropicalis)、Pichia.stipidis、甲醇酵母(P.Pastoris)、P.sorbitophila、汉逊氏德巴利酵母(Debaromyces hansenii)、多形汉逊酵母(Hansenulapolymorpha)、适冷性海洋酵母(Yarrowia lipolytica)、接合酵母(Zygosaccharomycesrouxii)或粟酒裂殖酵母(Schizosaccharomyces pombe)。
13.基因转化的、含有与表达信号可操作连接的编码GAPN的一个或多个拷贝的异源DNA序列并对GAPDH(EC 1.2.12)具有功能性天然或异源表达能力的微生物。
14.非必要代谢产物生成减少的所需代谢产物的生产方法,包括培养前述权利要求中所述的微生物。
15.权利要求14所述的方法,其中所需的产物是乙醇、乳酸、柠檬酸、氨基酸或抗生素。
16.权利要求14或权利要求15所述的方法,其中所述的非必要代谢产物是甘油、乙酸或氨基酸。
全文摘要
一种代谢工程微生物,其具有可操作的第一代谢途径,其中在NAD作为适合为磷酸化脱氢酶的第一种酶的辅因子的反应中,第一代谢物转化为第二代谢物,所述的反应步骤产生NADH。在适合为激酶的第二种酶催化的反应中,所述的第二代谢物转化成至少一种其他代谢物。该微生物具有可操作的第二代谢途径,其特征在于关于适合为非磷酸化脱氢酶如GAPN的、催化NADP为辅因子、NADPH为产物的不可逆反应的第三种酶,酶活性超过天然水平。在没有所述第二种酶的参与下,所述的第一代谢物转化为所述的另一代谢物。
文档编号C12N1/19GK1717481SQ200380104133
公开日2006年1月4日 申请日期2003年11月25日 优先权日2002年11月25日
发明者克里斯托弗·布罗, 比吉特·雷根伯格, 延斯·尼尔森 申请人:弗卢克索姆科学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1