一种等离子体仿生植入材料及其制备方法与流程

文档序号:22926149发布日期:2020-11-13 16:21阅读:78来源:国知局
一种等离子体仿生植入材料及其制备方法与流程

本发明涉及生物医用材料技术领域,特别涉及一种等离子体仿生植入材料及其制备方法。



背景技术:

钛(ti)是20世纪50年代走向工业化生产的一种重要金属,其性质优良,储量丰富,被誉为正在崛起的“第三金属”。由于综合性能优异,钛及钛合金材料在医疗行业得到广泛应用。目前用于外科植入物和矫形器械的金属材料主要包括不锈钢、钴基合金和钛合金三大系列,它们占整个生物材料产品市场份额的40%左右。与不锈钢和钴基合金相比,钛合金具有比重小、强度高、弹性模量较低、耐腐蚀、易加工以及较好的生物相容性等特点。20世纪中叶以来,以钛合金为主的医用金属材料开始在人体硬组织(髓内针、接骨板、接骨螺钉、椎间融合器等)的外科植入及人体软组织(包括心脑血管、外周血管及非血管如肝脏、胆道、尿道等)的介入治疗方面显示出独特的疗效,而钛合金人工关节、人工股骨头、牙种植体、血管内支架和心脏瓣膜等具有典型代表性的医疗器械产品的问世,极大改善和提高了患者的生活质量,克服了以往重大疾病只能单纯依靠药物治疗的不足。

等离子体是由带电的正粒子、负粒子组成的集合体,其中正电荷和负电荷的电量相等故称等离子体。等离子体成分多样,通常由光子、电子、基态原子或分子、激发态原子或分子以及正离子和负离子这六种基粒子构成。由于具有发光、粒子动能大、化学性质活泼等独特的物理化学性质,等离子体也常被称为物质的第四态。目前,已有多种与等离子体相关的技术诸如等离子体浸没处理、等离子体源离子注入、等离子体物理/化学气相沉积、微等离子体氧化等用于生物材料的功能构建。

现有技术中,专利cn201210431866.9提供了一种透明质酸改性的多孔钛涂层及其制备方法,透明质酸改性的多孔钛涂层采用生物化学改性方法,通过共价键接枝方式,在多孔钛涂层表面固定有透明质酸,这种方法所提供的透明质酸改性的多孔钛涂层,具有一定的稳定性和生物学性能,可改善钛涂层的临床效果;专利cn201710128008.x提出一种激光预处理与化学氧化复合制备钛合金表面仿生结构的方法,利用激光扫描钛合金表面,再将激光预处理后的钛合金放入无水乙醇中超声波清洗,获得表面具有仿生结构的钛合金,一定程度上提高材料的生物活性和耐蚀性及植入体的使用寿命。虽然以上技术所针对领域比较接近,设计思想各有特点,但这些方法都是基于化学方法,均不是基于等离子体物理方法而设计的,也不符合实现更高层次的组织与器官的“融合替代式”治疗的要求。

专利cn104841018a在钛合金基材上采用机械合金化和烧结相结合的方式,在钛合金基材上制备了以钛合金为基体,钛合金和羟基磷灰石为中间层,羟基磷灰石为生物表层的涂层。此方法能制备梯度涂层,但是技术工艺复杂,陶瓷层并不是中间层原位生长的,粘结性能差;专利cn105458271a在钛合金基材上采用机械合金化和热处理相结合的方法,在钛合金基材上制备了钛基复合材料,涂层中包含有均匀分布的tic为增强相。该制备方法中,涂层和基体有良好的冶金结合。但是这种复合涂层耐磨性差,涂层成分复杂,成本较高。

因此现有技术存在着技术工艺复杂,粘结性能差,复合涂层耐磨性差以及成本高的技术问题。

因此,发明一种基于等离子体的仿生钛合金植入材料及其制备方法来解决上述问题很有必要。



技术实现要素:

本发明的目的在于:克服现有技术工艺复杂,粘结性能差,复合涂层耐磨性差以及成本高的技术问题,提供一种等离子体仿生植入材料及其制备方法,以解决上述背景技术中提出的实现更高层次的组织与器官的“融合替代式”治疗、提高材料的相容性与抗菌性,从而获得适用于生物体的仿生钛合金材料的问题。

为实现上述目的,本发明提供如下技术方案:

一种等离子体仿生植入材料,所述仿生钛合金植入材料以具有低弹性模量的多孔钛合金材料为基体,通过等离子体多维深度仿生构建和表面多功能化处理,形成三维多孔主体结构和多重表面功能的表层结构。

优选的,所述低弹性模量的弹性模量范围为2gpa-40gpa。

优选的,所述多孔钛合金材料为纯钛或医用钛合金。

优选的,所述多孔钛合金材料为α型钛合金、α+β型钛合金、β型钛合金或镍钛形状记忆钛合金。

优选的,所述多重表面功能包括但不限于促成骨或抗感染。

一种等离子体仿生植入材料的制备方法,包括以下步骤:

s1、纯钛或医用钛合金粉体金属熔融快速成型;

s2、纯钛或医用多孔钛合金新型微等离子体氧化处理;

s3、纯钛或医用多孔钛合金等离子体浸没与离子注入处理;

s4、多功能仿生钛合金等离子体表面改性优化。

优选的,步骤s1包括以下分步骤:

s11、准备电子束熔融设备工作舱;

s12、平铺一层微细纯钛或医用钛合金粉薄层;

s13、高能电子束经偏转后聚焦在焦点处产生高密度能量;

s14、扫描纯钛或医用钛合金粉薄层在局部微小区域内产生高温;

s15、电子束扫描将纯钛或医用钛合金微粒熔融;

s16、电子束连续扫描形成线状和面状金属层;

s17、重复所述s12-s16步骤,形成多层所述线状和面状金属层直至形成完整所述多孔钛合金材料。

优选的,步骤s2包括以下分步骤:

采用加载超声辅助装置的新型微等离子体氧化处理方法在多孔钛合金材料内部涂覆具有促成骨作用的活性羟基磷灰石成分。

优选的,步骤s3包括以下分步骤:

s31、脉冲空载与等离子体浸没阶段;

s31、等离子体氛围中的活性离子与靶台上样品的最表层发生作用。

s32、脉冲加载与离子注入阶段。

s32、由于等离子体处于零电势而靶台上样品处于负电势,等离子体中的正离子通过此电势差注入目标样品,进而使得表面改性层具有百纳米至微米级别的深度。

优选的,步骤s4包括以下分步骤:

s41、支架整体及表面微结构设计;

新型等离子体表面改性处理,在多孔材料表面引入活性官能团及注入具有成骨活性的钙、锶等元素;

s42、仿生钛合金植入材料等离子体表面修饰优化。

针对性地在材料表层注入银、锌、铈等具有抗菌消炎作用的金属元素。与现有技术相比,本发明一种等离子体仿生植入材料及其制备方法,具有如下有益效果:

依托新型等离子体处理技术,对钛合金进行多维深度功能化处理,形成多孔结构的钛合金基础材料,并提高仿生钛合金材料的抗菌性与相容性,从而获得适用于生物体的仿生钛合金材料。

附图说明

图1为本发明基于等离子体的仿生钛合金植入材料功能化处理示意图;

图2为本发明等离子体浸没离子注入处理示意图;

图3为本发明一种等离子体仿生植入材料的制备方法流程图;

图4为本发明一种等离子体仿生植入材料的制备方法分步骤s1流程图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面参考图1-4描述根据本发明实施例一种等离子体仿生植入材料及其制备方法。

一种等离子体仿生植入材料,所述仿生钛合金植入材料以具有低弹性模量的多孔钛合金材料为基体,通过等离子体多维深度仿生构建和表面多功能化处理,主体为三维多孔结构,形成成骨、抗感染等多重表面功能的表层结构。

进一步的,在上述技术方案中,所述仿生钛合金植入材料的弹性模量为2gpa-40gpa。

进一步的,在上述技术方案中,多孔钛合金材料为纯钛或医用钛合金。

一种等离子体仿生植入材料的制备方法,包括以下步骤:

s1、医用钛合金粉体金属熔融快速成型。

s2、医用多孔钛合金新型微等离子体氧化处理。

s3、医用多孔钛合金等离子体浸没离子注入处理。

s4、多功能仿生钛合金等离子体表面改性优化。

进一步的,在上述技术方案中,步骤s1包括以下分步骤:

s11、准备电子束熔融设备工作舱;

s12、平铺一层微细医用钛合金粉薄层;

s13、高能电子束经偏转后聚焦在焦点处产生高密度能量;

s14、扫描医用钛合金粉薄层在局部微小区域内产生高温;

s15、电子束扫描将钛合金微粒熔融;

s16、电子束连续扫描形成线状和面状金属层;

s17、重复以上s12-s16步骤,形成多层金属层直至形成完整医用多孔钛合金。

进一步的,在上述技术方案中,步骤s3包括以下分步骤:

s31、脉冲空载(等离子体浸没)阶段。等离子体氛围中的活性离子与靶台上样品的最表层发生作用。

s32、脉冲加载(离子注入)阶段。由于等离子体处于零电势而靶台上样品处于负电势,等离子体中的正离子通过此电势差注入目标样品,进而使得表面改性层具有百纳米至微米级别的深度。

进一步的,在上述技术方案中,步骤s4包括以下分步骤:

s41、支架整体及表面微结构设计。

s42、仿生钛合金植入材料等离子体表面修饰优化。

图1为本发明基于等离子体的仿生钛合金植入材料功能化处理示意图。新型等离子体处理方法与金属三维打印技术(电子束金属熔融快速成型)相结合,对多孔钛合金进行多维度及深层的功能构建,不仅将通过新型微等离子体氧化技术在多孔钛合金材料内部进行功能涂覆;还将进一步地应用非视距处理的等离子体浸没离子注入技术在多孔钛合金材料表面构建特定功能。

图2为本发明等离子体浸没离子注入处理示意图。等离子体浸没离子注入对样品的处理过程分为脉冲空载(等离子体浸没)和脉冲加载(离子注入)两个阶段:在脉冲空载阶段,等离子体氛围中的活性离子与靶台上样品的最表层发生作用;而在脉冲加载阶段,由于等离子体处于零电势而靶台上样品处于负电势,等离子体中的正离子通过此电势差注入目标样品,进而使得表面改性层具有百纳米至微米级别的深度。由于同时具备了等离子体浸没和离子注入的双重改性作用,等离子体浸没离子注入技术与传统的等离子体浸没技术相比具有改性深度较深、处理效果持久的显著优点。等离子体浸没离子注入处理过程中等离子体鞘层将包裹整个目标试样,基于此非视距(non-light-of-sight)特性即使是形貌复杂的试样也能够被全方位地处理,表面修饰效果均一。

图3为本发明一种基于等离子体的仿生钛合金植入材料的制备方法流程图。一种基于等离子体的仿生钛合金植入材料的制备方法分为以下四个步骤:(1)医用钛合金粉体金属熔融快速成型;(2)医用多孔钛合金新型微等离子体氧化处理;(3)医用多孔钛合金等离子体浸没离子注入处理;(4)多功能仿生钛合金等离子体表面改性优化。等离子体浸没离子注入处理改变仿生钛合金材料的表面参数属性以提高材料的相容性与抗菌性,从而获得适用于生物体的仿生钛合金材料。

图4为本发明一种基于等离子体的仿生钛合金植入材料的制备方法分步骤s1流程图。钛合金钛按显微组织类型可分为α型钛合金(如纯钛系列)、α+β型钛合金(如ti-6al-4v等)和β型钛合金(如ti-12mo-6zr-2fe等)以及镍钛形状记忆钛合金四大类。通过在钛及其合金中引入孔隙的方法,将各类钛合金制成具有多孔结构的钛合金材料。多孔钛合金不仅能够通过对孔隙率和孔隙大小的调整来调节其强度及弹性模量与自然骨相匹配,从而有效的减轻甚至消除应力屏蔽现象;其多孔的三维结构还将与人体骨组织具有一定的相似性,独特的孔状连通结构在有利于新骨组织长入的同时,还能够使体液和营养物质在孔隙中传输而促进组织再生。

采用金属三维(3d)打印方法制备多孔钛合金材料。金属三维打印又称为电子束金属熔融快速成型,是应用电子束作为热源来熔融金属粉的分层制造工艺。运用该项技术制造零件需要在真空环境下进行,电子束热源能使建造室在零件制造过程中保持在退火温度。零件建造的数据信息直接来源于计算机辅助软件(cad)文件。

本发明采用金属三维打印使得金属熔融快速成型,其工作原理为:首先将样品的三维立体模型按设定厚度切片分层,切分成若干具有一定厚度的二维图形,将这些二维信息导入电子束熔融设备中,然后在电子束熔融设备的工作舱内,先平铺一层微细金属粉薄层,利用高能电子束经偏转后聚焦在焦点处,产生高密度能量,使扫描到的金属粉层在局部微小区域内产生高温,将金属微粒熔融,通过电子束连续扫描,微小的金属熔池之间相互融合并凝固,连接形成线状和面状金属层,待第一层面的金属粉处理完成后,就会有特殊装置在刚刚完成的金属层上再铺另一层细微金属粉,重复以上过程,如此层层累积最后可形成一个完整的金属样品。利用该方法可以预先设计材料内部的空隙结构,并通过改变空隙的结构特征以实现多孔材料力学及连通功能的最优化。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1