溶胶凝胶法制备高强高导纳米弥散强化铜的制备方法

文档序号:9321057阅读:371来源:国知局
溶胶凝胶法制备高强高导纳米弥散强化铜的制备方法
【技术领域】
[0001]本发明涉及金属材料领域,特别涉及溶胶凝胶法制备纳米氧化铝弥散强化铜的制备方法。
【背景技术】
[0002]纳米弥散强化铜合金,又称氧化铝铜(Cu-Al2O3),是一种优异的高强、高导材料,可用做电气工程开关触桥、连铸机结晶器内衬、集成电路引线框架、大功率异步牵引电动机转子、电气化铁路接触导线(电车线)、热核实验反应堆(ITER)偏滤器垂直靶散热片、高脉冲磁场导体材料等,并且在这些领域有着其它材料不可替代的优势,比铬锆铜材料具有更优秀的高强高导及高温稳定性,是重要的新型备选材料。
[0003]由于纳米级Al2O3对基体铜的弥散强化作用,该合金具有高强度、高硬度、高导电率及高软化温度等特性。常温硬度高,随着温度升高,硬度下降幅度小,高温抗蠕变性能好。热、电传导率高,加工性能优良。软化温度高达930°C,导电率高达85% IACS,散热性能介于钨铜(220W/m.k)以及纯铜(390W/m.k)之间。强度高,疲劳性能和耐磨性能好。
[0004]常见的制备方法为内氧化法等。美国SCM公司采用内氧化法,已形成月产18吨、四种牌号(C15710、C15720、C15735、C15760) Cu-Al2O3的生产规模,含 Al 2030.2% 的铜合金,导电率达90 % IACS,弹性模量为108GPa,室温强度为500MPa。含Al2O3L 2 %的铜合金,导电率达80% IACS,弹性模量为140GPa,室温强度为620MPa。目前德国、俄罗斯、日本弥散强化铜合金均能工业化生产,而生产工艺仍然处于保密中。国内广州某研究院正在中等规模试验用内氧化法生产弥散强化铜。其它科研院、公司由于存在批量生产性能不稳定等问题,相继放弃该项目。因此,国内弥散强化铜棒材事实上依然依赖进口,在军用高端电真空和无冷却超强电流线圈、导体(如电磁炮元件)领域,受到国外的进口限制。
[0005]目前已有的材料及制备技术中,存在的主要问题是:质量不稳定,如内氧化法因氧扩散不完全造成质量不稳定,氧源如果不能完全还原,杂质氧会影响导电率、高温强度,特别是作为电真空元件的材料使用时会出现氢脆现象,出现裂纹;氧化铝分布不均匀;内氧化法工序复杂、成材率低使成本难以降低。因此,需要开发一种质量稳定、低成本、纳米氧化铝易均匀分布的新方法。

【发明内容】

[0006]发明目的:本发明的目的是提供一种成本低、短流程、微纳米氧化铝均匀分布、质量稳定的氧化铝弥散强化铜的制备方法。
[0007]本发明提供了溶胶凝胶法制备纳米弥散强化铜的方法,用硝酸铝与氨水反应,生成氢氧化铝胶体,将铜粉与胶体混合均匀后行星球磨,加热获得微纳米尺寸的纳米氧化铝,压制后烧结,然后一次冷加工、热处理,再冷加工至成品尺寸,获得微纳米氧化铝均匀分布的弥散强化铜的棒坯。
[0008]本发明采用的技术方案如下:
[0009]—种溶胶凝胶法制备高强高导纳米弥散强化铜的制备方法,包括铜和纳米Al2O3和杂质元素;各成分比例为:铜99.6-99.2wt.% ;纳米A1203:0.02-1.5wt.% ;杂质元素低于 0.06wt.%,成份包括铁、铅、硼,铁< 0.01wt%,铅< 0.01wt%j|K 0.008wt%,杂质元素。本合金中,添加了纳米Al2O3做为弥散强化相,具有熔点高、高温稳定性能好、硬度高,能以纳米级尺分布于铜基体中,在接近铜基体熔点的高温下也不会溶解或粗化,因此,可以有效地阻碍位错运动和晶界滑移,提高室温和高温强度,同时又不明显降低合金的导电性能。
[0010]本发明提供的一种氧化铝弥散强化铜的制备方法,包括以下步骤:
[0011](I)制备氢氧化铝胶体:硝酸铝与氨水反应生成氢氧化铝溶胶,PH = 9 ;
[0012](2)混合:加入尺寸20-80微米的铜粉于胶体中,充分搅拌30-50分钟后静置,得到沉淀物;
[0013](3)球磨:沉淀物装入行星球磨机中搅拌5-8小时,球料比为2:1,密封处理防止氧化。
[0014](4)微纳米氧化铝的形成:将球磨好的粉末放入真空炉内,加入2%木炭防止氧化并通入氩气保护,加热至300-400°C保温60-70分钟。
[0015](5)压制成型:将粉末在200_300MPa压强下保压20-30分钟,得到压制坯料。
[0016](6)致密性烧结:将压制坯料在940-990°C进行真空致密性烧结60_90分钟,随炉冷却。
[0017](7) 一次冷加工:将坯料在冷压机上变形30%以上,坯料的相对密度提高到97%以上。
[0018](8)热处理:将冷加工后的坯料于真空烧结炉内950°C _980°C真空再结晶热处理100-140分钟,快速水冷20秒。再结晶热处理过程中,坯料中的铜和氧化铝晶粒长大,微小的缺陷减少,塑性提高,相对密度提高到99%以上;而快速水冷能够充分发挥氧化铝弥散质点的强化作用,提高了产品的强度;该步骤能够一次性完成铜再结晶和氧化铝的α相晶型固溶,铜基体再结晶能够消除微观缺陷,氧化铝的α相晶型固溶能够改善产品的导电率和加工硬化率,实现产品的高强度。
[0019](9) 二次冷加工:将坯料变形50%以上加工至规定的尺寸,进一步提高棒坯强度。
[0020]与现有技术相比,本发明消除了内氧化法加入氧源的危害,没有引入杂质氧源而降低材料的导电率、高温强度等。胶体与铜粉达到分子级结合,形成的强化相氧化铝能均匀分布在铜粉中,性能稳定,无氧化物夹杂,成本低,适用于工业化连续生产。
【附图说明】
[0021]图1是溶胶凝胶法制备的氢氧化铝与铜粉的胶体。
[0022]图2是烧结后的扫描电镜形貌,表面含有纳米氧化铝颗粒。
【具体实施方式】
[0023]实施例1
[0024]硝酸铝2.4克中滴入氨水使PH = 9,反应生成氢氧化铝溶胶凝胶;加入尺寸50微米铜粉1600克于胶体中,充分搅拌30分钟后静置,得到沉淀物;沉淀物装入行星球磨机中搅拌5小时,球料比为2:1,密封处理防止氧化;将球磨好的粉末放入真空炉内,加入2%木炭防止氧化并通入氩气保护,加热至350°C保温60分钟;将粉末在200MPa压强下保压30分钟,冷加工后得到压制坯料。将压制坯料在950°C进行真空致密性烧结60分钟,得到致密性烧结坯料。将坯料在冷压机上变形30%,坯料的相对密度提高到97%以上。将冷加工后的坯料于真空烧结炉内950°C热处理100分钟,快速水冷15秒,提高产品的强度。将坯料压制变形75%后获得成品。产品经检测,性能指标为:洛氏硬度80HRB,抗拉强度620Mp,断后伸长率(短标距)10%,导电率78% IACS,软化温度860°C,具有高强高导铜合金材料的特点。
【主权项】
1.一种溶胶凝胶法制备高强高导纳米弥散强化铜的制备方法,包括以下步骤,其特征在于: (1)制备氢氧化铝胶体:硝酸铝与氨水反应生成氢氧化铝溶胶,PH= 9 ; (2)混合:加入尺寸20-80微米的铜粉于胶体中,充分搅拌30-50分钟后静置,得到沉淀物;(3)球磨:沉淀物装入行星球磨机中搅拌5-8小时,球料比为2:1,密封处理防止氧化; (4)形成微纳米氧化铝:将球磨好的粉末放入真空炉内,加入2%木炭防止氧化并通入氩气保护,加热至300-400°C保温60-70分钟; (5)压制成型:将粉末在200-300MPa压强下保压20-30分钟,得到压制坯料; (6)致密性烧结:将压制坯料在940-990°C进行真空致密性烧结60-90分钟,随炉冷却; (7)一次冷加工:将坯料在冷压机上变形30-50% ; (8)热处理:将冷加工后的坯料于真空烧结炉内940°C_970°C真空再结晶热处理100-140分钟,快速水冷15秒以下;(9)二次冷加工:将坯料加工成规定的尺寸,进一步提高棒坯强度,加工率为50-80%。
【专利摘要】本发明开发了一种溶胶凝胶法制备高强高导纳米弥散强化铜的制备方法。硝酸铝中与氨水反应生成氢氧化铝溶胶凝胶,与铜粉充分搅拌后进行行星球磨,放入真空炉内分解得到微纳米氧化铝,压制成型、真空致密性烧结后再冷变形,于真空烧结炉内950℃-980℃热处理100-140分钟,快速水冷20秒以提高产品的强度。最后将坯料加工成规定的尺寸获得成品。性能指标具有高强高导铜合金材料的特点。本方法的优点是消除了内氧化法加入氧源的危害,没有引入杂质氧源而降低材料的导电率、高温强度等。胶体与铜粉达到分子级结合,形成的强化相氧化铝能均匀分布在铜粉中,性能稳定,无氧化物夹杂,成本低。
【IPC分类】C22C1/05, C22C9/01
【公开号】CN105039768
【申请号】CN201510531502
【发明人】付亚波, 陈虹宇, 徐鑫磊, 王柳幸, 徐爱娇, 张平, 霍顔秋, 张梦贤
【申请人】付亚波, 台州学院
【公开日】2015年11月11日
【申请日】2015年8月26日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1