一种氧化铝陶瓷掺杂方法与流程

文档序号:11966101阅读:889来源:国知局
本发明涉及陶瓷材料生产工艺,尤其涉及一种陶瓷掺杂方法,可用于电气工程和机械工程领域中高强度陶瓷材料的制备。

背景技术:
已知一种以氧化锆和氧化铝为基质的陶瓷制品的制备方法,包括用上述氧化物超细粉末制备坯料,预烧制并随后在1400-1600℃下高温变形。根据发明所述,坯料在压力3-10MPa条件下高温变形,然后在残压不低于5·10-5mmHg和温度1500-1700℃条件下再结晶真空退火。其中,超细粉末混合物中氧化铝的含量组成为10-80wt.%(发明专利RU2304566)。已知一种氧化铝陶瓷的制备方法,其步骤为,将氧化铝和有机钛添加料混合,干燥,成型并烧制。根据发明所述,在混合过程中进一步加入有机锆化合物和水,各组分含量如下所示,wt.%:氧化铝96.0-97.8,有机钛化合物0.6-1.5,有机锆化合物0.6-1.5,水-其余量(发明专利证书SU1747424)。其中,在温度1400-1500℃条件下,通过加入以有机锆化合物形式存在的有机锆添加料,可以确保制备的陶瓷产品具有高强度性能。已知在技术特征上与本发明最接近的发明专利RU1793576,记载了一种陶瓷材料的组成及制备方法。含氧化镁,氧化钠,氧化硅,微量添加物和氧化铝的刚玉陶瓷粉末与部分稳定二氧化锆和氟化钙进行混合,各组分含量如下所示,wt.%:稳定二氧化锆5.0-15.0,氟化钙0.5-6.0,氧化镁0.2-0.4,氧化钠0.1-0.2,氧化硅0.1-0.2,微量添加物0.02-0.04,氧化铝78.16-94.08。陶瓷材料的制备方法如下:由超细粉末制备铸造料浆,料浆的组成如下,wt.%:粉末混合物85.5,粘合剂14.5(石蜡14,蜡0.5)。在压力1-4atm,料浆温度60-65℃条件下热铸成型,加热至90℃并以50℃/小时升温将填料中的粘合剂从氧化铝中预烧除,在空气中进行最后烧制。以上所有方法均使用二氧化锆来提高氧化铝陶瓷的强度,其不足之处将如下所述。在现代工业技术中,将超细二氧化锆引入氧化铝粉末的步骤在粉末状混合物制备工艺阶段完成。向混合物中加入工艺粘合剂会增加组分混合的不均匀性并造成诱发严重缺陷的风险,当进行烧结时在不均匀区域会出现不同的收缩率,引起应力及其它缺陷。在陶瓷体(料浆)制备过程中出现的缺陷,会进一步出现在制品成型(铸造)过程中,导致陶瓷本体变形并引起表面滑移。在具有较好强度陶瓷制品,特别是复杂组态陶瓷制品的再生产过程中,原料加工和成型过程中出现的缺陷将在根本上导致不同区域再生产过程的不可控性。使用热压法和热等静压法制备出的氧化铝基陶瓷具有极高强度,但是,这些方法成本昂贵,需要使用复杂的装置设备,并且受限于生产简单形状的产品。一般认为,高温烧制(烧结)工艺基本上能显示出,但不是决定,在制备产品料浆和坯料时奠定的材料的均匀性和一致性水平。

技术实现要素:
本发明的目的在于提供一种更加简单、经济的耐用陶瓷制备方法,可以制备出各种形状的陶瓷制品。本发明所达到的技术效果是,提高氧化铝陶瓷的强度并降低其强度值分散性。为实现上述目的,本发明提供了一种氧化铝陶瓷掺杂方法,包括用料浆制成坯料,去除工艺粘合剂和烧制,其中,按照本发明,在去除工艺粘合剂后,将坯料浸渍于硝酸氧锆ZrO(NO3)2×2H2O水溶液中,随后升温至400℃对其进行加热。采用硝酸氧锆水溶液浸渍可以使坯料内部的毛细多孔结构达到溶液饱和状态,从而使每个Al2O3晶粒表面都包裹一层溶液薄层。ZrO(NO3)2×2H2O盐中所含的水可以使溶液具有最大可能密度,从而使产品中含有高浓度二氧化锆以确保达到所需强度。随后升温至400℃对坯料进行加热以确保去除水分,将硝酸氧锆分解为二氧化锆以使得Al2O3晶粒表面生成均匀的单斜晶相ZrO2晶粒分布层,并去除分解反应的挥发性产物。在进一步温度为1600-1650℃的高温烧制中,二氧化锆晶粒转化为四方相并随着温度冷却至室温保存下来,这样可以提高陶瓷制品的强度,并降低其强度值分散性。在本发明中,二氧化锆以盐的水溶液形式被引入陶瓷半成品中,经成型并从中去除工艺粘合剂后陶瓷半成品即为陶瓷坯料。去除粘合剂后,具有毛细多孔结构的陶瓷半成品浸透硝酸氧锆ZrO(NO3)2×2H2O水溶液。接下来对陶瓷坯料进行梯度加热,以确保去除水分,将硝酸氧锆分解为二氧化锆并去除挥发性产物。水溶液中的硝酸氧锆处于分子分散状态(晶粒尺寸小于10-8m),并填补了氧化铝坯料所有漏洞和微漏洞。在热分解硝酸氧锆、去除水分和挥发性产物后,用这种方法得到的超细形态二氧化锆分布于陶瓷体内每个氧化铝晶粒的全表面上。水溶液组分中的二氧化锆的分布映射出了坯料的孔状结构。毛细管和孔洞中为自由空间,之前在料浆制备阶段,这些空间被氧化铝晶粒表面覆盖的工艺粘合剂所占据。在饱和性研究阶段,采用硝酸氧锆水溶液进行实验来确定饱和特性、坯料与溶液相互作用的特点以及坯料体中溶液分布的均匀性(不均匀性)。这些认知对于复杂组态陶瓷坯料水溶液饱和的可能性评估是必要的,并且最终用于具有简单和复杂形状的更高强度陶瓷制品制备的可能性评估。经实验方法和计算方法确认,坯料的毛细多孔结构完全充满硝酸氧锆与坯料在溶液中的位置(水平,垂直,倾斜)无关。溶液的完全充满是将这些毛细管和孔洞归为体系的基础,在此体系中液体(硝酸氧锆水溶液)表面呈现的形状由表面张力决定,很少受重力影响变形,即,毛细管势能远大于重力这意味着,有可能使复杂形状的陶瓷坯料同时达到硝酸氧锆饱和状态,且最终达到二氧化锆纳米粒子饱和状态,并有可能制备出具有更高强度的多样化陶瓷制品。硝酸氧锆经热分解后生成的二氧化锆纳米粒子为四方晶体,尺寸为数十纳米级,它能够起到提高陶瓷强度的作用。在本发明的研究过程中,没有发现任何方法具有本申请的技术特征总和,因此,可以认为,本发明所述方法符合“新颖性”的标准。本发明所提出的方法在工业规模上可实施,并可用于电气工程和机械工程领域中高强度陶瓷材料的制备,即,符合“工业实用性”的标准。附图说明图1是从陶瓷坯料中去除暂时性粘合剂的炉温-时间关系曲线图具体实施方式从陶瓷坯料中去除暂时性粘合剂的炉温-时间关系曲线图展示了本发明所申请的技术方案的实质。本发明提出的方法如下。首先采用符合基本技术要求的注浆成型方法制备坯料。去除暂时性粘合剂后,经部分烧结得到具有毛细多孔内部结构的陶瓷坯料。孔洞的形状,体积,立体结构是重复去除掉的暂时性粘合剂的形状、体积和立体结构,并且主要是由半径约为~10-7m的微孔和毛细管聚积而成。去除暂时性粘合剂后,将坯料浸渍于硝酸氧锆ZrO(NO3)2×2H2O水溶液中。在饱和过程中,水溶液充满坯料的毛细多孔内部结构,并稳固保留在毛细管及孔洞里。硝酸氧锆水溶液充满陶瓷坯料的毛细多孔内部空间,每个Al2O3晶粒表面都包裹着溶液薄层。随后升温至400℃对坯料进行加热,通过加热来实现去除水分,将硝酸氧锆分解为二氧化锆,并去除分解反应挥发性产物的目的。硝酸氧锆分解后会在Al2O3晶粒表面生成单斜晶相ZrO2超细晶粒。当进一步加热≥1200℃时,二氧化锆晶粒转化为四方相,并随着温度冷却至室温保存下来。陶瓷样品的烧制在约1600-1650℃温度下实现。这种氧化铝陶瓷掺杂方法的特点是,使用从盐的水溶液热解离释放出来的二氧化锆进行掺杂。生成的二氧化锆为超细形态并均匀的分布在陶瓷体中。使用锆盐水溶液可以解决下列问题:-二氧化锆直接被引入并均匀分布在氧化铝基质上;-形成的二氧化锆晶粒为超细形态;-确保制得的陶瓷结构均一化,并降低(消除)其中的缺陷,特别是孔洞缺陷;-确保引入可变量二氧化锆的可能性;-保持陶瓷材料中二氧化锆的四方相至室温;-降低内部应力水平;-降低强度值分散性;-提升陶瓷制品的强度和耐久性。以俄罗斯工业生产并广泛使用的陶瓷BK-94-1为实例,对本发明所提出的氧化铝陶瓷掺杂二氧化锆的方法进行实验。制备样品的料浆组成如下:-Al2O3含量95%wt.-密度2.6g/cm3-陶瓷粉体比表面积5500cm2/g-石蜡含量12.5%wt.-石蜡密度0.92g/cm3按本发明的方法加入约9%(按重量计)的二氧化锆,结果弯曲强度值从250-300MPa变为500-600MPa。从以最少投资实现强度特性显著提高(1.5倍)和尽可能整合现有技术的角度来看,我们开发出了一种热铸成型氧化铝陶瓷的新掺杂方法。申请人进行了氧化铝陶瓷的强化实验。实验在直径7±1mm,长度60±5mm的圆柱形样品上进行。此样品由工业品牌VK94-1料浆制备得到。参照俄罗斯标准采用三点弯曲法对样品进行实验,按照实验结果评估样品强度。在实验过程中,选择以下几个方面进行初步研究:-为去除暂时性粘合剂对样品进行预烧制的温度条件;-所需锆盐的量(大概);-在空气中对样品进行高温烧制的条件;控制组样品进行如下实验:-采用压力注浆法成型;-预烧制(为去除暂时性粘合剂,T最大=1050-1100℃);-锆盐溶液浸渍饱和,并样品干燥(T最大=400℃);-空气中高温烧制(T最大=1600-1650℃);-三点弯曲法强度测定实验。圆柱形(直径7±1mm,长度60±5mm)样品坯料由料浆品牌VK94-1制备而成,此料浆由87.5%(重量)陶瓷粉体和12.5%石蜡组成。料浆组合物的特性如下:按以下工艺条件采用压力注浆法成型:-在室温条件下注浆成型;-浆料温度90±2℃;-注浆成型的压力5.2-6.4kgf/cm2;-注浆成型的时间30±5sec.把料浆注入成型模具内并随后将压力降至大气压。然后脱模取出坯料。采用目视检测法检查是否具有可见缺陷。将制得的陶瓷坯料放置于陶瓷皿中,洒上矾土粉,使坯料间的矾土层不小于5mm,坯料和皿壁间的矾土层不小于10mm。所用矾土中α-Al2O3质量分数不小于35%,比表面积为10m2/g,水分质量分数不大于2.5%。将装有坯料的器皿放入实验用高温箱式电阻炉中。所用电炉进行热处理的温度可高达1100℃。炉温随时间变化的曲线图(图1)由以下几个阶段组成:-梯度升温至温度1050-1100℃-16小时;-保持温度1050-1100℃-100min;-冷却至室温-8小时。冷却后,将装有坯料的器皿从炉中取出,将坯料从矾土中拿出。去除暂时性粘合剂后,将坯料浸渍于ZrO(NO3)2×2H2O盐的水溶液中。样品水平放入盐的水溶液中并保持一段时间,定时绕其轴进行转动。完成样品浸渍后,将其从溶液中取出并干燥,以达到去除水分,锆盐热分解和去除热分解产物的目的。按以下方案进行干燥:-温度+80-90℃-1小时;-温度+400℃-1小时;完成干燥后,将坯料放置于具有不锈钢外壳的纤维隔热炉中,在空气环境下对其进行高温烧制,这种纤维隔热炉适用于温度高达1800℃下的各种用途。将坯料放置于刚玉垫上。烧制的温度条件由以下几个阶段组成:-均匀加热至温度1600-1650℃-12小时;-保持温度1600℃-1小时;-冷却至室温-3-4小时;取上述方法制备出的15份样品来进行强度实验,实验参照俄罗斯联邦标准进行。采用三点弯曲法对直径7±1mm,长度60±5mm的圆柱形样品进行实验,按照实验方案,支点间距离为50mm。三点弯曲法测出的陶瓷样品强度实验结果见下表。通过以上实验研究可以得出如下结论:本发明所提出的氧化铝陶瓷掺杂方法,即,将陶瓷坯料浸渍在锆盐溶液中并随后对其进行烧制的方法,可以将圆柱形样品(直径7mm,长度60mm)的强度提高30-40%。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1