用于制备自清洁热喷涂涂层的陶瓷喂料粉体及其制备方法与流程

文档序号:11378082阅读:407来源:国知局
用于制备自清洁热喷涂涂层的陶瓷喂料粉体及其制备方法与流程

本发明涉及陶瓷粉体领域,特别涉及一种用于制备自清洁热喷涂涂层的陶瓷喂料粉体及其制备方法。



背景技术:

自清洁材料是指在自然条件下能保持自身清洁的材料,材料本身具有防尘、抗菌、抗霉、防污等多重功能。具有自清洁性能的一类先进陶瓷材料逐渐获得较为广泛的应用。其中氧化物陶瓷,如氧化钛、氧化锡、氧化铁、氧化钨等被广泛作为自清洁涂层材料用来提高材料的表面清洁性能。

基于自清洁材料在使用过程中的便利性及安全性,科学家们围绕自清洁材料开展了广泛的研究,尝试采用了多种材料体系,并开发了一些通用的制备技术。目前,已有多种方法可用于制备自清洁材料。其中,使用较多的方法有溶胶-凝胶法、等离子体法、自组装法和电沉积法等。从目前的研究现状看,采用溶胶-凝胶法制备自清洁涂层后,一般需要进行高温煅烧处理,以提高涂层与基材的附着力,此后处理工艺受制于装备或器件的形状和尺寸,且高温处理可能会对器件的使用性能带来不利影响。其它几种方法也存在着类似的局限性。

喷涂法是一种制备自清洁涂层的有效方法,其中等离子喷涂和液相喷涂技术最适宜用于制备此类涂层。基于喷涂系统的喷枪具有高温高速的特点,喷涂技术在涂层制备过程中具有快热快冷的优势,因而在制备纳米陶瓷方面具有独特的优势。但这种技术方法目前在制备纳米涂层方面存在的不足主要是单独的纳米粉不能直接用于喷涂处理,在此之前还需对纳米粉体进行再造粒处理。

由于普通纳米粉尺寸小、质量轻,易被气流吹散或被高温火焰烧蚀掉,故不能直接用于热喷涂。美国康州大学的斯托特教授和罗格斯大学的卡尔教授在1995年首先研究出纳米粉末的再造粒方法,使具有纳米结构的粉末材料能够用于传统的热喷涂喷枪上,从而使制备出纳米结构热喷涂涂层成为可能,该纳米结构的粉末材料的制作方法为:

(a)利用超声将纳米结构材料均匀分散在液态介质中;

(b)在上述的介质中加入有机粘结剂使其形成溶液;

(c)把得到的溶液进行喷雾干燥,从而制得纳米结构团聚体;

(d)将纳米结构团聚体在能够有效排除残余水分、去除吸附和化学吸收的氧以及促进部分烧结或内部结合的温度下加热得到能够用于传统的热喷涂喷枪上纳米结构的粉末材料。

虽然该方法得到的纳米结构粉末材料具有规整的球形,在喂料颗粒内部保留有纳米晶粒,并且具有较好致密度和流动性,可用于传统的热喷涂喷枪上制成纳米结构热喷涂涂层;但是这种方法为了提高陶瓷喂料的致密度,采用两次团聚两次高温松装烧结,然后又进行等离子处理,该方法对设备性能要求高,工艺复杂,制备成本较高,难以进行批量生产。



技术实现要素:

本发明解决的问题是现有的用于热喷涂喷枪上的纳米结构自清洁粉末材料致密度低,流动性差;现有用于热喷涂喷枪上的纳米结构粉末材料的制作方法工艺复杂,成本高;为解决所述问题,本发明提供一种用于制备自清洁涂层的陶瓷喂料粉体及其制备方法。

本发明提供用于制备自清洁热喷涂涂层的陶瓷喂料粉体,其特征在于,由87%~98%的陶瓷粉、1%~15.5%的金属陶瓷添加剂和1%~9.5%的稀土添加剂制成。

进一步,陶瓷粉为金属化合物、过渡金属化合物中的一种或几种的混合物,陶瓷粉的粒度为纳米级或微米级。

进一步,金属化合物为金属氧化物、金属硫化物中的一种或其中几种的组合,其中金属化合物中的金属为铝、锡或钨。

进一步,过渡金属化合物为过渡金属氧化物、过渡金属硫化物中的一种或其中几种的组合,其中过渡金属化合物中的过渡金属为铁、锌、钛或锆。

进一步,金属陶瓷添加剂为全稳定氧化锆或部分稳定氧化锆,其中,部分稳定氧化锆为氧化钇稳定的氧化锆和/或氧化铈稳定的氧化锆。

进一步,稀土添加剂为稀土元素氧化物、稀土元素氮化物中的一种或其中几种的组合;其中稀土元素为钇、镧、铈或钕。

本发明还提供所述的陶瓷喂料粉体的制备方法,包括:步骤一、按质量百分比称取87%~98%的陶瓷粉、1%~15.5%的金属陶瓷添加剂和1%~9.5%的稀土添加剂,混合成混合物;步骤二、将所述混合物置于球磨机中,再向球磨机中加入水和粘结剂进行球磨,控制球磨机的转速为100~200r/min,球料比为3:1~5:1,球磨时间为360~600min,其中,水的加入量为混合物总质量的40%~55%,粘结剂的加入量为混合物总质量的3%~4%;步骤三、将步骤二制备的浆料置于60~70℃的烘箱中烘干,随后在1050~1150℃的温度下进行高温烧结得到陶瓷碎料;步骤四、向步骤三的陶瓷碎料中加入水和粘结剂置于球磨机中进行球磨混合,控制球磨机的转速为100~200r/min,球料比为3:1~5:1,球磨时间为360~600min;其中,水的加入量为陶瓷碎料总质量的40%~55%,粘结剂的加入量为陶瓷碎料总质量的3%~4%;步骤五、步骤四球磨后得到的混合物进行喷雾干燥得到陶瓷粉体,控制喷雾干燥塔的进口温度为190~210℃,喷雾干燥塔的出口温度为90~100℃,喷雾干燥塔中雾化盘的转速为18000~19000r/min;步骤六、对步骤五得到的陶瓷粉体在1050~1150℃高温烧结处理或等离子处理得到陶瓷喂料粉体。

进一步,步骤二和步骤四中的粘结剂均为聚乙烯醇。

本发明还提供所述的陶瓷喂料粉体的制备方法,包括:步骤一、按质量百分比称取87%~98%的陶瓷粉、1%~15.5%的金属陶瓷添加剂和1%~9.5%的稀土添加剂混合;步骤二、将步骤一的混合物置于球磨机中,再向球磨机中加入水和粘结剂进行球磨,控制球磨机的转速为100~200r/min,球料比为3:1~5:1,球磨时间为360~600min,其中,水的加入量为混合物总质量的40%~55%,粘结剂的加入量为混合物总质量的3%~4%;三、将步骤二制备的浆料置于60~70℃的烘箱中烘干,随后把浆料置于粉碎机中粉碎至粒度为80~90目的陶瓷粉体;步骤四、将步骤三的陶瓷粉体置于直径为30~40mm、深度为9~12mm的模具中,用压力机压制成形,压力机的成形压力为22~26mpa;五、步骤四中压制成形的坯体置于冷等静压机中,冷等静压机的压力为210~230mpa,时间为2~3min,然后再放入1050~1150℃的温度下进行高温烧结得到陶瓷块体,烧结处理时间为300~700min;步骤六、将步骤五中的陶瓷块体置于初级粉碎机中粉碎至粒径为90~105μm,然后再置于气流粉碎机上粉碎得到粒径为20~50μm的陶瓷粉体;七、步骤六中的陶瓷粉体进行等离子处理即得到陶瓷喂料粉体。

进一步,步骤二和步骤四中的粘结剂均为聚乙烯醇。

本发明的陶瓷喂料粉体经球磨混粉、烘干制粉、压制成型、高温烧结、破碎制粉和等离子处理进行制备,该方法只需经过一次喷雾干燥,一次烧结处理,与现有的用于热喷涂喷枪上的纳米结构粉末材料的方法相比,简化了制作工艺,设备性能要求低,极大的降低了制作成本,本发明的陶瓷喂料粉体还可以经球磨混粉、低温烘干、高温烧结、球磨制浆、喷雾干燥和等离子处理进行制备,该方法操作简单,制作成本低,该方法适合制作大批量的用于热喷涂喷枪上的纳米结构自清洁粉末材料。

本发明的用于热喷涂喷枪上的自清洁陶瓷喂料粉体制作方法工艺简单,对设备的要求低,极大降低了成本,本发明制作得到陶瓷喂料粉体的流动性为49~55g/min,振实密度为2.5~2.7g/cm3,本发明制作得到陶瓷喂料粉体致密度高,流动性好。

本发明的材料的应用范围广,可广泛应用于航天工业、化工、医疗等行业的诸多零部件。

附图说明

图1为本发明第二十一个实施例提供的陶瓷喂料粉体的外观形貌照片;

图2为本发明第二十一个实施例提供的陶瓷喂料粉体横截面的组织照片;

图3为本发明第二十一个实施例得到的陶瓷喂料粉体通过热喷涂得到的陶瓷涂层的xrd图谱;

图4为本发明第二十二个实施例得到的陶瓷喂料粉体通过热喷涂得到的陶瓷涂层的xrd图谱;

图5为本发明第二十二个实施例得到的陶瓷喂料粉体通过热喷涂得到的陶瓷涂层的横截面sem照片。

具体实施方式

下文中,结合附图和实施例对本发明的精神和实质作进一步阐述。本发明技术方案不局限于以下所列举具体实施例,还包括各具体实施例间的任意组合。

本发明实施例提供的用于制备自清洁热喷涂涂层的陶瓷喂料粉体由质量百分比组成为87%~98%的陶瓷粉、1%~15.5%的金属陶瓷添加剂和1%~9.5%的稀土添加剂制成。

第一实施例:本实施例陶瓷喂料粉体按质量百分比是由89%~98%的陶瓷粉、3%~15.5%的金属陶瓷添加剂和3%~9.5%的稀土添加剂制成。陶瓷粉为金属化合物和/或过渡金属化合物,陶瓷粉的粒度为纳米级或微米级;陶瓷粉为混合物时,各种陶瓷粉间可按任意比混合。金属化合物为金属氧化物或金属硫化物中的一种或多种,金属化合物为混合物时,各种金属化合物间可按任意比混合。所述的过渡金属化合物为过渡金属氧化物,各种过渡金属化合物间可按任意比混合。所述金属陶瓷添加剂为全稳定氧化锆或部分稳定氧化锆,其中,部分稳定氧化锆为氧化钇稳定的氧化锆和/或氧化铈稳定的氧化锆。部分稳定氧化锆为混合物时,各种部分稳定氧化锆间可按任意比混合。所述稀土添加剂为稀土元素氧化物。其他与具体实施例五相同。各种部分稀土添加剂间可按任意比混合。

本实施例制作得到陶瓷喂料粉体致密度高,流动性好,陶瓷喂料粉体的流动性为49~55g/min,振实密度为2.5~2.7g/cm3。制作得到陶瓷喂料粉体的颗粒粒径为3~300μm,其中陶瓷喂料粉体的颗粒中的纳米晶晶粒的尺寸为5~500nm。

本实施例的陶瓷喂料粉体具有高强度、高硬度、较高的弹性和韧性、良好的自清洁性能;本实施例的陶瓷喂料粉体性能优越,可将本实施例的陶瓷喂料粉体作为热喷涂喂料制成自清洁陶瓷涂层,扩大了纳米陶瓷材料的应用领域。

第二实施例,本实施例中陶瓷喂料粉体按质量百分比是由93%~96%陶瓷粉、2%~15%金属陶瓷添加剂和2%~8.2%稀土添加剂制成。

第三实施例,陶瓷喂料粉体按质量百分比是由90%陶瓷粉、10%金属陶瓷添加剂和5%稀土添加剂制成。其他与具体实施例一相同。

本发明还提供所述陶瓷喂料粉体的制备方法。

第三实施例

包括:步骤一、按质量百分比称取87%~98%的陶瓷粉、1%~15.5%的金属陶瓷添加剂和1%~9.5%的稀土添加剂混合;步骤二、将步骤一的混合物置于球磨机中,再向球磨机中加入水和粘结剂进行球磨,控制球磨机的转速为100~200r/min,球料比为3:1~5:1,球磨时间为360~600min,其中,水的加入量为混合物总质量的40%~55%,粘结剂的加入量为混合物总质量的3%~4%;步骤三、将步骤二制备的浆料置于60~70℃的烘箱中烘干,随后在1050~1150℃的温度下进行高温烧结得到陶瓷碎料;步骤四、向步骤三的陶瓷碎料中加入水和粘结剂置于球磨机中进行球磨混合,控制球磨机的转速为100~200r/min,球料比为3:1~5:1,球磨时间为360~600min;其中,水的加入量为陶瓷碎料总质量的40%~55%,粘结剂的加入量为陶瓷碎料总质量的3%~4%;步骤五、步骤四球磨后得到的混合物进行喷雾干燥得到陶瓷粉体,控制喷雾干燥塔的进口温度为190~210℃,喷雾干燥塔的出口温度为90~100℃,喷雾干燥塔中雾化盘的转速为18000~19000r/min;步骤六、步骤五的陶瓷粉体经1050~1150℃高温烧结处理或等离子处理即得到陶瓷喂料粉体。本实施例制作得到陶瓷喂料粉体致密度高,流动性好,陶瓷喂料粉体的流动性为49~55g/min,振实密度为2.5~2.7g/cm3

本实施例制作得到陶瓷喂料粉体的颗粒粒径为3~300μm,其中陶瓷喂料粉体的颗粒中的纳米晶晶粒的尺寸为5~500nm。

本实施例的制作工艺简单,成本低。

本实施例制作得到的陶瓷喂料粉体性能优越,可采用本实施例制作得到的陶瓷喂料粉体经热喷涂制成自清洁陶瓷涂层,扩大纳米陶瓷材料的应用领域。

进一步,步骤二和步骤四中的粘结剂均为聚乙烯醇。其他步骤及参数与具体实施例九相同。

第四实施例:本实施例陶瓷喂料粉体按照以下步骤进行:一、按质量百分比称取87%~98%的陶瓷粉、1%~15.5%的金属陶瓷添加剂和1%~9.5%的稀土添加剂混合;二、将步骤一的混合物置于球磨机中,再向球磨机中加入水和粘结剂进行球磨,控制球磨机的转速为100~200r/min,球料比为3:1~5:1,球磨时间为360~600min,其中,水的加入量为混合物总质量的40%~55%,粘结剂的加入量为混合物总质量的3%~4%;三、将步骤二制备的浆料置于60~70℃的烘箱中烘干,随后把浆料置于粉碎机中粉碎至粒度为80~90目的陶瓷粉体;四、将步骤三的陶瓷粉体置于直径为30~40mm、深度为9~12mm的模具中,用压力机压制成形,压力机的成形压力为22~26mpa;五、步骤四中压制成形的坯体置于冷等静压机中,冷等静压机的压力为210~230mpa,时间为2~3min,然后再放入1050~1150℃的温度下进行高温烧结得到陶瓷块体,烧结处理时间为300~700min;六、将步骤五中的陶瓷块体置于初级粉碎机中粉碎至粒径为90~105μm,然后再置于气流粉碎机上粉碎得到粒径为20~50μm的陶瓷粉体;七、步骤六中的陶瓷粉体进行等离子处理即得到陶瓷喂料粉体。

本实施例步骤五中冷等静压机的型号是ldj-200/600/300。

本实施例制作得到陶瓷喂料粉体致密度高,流动性好,陶瓷喂料粉体的流动性为49~55g/min,振实密度为2.5~2.7g/cm3

本实施例制作得到陶瓷喂料粉体的颗粒粒径为3~300μm,其中陶瓷喂料粉体的颗粒中的纳米晶晶粒的尺寸为5~500nm。

本实施例的工艺简单,成本低。

第五实施例:

步骤一中称取90%陶瓷粉、7%金属陶瓷添加剂和3%稀土添加剂混合。其他步骤及参数与第一实施例或者第二实施例相同。

第六实施例,步骤二中控制球磨机的转速为300r/min,球料比为3:1,球磨时间为180min。

第七实施例:本实施例与第四实施例步骤三中粘稠料浆置于85℃的温度下烘干,再将烘干后的粘稠料浆置于1100℃的温度下进行高温烧结得到陶瓷碎料。其他步骤及参数与第四实施例相同。

第八实施例:本实施例与第四实施例不同的是步骤四中控制球磨机的转速为400r/min,球料比为4:1,球磨时间为170min。其他步骤及参数与第四实施例相同。

第九实施例:本实施例与第四实施例不同的是步骤四中水的加入量为混合物总质量的51%,粘结剂的加入量为混合物总质量的4%。其他步骤及参数与第四实施例相同。

本实施例粘结剂为聚乙烯醇。

第十实施例:本实施例步骤五中控制喷雾干燥塔的进口温度为210℃,喷雾干燥塔的出口温度为950℃,喷雾干燥塔中雾化盘的转速为20000r/min。

第十一实施例:本实施例步骤六中陶瓷粉体经1060℃高温烧结处理得到陶瓷喂料粉体。

第十二实施例:步骤六中陶瓷粉体经等离子处理即得到陶瓷喂料粉体。

第十三实施例:步骤一中按质量百分比称取88%陶瓷粉、8%金属陶瓷添加剂和4%稀土添加剂混合。

第十四实施例:步骤二中控制球磨机的转速为210~320r/min,球料比为4.3:1~5.1:1,球磨时间为150~170min。

第十五实施例:步骤二中水的加入量为混合物总质量的58~63%,粘结剂的加入量为混合物总质量的4~5%。本实施例粘结剂为聚乙烯醇。

第十六实施例:步骤三中粘稠料浆置于85℃的温度下烘干,再将烘干后的粘稠料浆置于粉碎机中粉碎至粒度为100目的陶瓷粉体。

第十七实施例:步骤四中陶瓷粉体置于直径为60mm、深度为15mm的模具中,用压力机压制成形,压力机的成形压力为40mpa。

第十八实施例:步骤五中坯体置于冷等静压机中,冷等静压机的压力为260mpa,时间为3min,然后再放入1050℃的温度下进行高温烧结得到陶瓷块体,高温烧结处理时间为950min。本实施例冷等静压机的型号是ldj-200/600/300。

第十九实施例:步骤六中陶瓷块体置于初级粉碎机中粉碎至粒径为110μm,然后再置于气流粉碎机上粉碎得到粒径为55μm的陶瓷粉体。

第二十实施例:步骤七中陶瓷粉体进行等离子处理即得到陶瓷喂料粉体。本实施例等离子处理采用的是等离子枪处理,等离子枪处理条件为喷涂电压50-60v,喷涂电流480~510a,主气流速70~85scfh,载气流速60~70scfh,送粉率2~3kg/h。

第二十一实施例:包括:步骤一、称取纳米氧化钛粉、摩尔分数为8%的氧化钇稳定氧化锆(8ysz)和纳米氧化铈粉混合;步骤二、将步骤一的混合物置于球磨机中,再向球磨机中加入水和粘结剂进行湿法球磨得到粘稠料浆,控制球磨机的转速为300r/min,球料比为5:1,球磨时间为150min,其中,水的加入量为混合物总质量的65%,粘结剂的加入量为混合物总质量的3%;步骤三、将步骤二的粘稠料浆置于70℃的温度下烘干,再将烘干后的粘稠料浆置于1050℃的温度下进行高温烧结得到陶瓷碎料;步骤四、向步骤三的陶瓷碎料中加入水和粘结剂置于球磨机中进行球磨混合,控制球磨机的转速为350r/min,球料比为5:1,球磨时间为190min;步骤五、步骤四球磨后得到的混合物进行喷雾干燥得到陶瓷粉体,控制喷雾干燥塔的进口温度为220℃,喷雾干燥塔的出口温度为100℃,喷雾干燥塔中雾化盘的转速为20000r/min;步骤六、步骤五的陶瓷粉体经1050℃高温烧结处理或等离子处理即得到陶瓷喂料粉体。本实施例步骤一中纳米氧化钛粉的平均粒度为50nm。

本实施例步骤二和步骤四中的粘结剂均为聚乙烯醇。本实施例制作得到陶瓷喂料粉体的粒径为350nm。本实施例制作得到的陶瓷喂料粉体的流动性为57g/min,振实密度为2.7g/cm3;本实施例制作得到的陶瓷喂料粉体的外观形貌照片如图1所示,横截面的组织照片如图2所示。从图1可以看出本实施例制作得到的陶瓷喂料粉体具有规整的球形;从图2可以看出本实施例制作得到的陶瓷喂料粉体内部保留有纳米晶粒。

本实施例制作得到的陶瓷喂料粉体通过热喷涂得到陶瓷涂层,涂层的基体材料为中碳钢,基体材料在热喷涂前先经过喷砂处理,热喷涂使用的是美科9mb等离子喷涂枪,等离子喷涂枪的控制条件是:主要气体ar的压力为90psi(每平方英寸磅),次要气体h2的压力为50psi,氩气流速为100scfh,粉末载体流速为30至60scfh,送粉率为2.0lb/hr,等离子喷涂电流为500a,等离子喷涂电压为55v。陶瓷涂层的xrd图谱如图3所示。

第二十二实施例:包括:步骤一、称取纳米氧化钛粉、摩尔分数为8%的氧化钇稳定氧化锆(8ysz)和纳米氧化铈粉混合;步骤二、将步骤一的混合物置于球磨机中,再向球磨机中加入水和粘结剂进行湿法球磨得到粘稠料浆,控制球磨机的转速为220r/min,球料比为7:1,球磨时间为110min,其中,水的加入量为混合物总质量的60%,粘结剂的加入量为混合物总质量的3%;步骤三、将步骤二的粘稠料浆置于70℃的温度下烘干,再将烘干后的粘稠料浆置于1100℃的温度下进行高温烧结得到陶瓷碎料;步骤四、向步骤三的陶瓷碎料中加入水和粘结剂置于球磨机中进行球磨混合,控制球磨机的转速为150r/min,球料比为6:1,球磨时间为110min;步骤五、步骤四球磨后得到的混合物进行喷雾干燥得到陶瓷粉体,控制喷雾干燥塔的进口温度为220℃,喷雾干燥塔的出口温度为100℃,喷雾干燥塔中雾化盘的转速为20000r/min;步骤六、步骤五的陶瓷粉体用等离子喷枪进行等离子处理即得到陶瓷喂料粉体。其本实施例制作得到的陶瓷喂料粉体的流动性为57g/min,振实密度大约是2.5g/cm3

本实施例制作得到的陶瓷喂料粉体通过热喷涂得到陶瓷涂层,基体材料为低碳钢,基体材料在热喷涂前先经过喷砂处理,热喷涂使用的是美科9mb等离子喷涂枪,等离子喷涂枪的控制条件是:主要气体ar的压力为90psi(每平方英寸磅),次要气体h2的压力为50psi,氩气流速为100scfh,粉末载体流速为30至60scfh,送粉率为3b/hr,等离子喷涂电流为550a,等离子喷涂电压为60v。陶瓷涂层的xrd图谱如图4所示。

本实施例制作得到的陶瓷喂料粉体通过热喷涂得到陶瓷涂层,涂层的基体材料为中碳钢,基体材料在热喷涂前先经过喷砂处理,热喷涂使用的是美科9mb等离子喷涂枪。图5为横截面的sem照片。

第二十三实施例:本实施例步骤一中称取纳米氧化钛粉、纳米氧化铈粉和纳米氧化锆粉混合。本实施例纳米氧化钛粉体的平均粒度约为50nm。本实施例制作得到的陶瓷喂料粉体的流动性为57.1g/min,振实密度为2.4g/cm3。本实施例制作得到陶瓷喂料粉体的粒径为270nm。

第二十四实施例:步骤一中称取纳米氧化钛粉体、纳米氧化铈粉和纳米氧化锆粉混合。其他步骤及参数与具体实施例九或三十五相同。本实施例制作得到的陶瓷喂料粉体的流动性为56.9g/min,振实密度为2.5g/cm3。本实施例制作得到陶瓷喂料粉体的粒径为420nm。

所得到的陶瓷喂料粉体通过热喷涂得到陶瓷涂层其中,涂层的基体材料均为45钢,喷涂前对基体进行了清洗和喷沙处理,热喷涂采用的是美科9mb等离子喷涂系统,等离子喷涂由计算机控制的gm-fanuc6-axis机械手进行操作,涂层的厚度均为320μm,喷涂的参数为:主气体ar压力0.49mpa,次气体h2压力0.28mpa,主气体ar流速为70~100scfh,喷涂电流500a,喷涂电压45~60v,送粉率3lb/hr。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1