一种耐高湿改性淀粉基生物可降解薄膜及其制备方法与流程

文档序号:12401237阅读:273来源:国知局

本发明涉及一种耐高湿改性淀粉基生物可降解薄膜及其制备方法,涉及生物可降解材料及其制备领域。



背景技术:

淀粉具有天然、来源广泛、可再生、无污染、成本低、可生物降解等优点,基于淀粉的生物塑料薄膜是生物降解塑料领域发展较快的一种。然而,淀粉薄膜由于其自身固有的力学性能差,对环境湿度非常敏感,导致无法满足大多数情况下的应用要求。聚乙烯醇(PVA)是一种化学合成的可生物降解的高分子聚合物,具有高抗静电性、耐磨耐腐蚀、力学性能优良等优点,与淀粉有较好的相容性。通常利用聚乙烯醇和淀粉的共混来提高淀粉基材料的力学性能。然而聚乙烯醇是水溶性高分子,加入淀粉之后制得的淀粉-聚乙烯醇薄膜,耐水性更差。中国专利CN101914223A公开了一种改性淀粉-聚乙烯醇基复合塑料薄膜的制备方法,方法简便,成本低廉,然而对环境湿度敏感,力学性能差的问题依然没有解决,有待进一步改善。



技术实现要素:

本发明针对现有淀粉基生物可降解薄膜在高湿度条件下力学性能下降的问题,提供一种新配方的可降解薄膜,利用酶解改性淀粉、聚乙烯醇、水性膨润土和甘油共混,期间不引入任何其它的化学交联剂,制备工艺简单,在满足了生物可降解性能的同时,也满足了在高湿度条件下具有较好机械性能的要求,尤其是断裂伸长率,极大地改善了薄膜对于环境湿度的敏感性。

本发明的耐高湿改性淀粉基生物可降解薄膜,由质量份数为10-90份酶解改性淀粉、5-90份PVA、1.5-40份水性膨润土与4-30份甘油。

所述的酶解改性淀粉,其淀粉来源为玉米淀粉、大米淀粉、小麦淀粉、马铃薯淀粉、木薯淀粉中的一种或多种组合。

所述PVA的聚合度大于等于1500,醇解度大于等于85%。

所述的水性膨润土是一种合成型层状硅酸盐黏土,公式为Na+0.7[(Si8Mg5.5Li0.4)O20(OH)4]-0.7。最为代表性的产品是Laponite系列,其单个片层的直径约为30nm,厚度约为1nm,在水中有良好的溶胀性。

本发明还公开了所述可降解薄膜的制备方法,将淀粉糊化后,经淀粉酶酶解,再与PVA溶液,水性膨润土分散液,甘油进行共混;具体步骤如下:

(1)以淀粉为原料,配制成质量浓度为5-20%的淀粉乳;

(2)将淀粉乳加热升温到80-90℃糊化30-60min;

(3)将糊化后的淀粉降温到所选淀粉酶最适宜温度,加入淀粉质量0.1-10%的酶液,水解20-240min;

(4)水解结束后升温至100℃灭酶,即得酶解淀粉;

(5)配置质量浓度为5-20%的PVA水溶液;

(6)将水性膨润土分散在水中制成纳米颗粒分散液;

(7)将酶解淀粉、PVA水溶液、水性膨润土分散液、甘油按比例均匀混合,升温至85-95℃下高速搅拌30-45min;

(8)降温至50-70℃,倒模,于温度35-50℃下干燥24-36h,湿度50-75%下平衡3天,得所述可降解薄膜。

所述淀粉酶选用α-淀粉酶、普鲁兰酶、β-淀粉酶、异淀粉酶、γ-淀粉酶、葡糖糖转苷酶、葡萄糖淀粉酶、葡聚糖酶中的一种或多种组合。

上述步骤(7)中的搅拌速率大于等于960rpm/min。

本发明的可降解纳米薄膜采用淀粉、聚乙烯醇和水性膨润土为主要组成,经三元共混制成,所述组成原料的水性膨润土通过氢键、静电力等作用对整个体系起到支撑和联结作用,提高了产品的力学性能。通过淀粉酶水解淀粉,降低淀粉链的空间阻碍性,增强淀粉与PVA,水性膨润土的相容性;此外黏度的降低液有利于水性膨润土在多组分体系里的分散性。水性膨润土通过物理交联作用,联结淀粉和PVA形成良好的网络结构,薄膜具备了更好的持水性能。同时,水性膨润土纳米粒子的小尺寸效应、高表面能效应提高了整个体系的力学性能。所述淀粉、聚乙烯醇和水性膨润土都是环境友好型材料,因此本发明的纳米薄膜具有良好的降解性能和生物安全性。

与现有技术相比较,本发明具有以下优势:

(1)本发明工艺简单,制备过程不引入其他的化学交联剂,绿色无污染。

(2)本发明提供的改性淀粉基薄膜在保证了其可降解的条件下,在高湿度条件下具有良好的机械性能,尤其是断裂伸长率,最高可达300%-460%。

(3)通过淀粉酶水解淀粉,降低淀粉链的空间阻碍性,能有效地增强淀粉与PVA,水性膨润土的相容性,进一步增强薄膜的拉伸性能。

(4)水性膨润土纳米粒子具有小尺寸效应、高表面能效应,可以通过物理交联作用,联结淀粉和PVA形成良好的网络结构,从而提高了淀粉基薄膜的耐高湿特性。

具体实施方式

以下结合具体实施方式对本发明作进一步说明。

实施例1:10g玉米淀粉加入190mL去离子水中,于90℃,720rpm下搅拌30min。将糊化后的淀粉水溶液降温到55℃,加入1g α-淀粉酶酶液,水解20min。将玉米糊于100℃,720rpm下搅拌30min灭酶。将5gPVA加入95mL去离子水中溶解,将灭酶后的玉米糊、PVA溶液、1.5g LRD(Laponite RD)和4g 甘油于95℃,960rpm下搅拌30min,得到均匀粘稠的共混液;将共混液于50-70℃抽真空,再浇筑于底面平整,直径为13cm的圆形PE盘中,使共混液自然平流,共混液的质量控制在40g-50g,于温度35℃下干燥36h制得所述可降解薄膜。平均膜厚0.7mm,在湿度50%条件下平衡72h后,断裂伸长率为423.4%,在湿度75%条件下平衡72h后,断裂伸长率为432.17%。

实施例2: 90g大米淀粉和小麦淀粉的混合粉末加入360mL去离子水中,于80℃,720rpm下搅拌30min。将糊化后的淀粉水溶液降温到55℃,加入0.09g α-淀粉酶和异淀粉酶混合酶液,水解120min。将淀粉糊于100℃,720rpm下搅拌30min灭酶。将90gPVA加入360mL去离子水中溶解,将灭酶后的淀粉糊、PVA溶液、40g LRD(Laponite RD)和30g 甘油于85℃,960rpm下搅拌45min,得到均匀粘稠的共混液;将共混液于50℃抽真空,再浇筑于底面平整,直径为13cm的圆形PE盘中,使共混液自然平流,共混液的质量控制在40g-50g,于温度40℃下干燥24h制得所述可降解薄膜。平均膜厚0.8mm,在湿度50%条件下平衡72h后,断裂伸长率为455.6%,在湿度75%条件下平衡72h后,断裂伸长率为458.7%。

实施例3:50g小麦淀粉、马铃薯淀粉和木薯淀粉的混合粉末加入450mL去离子水中,于90℃,720rpm下搅拌60min。将糊化后的淀粉水溶液降温到55℃,加入2.5g普鲁兰酶酶液,水解240min。将淀粉糊于100℃,720rpm下搅拌30min灭酶。将50gPVA加入450mL去离子水中溶解,将灭酶后的淀粉糊、PVA溶液、10g LRD(Laponite RD)和15g 甘油于90℃,960rpm下搅拌40min,得到均匀粘稠的共混液;将共混液于70℃抽真空,再浇筑于底面平整,直径为13cm的圆形PE盘中,使共混液自然平流,共混液的质量控制在40g-50g,于温度50℃下干燥24h干燥制得所述可降解薄膜。平均膜厚0.7mm,在湿度50%条件下平衡72h后,断裂伸长率为210.3%,在湿度75%条件下平衡72h后,断裂伸长率为346.7%。

实施例4:采用与实施例1相同的方案制备可降解薄膜,其区别在于,将糊化后的淀粉水溶液降温到55℃,加入1%的β-淀粉酶,水解20min。在湿度50%条件下平衡72h后,断裂伸长率为405.7%,在湿度75%条件下平衡72h后,断裂伸长率为445.2%。

实施例5:采用与实施例1相同的方案制备可降解薄膜,其区别在于,将糊化后的淀粉水溶液降温到55℃,加入8%的 γ-淀粉酶、葡糖糖转苷酶和葡萄糖淀粉酶混合酶液,水解40min。在湿度50%条件下平衡72h后,断裂伸长率为375.4%,在湿度75%条件下平衡72h后,断裂伸长率为411.6%。

对比例1:6.7g玉米淀粉、3.3g PVA、3g 甘油加入300mL去离子水中,于95℃,960rpm下搅拌30min,得到均匀粘稠的共混液;将共混液于50-70℃抽真空,再浇筑于底面平整,直径为13cm的圆形PE盘中,使共混液自然平流,共混液的质量控制在40g-50g,室温下干燥制得所述可降解薄膜。平均膜厚0.6mm,在湿度50%条件下平衡72h后,断裂伸长率为157.2%,在湿度75%条件下平衡72h后,断裂伸长率为110.6%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1