光学活性二膦配体的制作方法

文档序号:4932446阅读:560来源:国知局
专利名称:光学活性二膦配体的制作方法
技术领域
本发明涉及光学活性二膦、光学活性二膦和它们的过渡金属络合物的制备方法以及用于对映选择性合成的金属络合物的用途。
用铑络合物和钌络合物进行对映选择性氢化和异构化在光学活性化合物的合成中是非常重要的[例如Tani等,J.Am.Chem.Soc.106(1984)5211;R.Noyori,Acc.Chem.Res.23(1990)345]。然而,通常由光学活性二膦配体和铑或钌化合物制备的用于该目的的催化剂是非常昂贵的,并且只能通过精细的制备方法获得。
制备光学活性膦和二膦的已知方法都是复杂的,通常包括工业上精细和昂贵的消旋体拆分(例如EP-A-0614901、EP-A-0271311、H.B.Kagan,“非对称催化的手性配体”Asymmetric Synthesis,第5卷,(1985),13-23、EP-A-0151282、EP-A-0185882、R.Noyori,AccChem.Res.23(1990)345、EP-A-0269395、M.J.Burk,Tetrahedron,Asymmetry,(1991)569-569、J.Am.Chem.Soc.113(1991)8518-19、上述文献,115(1993)10125-138、上述文献,117(1995)9375-76、上述文献,188(1996)5142)。这些缺点使得目前这类催化剂的工业利用困难并且不经济。
本发明的目的是提供光学活性二膦,它们适用作过渡金属络合物催化剂的配体,其制备避免了上述缺点。
我们发现通过提供式I的光学活性二膦,可以达到该目的,
式中R1为氢、C1-C10-酰基、C1-C10-烷基、C2-C10-链烯基,它们各自可以为直链或支链,芳基、芳烷基,其中环体系均可以被取代,
R2、R3相互独立,可以为直链或支链的C1-C10-烷基、芳基、芳烷基,其中环体系各自可以被取代,R4、R5和R6相互独立,可以为直链或支链的C1-C10-烷基、芳基、芳烷基,其中环体系各自可以被取代。
式I的新二膦配体中R1的酰基为支链或非支链的、饱和或不饱和的,其中合适的是多不饱和C1-C10-酰基链,特别是甲酰基、乙酰基、丙酰基、正丁酰基、异丁酰基和新戊酰基。
可以提到的R1-R6的烷基为支链或非支链的C1-C10-烷基链,最好为甲基、乙基、正丙基、1-甲基乙基、正丁基、1-甲基丙基、2-甲基丙基、1,1-二甲基乙基、正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、2,2-二甲基丙基、1-乙基丙基、正己基、1,1-二甲基丙基、1,2-二甲基丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1,1-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-乙基丁基、2-乙基丁基、1,1,2-三甲基丙基、1,2,2-三甲基丙基、1-乙基-1-甲基丙基、1-乙基-2-甲基丙基、正己基、正辛基、正壬基、正癸基。
可以提到的R1的链烯基为支链或非支链的C2-C10-链烯基链,最好为乙烯基、丙烯基、异丙烯基、1-丁烯基、2-丁烯基、1-戊烯基、2-戊烯基、2-甲基-1-丁烯基、2-甲基-2-丁烯基、3-甲基-1-丁烯基、1-己烯基、2-己烯基、1-庚烯基、2-庚烯基、1-辛烯基或2-辛烯基。
R1-R6的芳基是指芳环或环体系中具有6-18个碳原子的环体系,例如苯基或萘基,它们每个可以被一个或多个基团取代,这些基团诸如卤素(例如氟、氯或溴)、氰基、硝基、氨基、C1-C4-烷氨基、C1-C4-二烷氨基、羟基、C1-C4-烷基、C1-C4-烷氧基或其它基团,特别是磺基。最好是未取代或取代的苯基、甲氧苯基和萘基。
可以提到的R1-R6的芳烷基为支链或非支链的苯基-C1-C5-烷基或萘基-C1-C5-烷基链,诸如苯甲基、苯乙基、苯丙基、苯基-1-甲基乙基、苯丁基、苯基-1-甲基丙基、苯基-2-甲基丙基、苯基-1,1-二甲基乙基、苯戊基、苯基-1-甲基丁基、苯基-2-甲基丁基、苯基-3-甲基丁基、苯基-2,2-二甲基丙基、苯基-1-乙基丙基、萘甲基、萘乙基、萘丙基、萘基-1-甲基乙基、萘丁基、萘基-1-甲基丙基、萘基-2-甲基丙基、萘基-1,1-二甲基乙基、萘戊基、萘基-1-甲基丁基、萘基-2-甲基丁基、萘基-3-甲基丁基、萘基-2,2-二甲基丙基或萘基-1-乙基丙基以及它们的异构形式或立体异构形式。作为芳基,可以提到取代或未取代苯基或萘基。
R1的芳烷基也是指C(Ph)3,其中苯环可以被一个或多个基团取代,这些基团诸如卤素(例如氟、氯或溴)、氰基、硝基、氨基、C1-C4-烷氨基、C1-C4-二烷氨基、羟基、C1-C4-烷基、C1-C4-烷氧基或其它基团。
特别推荐的光学活性二膦配体是式Ia的那些光学活性二膦,
其中R1为C(CH3)3、C(Ph)3,
R2、R3相互独立,为环体系各自可以被取代的芳基和芳烷基,R4、R5、R6相互独立,可以为直链或支链的C1-C10-烷基、芳基和芳烷基,其中环体系各自可以被取代。
本发明还涉及式I光学活性二膦配体的制备方法,它包括a)使式II的光学活性α,β-不饱和内酯作为Michael受体与阴离子HP(R2)2反应,然后与HalP(R3)2反应,其中R1-R3具有与下述式III中R1-R3相同的定义,
以及b)将式III二膦取代内酯的羰基官能团还原为亚甲基。
因此,本发明也涉及式III的光学活性二膦配体,其中取代基定义如下R1为氢、C1-C10-酰基、C1-C10-烷基、C2-C10-链烯基,它们各自可以为直链或支链的,芳基、芳烷基,其中环体系均可以被取代,
R2、R3相互独立,可以为直链或支链的C1-C10-烷基、芳基、芳烷基,其中环体系均可以被取代,R4、R5和R6相互独立,可以为直链或支链的C1-C10-烷基、芳基、芳烷基,其中环体系均可以被取代。
用作Michael受体的光学活性α,β-不饱和内酯II可以以已知方式,或者由公开于Tetrahedron 43(21)(1987)5055的D-核糖(ribono)-1,4-内酯制备,或者由Tetrahedron 38(15)(1982)2377中描述的甘油醇制备。
阴离子P(R2)2可以在强碱存在下由相应的[HP(R2)2]生成。可以使用的强碱包括本身已知的有机锂化合物(例如丁基锂或二异丙酰胺锂(LDA))和醇化物。可能的反离子(阳离子)除钠、钾、镁和铝外,最好是锂。
可以采用卤代烷基膦或卤代二芳基膦,最好采用卤代二芳基膦,特别是氯代二苯基膦,引入第二膦残基。
可以用于该反应的溶剂为所有的常规惰性溶剂。推荐溶剂的实例为甲苯、己烷、环己烷、THF、MTB和乙醚。
进行反应的温度可以为-100℃至+50℃,最好为-80℃至+30℃,严格排除氧气。
因为生成的式III二膦取代内酯对水解和氧化非常敏感,因此有利于通过与BH3反应,将它们转化为相应的稳定硼烷加合物。
式III的内酯或其硼烷加合物可以以本身已知的方式(Organikum,第19版,Deuscher Verlag der Wissenschaften,1993,510-514),用络合金属氢化物(诸如LiAlH4、NaBH4或DIBHA),还原为相应的环醚。推荐的还原剂是与硅烷(例如Et3SiH、Ph3SiH或PhSiH3)混合或与BF3混合的氢化二异丁基铝(DIBAH),以用于随后的内酯还原。
通过用碱性试剂(最好为有机胺)处理,特另是通过用二乙胺或三乙二胺(1,4-二氮杂双环[2.2.2.]-辛烷,DABCO)处理,可以从它们的硼烷加合物中释放光学活性二膦配体。最好通过简单地在该胺存在下加热该硼烷加合物,然后重复蒸发出挥发性组分,进行该解理。
例如,以下反应流程图表示了制备新二膦的方法。
新光学活性二膦配体特别适用于络合过渡金属化合物。
因此,本发明也涉及式IV的过渡金属络合物,[M(Ln)(A)]p㈩Dq㈠IV式中M为Co、Ir、Ni、Pd、Pt、Rh、Ru,A为式I的光学活性二膦配体,尤其最好是式Ia的光学活性二膦配体,L为有机配体,D 为非配价阴离子的等价物,n 为1或2,p、q为0-4。
M最好为来自Ru、Rh和Ir的金属。D最好为CF3COO-、BF4-、SbF6-、SbCl6-、PF6-、(C6H5)4B-。
用于本发明目的的L为可容易取代的配体,诸如烯烃,例如乙烯、丙烯、环辛烯、1,5-己二烯或1,5-环辛二烯。
本发明还涉及制备上述过渡金属络合物的方法,包括使式I光学活性二膦配体以本身已知的方式与过渡金属化合物[MLn]p(+)Dq(-)反应,其中L为上述定义的可取代配体。
因此,例如通过以已知方式[例如Uson,Inorganic Chim.Acta 73(1983)275、EP-A-0158875、EP-A-0437690]将这些新膦与含有不稳定配体的过渡金属络合物反应,特别是与[RuCl2(COD)]n、Rh(COD)2BF4、Rh(COD)2ClO4、[Ir(COD)Cl]2、对异丙基甲苯-氯化钌二聚体反应,由这些新膦合成具有催化活性的络合物是可能的。
式IV的过渡金属络合物适用作非对称反应的催化剂,特别是用于具有C-C、C-N和C-O多键的化合物非对称氢化的催化剂,其中特别提到β-酮酯、烯丙醇、烯酰胺和脱氢氨基酸的氢化。式IV的过渡金属络合物同样适用于将烯丙胺非对称异构化为烯胺和非对称加氢甲酰化反应。
以下实施例详细解释新光学活性二膦配体及其过渡金属络合物的制备,以及用于对映选择性合成的金属络合物的用途。实施例1下式二苯基膦-硼烷加合物的制备
将3.27g(17.6mmol)二苯基膦溶于50ml THF中,于-78℃用19.1mmol正丁基锂去质子。将5.543g(15.7mmo1)式II的Michael受体(R1=tBuPh2Si)的50ml THF溶液冷却至-78℃,采用双端针头将其滴加到膦溶液中。半小时后,加入溶于50ml THF中的4.20g(19.1mmol)的氯代二苯基膦。让该反应溶液过夜达到室温,再冷却至-78℃,加入45ml1M硼烷的HTF溶液。1小时后,在中等真空下蒸发该溶剂,将残余物吸收于乙酸乙酯中,用水洗涤该溶液。通过硅胶闪色谱获得无色非晶形固体产物,产量为9.45g(81%)。熔点133-134℃。旋光性[α]20D=-57.1,[α]20578=-59.9,[α]20546=-69.1,[α]20436=-127.4,[α]20365=-222.5;(C=1.14,CHCl3).1H NMR(CDCl3,300.13MHz)d(ppm)=0.3-1.6(bs,6H,BH3),0.97(s,9H,C(CH3)3),3.11(dd,J6,6′=10.9Hz,J5,6=7.0Hz,lH,6-H),3.30(dd,J6,6′=10.7Hz,J5,6′=6.5Hz,lH,6′-H),3.94(ddd,2J3,P=20.2Hz,3J3,P=10.5Hz,J3,4=3.4Hz,1H,3-H),4.15(m,lH,4-H),4.64(m,lH,5-H),7.22-7.88(sh,30H,Ar-H).13C NMR(CDCl3,75.47MHz)d(ppm)=19.2(s,C(CH3)3),26.9(q,CH3),34.4(d,1JC,P=38.4Hz,C-4),40.8(d,1JC,P=26.0Hz,C-3),65.3(t,CH2OSi),79.1(d,C-5),127.7,127.8,128.7,128.8,128.9,129.1,129.1,129.2,129.8,129.9,131.6,132.1,132.3,132.4,132.5,132.9,133.1,133.3,133.5,l33.6,134.1,134.2,135.4(Ar),l71.0(s,C=O).31P NMR(CDCl3,81.015MHz)d(ppm)=23.9(m,P-BH3)实施例2内酯还原为下式的醚
将2.1g(2.74mmol)实施例1中获得的二膦溶于20ml甲苯中,冷却至-78℃,然后滴加2.9ml 1M DIBAH溶液。水处理后,将残余物溶于20ml二氯甲烷中,将该溶液冷却至-78℃,加入666mg(5.73mmol)三乙基硅烷和412.3mg(2.91mmol)三氟化二乙基醚合硼。让该化合物过夜达到室温,再加入三滴三氟化二乙基醚合硼以完成该反应。在加入6ml含1M BH3的THF溶液后,不用保护气体而进行处理,产生1.3743g(68%)的非晶形粉末。
旋光性[α]20D=-25.0,[α]20578=-26.2,[α]20546=-30.2,[α]20436=-54.4,[α]20365=-91.6,(C=1.41,CHCl3).1H NMR(CDCl3,300.13MHz)d(ppm)=0.3-1.6(bs,6H,BH3),0.99(s,9H,C(CH3)3),3.19(dd,J6,6′=10.8Hz,J2,6′=3.8Hz,1H,6-H),3.54(m,1H,6′-H),3.55(m,1H,3-H),3-77(ddd,J5,P=16.3Hz,J5,5′=8.4Hz,J5,4=5.1Hz,1H,5-H),3.87(m,1H,4-H),3.93(ddd,J5′,4′=15.7Hz,J5′,P=10.6Hz,J5′,5=7.8Hz,1H,5′-H),4.31(m,J2,P=14.7Hz,1H,2-H),7.22-7.88(sh,30H,Ar-H).13C NMR(CDCl3,75.47MHz)d(ppm)=19.0(s,C(CH3)3),26.6(q,CH3),35.8(d,JP,C=40.1Hz,C-3),35.9(d,JP,C=40.0Hz,C-4),64.4(t,JP,C=5.4Hz,CH2OSi),70.3(t,JP,C=JP′,C=4.2Hz,C-5),83.1(d,JP,C=JP′,C=4.6Hz,C-2),127.3-135.4(Ar-C).31P NMR (CDCl3,81.015MHz)d(ppm)=19.6(m,P-BH3).实施例3从膦的硼烷加合物中释放膦
将1mmol实例2的硼烷加合物与0.5ml二乙胺混合并回流30分钟。然后在高度真空下2次除去挥发性组分。获得空气敏感的游离膦白色粉末。实施例4铑络合物的制备和α-乙酰氨基肉桂酸的非对称氢化将110μmol实施例3的光学活性二膦配体溶于5ml THF中,加入100μmol Rh(COD)2BF4后,于室温下搅拌20分钟。将100mmol α-乙酰氨基肉桂酸和250ml THF加入透明的黄色溶液中。该溶液在20巴氢气下,于30℃氢化。20分钟后完成该反应。处理后分离出N-乙酰基-(S)-苯丙氨酸,收率为97%,光学纯度为99.6% ee。实施例5N-乙酰基-(S)-环己基丙氨酸的制备将110μmol实施例3的光学活性二膦配体溶于5ml THF中,加入100μmol Rh(COD)2BF4后,于室温下搅拌20分钟。将100mmol α-乙酰氨基肉桂酸和250ml THF加入透明的黄色溶液中。该溶液在20巴氢气下,于30℃氢化。20分钟后完成该反应。然后打开高压釜,通入5分钟空气,以氧化该膦配体。加入0.5g氧化钌水合物后,在100巴下、于160℃核氢化3小时。分离出N-乙酰基-(S)-环己基丙氨酸,收率>95%,ee为99.6%。
权利要求
1.式I的光学活性二膦配体或其硼烷加成物,
式中R1为氢、C1-C10-酰基、C1-C10-烷基、C2-C10-链烯基,它们各自可以为直链或支链的,芳基、芳烷基,其中环体系均可以被取代,
R2、R3相互独立,可以为直链或支链的C1-C10-烷基、芳基、芳烷基,其中环体系均可以被取代,R4、R5和R6相互独立,可以为直链或支链的C1-C10-烷基、芳基、芳烷基,其中环体系均可以被取代。
2.式Ia的光学活性二膦配体及其硼烷加成物,
其中取代基具有权利要求1所述的意义。
3.式I光学活性二膦配体的制备方法,包括a)使式II的光学活性α,β-不饱和内酯作为Michael受体与阴离子HP(R2)2反应,然后与HalP(R3)2反应,其中R1-R3具有权利要求1中所述意义,
以及b)将式III二膦取代内酯的羰基官能团还原为亚甲基。
4.式III的光学活性二膦配体,其中取代基具有权利要求1所述的意义。
5.权利要求1中要求保护的式I光学活性二膦配体的用途,用于络合过渡金属化合物。
6.式IV的过渡金属络合物,[M(Ln)(A)]p(+)Dq(-)IV式中M 为Co、Ir、Ni、Pd、Pt、Rh、Ru,A 为权利要求1要求保护的式I光学活性二膦配体,L 为有机配体,D 为非配价阴离子的等价物,n 为1或2,p、q为0-4。
7.权利要求6中要求保护的过渡金属络合物的制备方法,包括使权利要求1要求保护的式I光学活性二膦配体以本身已知的方式与过渡金属化合物[MLn]p(+)Dq(-)反应,其中各变量具有权利要求6中所述的意义。
8.权利要求6中要求保护的式IV金属络合物的用途,用作具有C-C、C-N和C-O多键化合物非对称氢化的催化剂。
9.权利要求6中要求保护的式IV金属络合物的用途,用作将烯丙胺非对称异构化为烯胺的催化剂。
全文摘要
式Ⅰ的光学活性二膦配体,式中:R
文档编号B01J31/24GK1202492SQ98115010
公开日1998年12月23日 申请日期1998年6月18日 优先权日1997年6月18日
发明者G·赫尔姆谢, C·米尔曼 申请人:Basf公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1