一种纳米纤维素复合聚砜中空纤维膜的制备方法

文档序号:9898586阅读:1125来源:国知局
一种纳米纤维素复合聚砜中空纤维膜的制备方法
【技术领域】
[0001]本发明涉及分离膜技术领域,尤其涉及一种纳米纤维素复合聚砜中空纤维膜的制备方法。
【背景技术】
[0002]聚砜膜具有优良的热稳定性和化学稳定性,广泛应用于血液透析、海水淡化和水处理等领域。铸膜液体系的组成和成膜条件是决定聚砜膜结构和性能的重要因素,因此,通过调控铸膜液浓度、组成,凝固浴组成、温度,空气间隙和流速等,可以制备不同物理结构和性能的聚砜膜。但是,聚砜是一种高疏水性的聚合物材料,从而聚砜膜的亲水性较差,导致聚砜膜用于水体系的分离时,该分离膜易受污染,膜的性能和使用寿命受到影响。
[0003]改善聚砜膜的亲水性成为提高聚砜膜抗污染性能的重要措施,其中,采用共混亲水性添加剂的共混法是目前使用最多最有效的亲水性聚砜膜制备方法。例如,申请号为201410744351.3的中国专利文献公开了一种聚砜中空纤维膜的制备方法,铸膜液中添加聚乙二醇,且聚砜、聚乙二醇和二甲基乙酰胺的质量比为20/35/45,通过对制备过程中工艺及参数的优化,得到聚砜中空纤维膜。中国专利CN1158273A和日本专利JP-A-300633/1993等公开了以聚乙烯吡咯烷酮(PVP)为添加剂制备亲水性聚砜膜的方法。高分子量或高含量的聚乙二醇和聚乙烯吡咯烷酮可提高铸膜液体系的黏度,获得海绵孔结构的聚砜膜,但也存在膜表面质量差、强度低以及制膜困难等缺点,使得其工业化生产受到限制。因此,制备具有高强度的亲水性聚砜膜具有广阔的应用前景。
[0004]纳米材料是一种广泛使用的聚合物添加剂,具有大幅提升聚合物强度的作用。诸如Si02、Zr02等无机纳米颗粒被广泛用于聚合物分离膜的复合改性,提升了膜的机械强度。纳米纤维素作为一种天然纳米材料,具有来源丰富、价格低廉、可再生以及完全降解等特性,还具有比表面积大、力学性能优异等特点,用作聚合物的增强材料,可大幅提升聚合物材料的强度和韧性等机械性能。近年来,以纳米纤维素为复合添加剂,在聚合物材料领域得到广泛的认可。中国专利CN103627016A公开了一种全纤维素纳米复合膜的制备方法,将纳米纤维素均匀分散于二醋酸纤维素溶液中,并浇铸成膜。该专利中的聚合物本体材料为亲水的二醋酸纤维素,其结构上也具有相似性,因此该复合膜两相相容性好。中国专利CN102604139A也公开了一种纳米纤维素复合膜的制备方法,以亲水的聚乙烯醇为本体材料,以纳米纤维素增强后,复合膜的拉伸强度高达66.57 MPa,较未添加纳米纤维素的复合膜(39.35 MPa)提高了69.17%。因此,纳米纤维素在环境友好型增强材料领域有广阔的应用前景。
[0005]但是,值得注意的是,目前纳米纤维素多用于亲水的本体材料的复合增强,而用于疏水本体材料的复合增强较少。其原因在于,直接使用亲水的纳米纤维素和疏水的聚合物本体材料复合,存在界面相容性较差的问题。故纳米纤维素在聚合物本体材料中易团聚,不能实现均匀分散并复合的目的,导致复合材料结构存在缺陷,机械强度较低,不能实现增强的目的。如能克服这一问题,纳米纤维素不仅可以改善材料的机械性能,还能提高材料的亲水性能。

【发明内容】

[0006]本发明要解决的技术问题在于提供一种纳米纤维素复合聚砜中空纤维膜的制备方法,制备的聚砜中空纤维膜亲水性佳,机械强度高。
[0007]本发明提供一种纳米纤维素复合聚砜中空纤维膜的制备方法,包括以下步骤:将铸膜液和芯液通过浸没沉淀相转化纺丝装置的环状纺丝头同时挤出形成管状液膜,所述铸膜液包括质量比为13-30: 0.1-7: 1-8: 0.5-5的聚砜、纳米纤维素、聚乙二醇和磺化聚砜;将所述管状液膜经过空气间隙后进入凝固浴中固化,置于水中浸泡清洗,得到纳米纤维素复合的聚砜中空纤维膜。
[0008]优选的,所述铸膜液按照如下方法制备:将纳米纤维素均匀分散在二甲基乙酰胺中,然后加入聚砜、聚乙二醇和磺化聚砜,搅拌至形成均匀的溶液,脱泡,得到铸膜液,所述聚砜、纳米纤维素、聚乙二醇和磺化聚砜的质量比为13-30: 0.1-7: 1-8: 0.5-5。
[0009]优选的,所述纳米纤维素均匀分散在二甲基乙酰胺中采用的分散方法为超声法或均质法。
[0010]优选的,所述芯液为二甲基乙酰胺和水的混合物。
[0011]优选的,形成管状液膜的步骤中,铸膜液的流速为10- 20 g/min。
[0012]优选的,形成管状液膜的步骤中,芯液的流速为10- 20 ml/min。
[0013]优选的,所述纳米纤维素的长度为30- 600 nm。
[0014]优选的,所述聚乙二醇的平均分子量为200 - 20000。
[0015]优选的,所述凝固浴为水。
[0016]优选的,所述空气间隙为0.1-30cm。
[0017]本发明提供一种纳米纤维素复合聚砜中空纤维膜的制备方法,包括以下步骤:将铸膜液和芯液通过浸没沉淀相转化纺丝装置的环状纺丝头同时挤出形成管状液膜,所述铸膜液包括质量比为13-30: 0.1-7: 1-8: 0.5-5的聚砜、纳米纤维素、聚乙二醇和磺化聚砜;将所述管状液膜经过空气间隙后进入凝固浴中固化,置于水中浸泡清洗,得到纳米纤维素复合的聚砜中空纤维膜。与现有技术相比,本发明以纳米纤维素作为聚砜膜的增强剂和亲水改性剂,同时改善聚砜膜的机械性能和亲水性;以聚乙二醇为纳米纤维素的分散剂和聚砜膜的亲水改性剂,改善亲水纳米纤维素和疏水聚砜之间的界面相容性以及聚砜膜的亲水性,从而使制备的纳米纤维素复合聚砜中空纤维膜具有优异的机械强度和良好的亲水性能。本发明提供的制备方法工艺简单,操作方便。
【具体实施方式】
[0018]为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
[0019]本发明实施例公开了一种纳米纤维素复合聚砜中空纤维膜的制备方法,包括以下步骤:将铸膜液和芯液通过浸没沉淀相转化纺丝装置的环状纺丝头同时挤出,形成管状液膜,所述铸膜液包括质量比为13-30: 0.1-7: 1-8: 0.5-5的聚砜、纳米纤维素、聚乙二醇和磺化聚砜;将所述管状液膜经过空气间隙后进入凝固浴中固化,置于水中浸泡清洗,得到纳米纤维素复合的聚砜中空纤维膜。
[0020]本发明采用采用浸没沉淀相转化法制备中空纤维膜,以纳米纤维素作为聚砜膜的增强剂和亲水改性剂,以聚乙二醇为纳米纤维素的分散剂和聚砜膜的亲水改性剂,改善纳米纤维素和聚砜之间的相容性,制备具有高强度的亲水性聚砜中空纤维膜。
[0021]作为优选方案,所述铸膜液按照如下方法制备:将纳米纤维素均匀分散在二甲基乙酰胺中,然后加入聚乙二醇、聚砜、和磺化聚砜,搅拌至形成均匀的溶液,脱泡,得到铸膜液,所述聚砜、纳米纤维素、聚乙二醇和磺化聚砜的质量比为13-30: 0.1-7: 1-8: 0.5-5。更优选的,所述聚砜、纳米纤维素、聚乙二醇和磺化聚砜的质量比为14-25: 1-7: 1-6: 2-5,更优选为14-20: 2-7: 1-6: 2_5。本发明通过调节各原料的比例,可显著调节膜结构和性能。
[0022]在铸膜液的制备过程中,所述纳米纤维素均匀分散在二甲基乙酰胺中,优选采用的分散方法为超声法或均质法。所述芯液优选为二甲基乙酰胺和水的混合物,其中,所述二甲基乙酰胺和水的体积比优选为I: 1-10,更优选为I: 1-8,更优选为I: 1-5。所述脱泡方法优选为静置脱泡法或真空脱泡法。
[0023]作为优选方案,形成管状液膜的步骤中,铸膜液的流速优选为10- 20 g/min,更优选为12 - 18 g/min,更优选为14 - 16 g/min;芯液的流速优选为10 - 20 ml/min,更优选为12 - 18 g/min,更优选为14 - 16 g/min。本发明通过调节铸膜液的流速调节中空纤维膜的厚度,调控膜通量;通过调节芯液的流速,起到调节中空纤维膜的内径尺寸和壁厚的目的。
[0024]作为优选方案,所述纳米纤维素的长度优选为30 - 600 nm,更优选为100 - 500nm。本发明通过调节纳米纤维素的长度,改善膜的结构、亲水性和机械强度。
[0025]所述聚乙二醇的平均分子量优选为200 - 20000,更优选为200 - 10000,更优选为1000 - 10000。本发明通过调节聚乙二醇的分子量,改善纳米纤维素与聚砜的相容性。
[0026]作为优选方案,所述凝固浴为水,起到较好的固化效果。
[0027]作为优选方案,所述空气间隙优选为0.1-30 cm,更优选为1-25 cm,更优选为7_15cm。本发明通过控制空气间隙的距离,起到调控膜的结构的目的。
[0028]从以上方案可以看出,本发明具有如下特点:
本发明具有如下优点和有益效果:
1、本发明以纳米纤维素为添加剂,可同时改善聚砜膜的机械强度和亲水性,制备得到高强度的亲水性聚砜中空纤维膜,并且,本发明提供的方法简单易行;
2、采用聚乙二醇为纳米纤维素的分散剂,可有效抑制纳米纤维素的团聚,并增强亲水的纳米纤维素与
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1