一种氧化物固体电解质材料及其制备方法与应用的制作方法

文档序号:6788610阅读:253来源:国知局
专利名称:一种氧化物固体电解质材料及其制备方法与应用的制作方法
技术领域
本发明涉及ー种氧化物固体电解质材料及其制备方法与应用。
背景技术
自二十世纪九十年代初商用化以来,锂离子电池凭借着其较高的能量密度与功率密度,在电子消费产品,如移动电话、笔记本电脑与数码相机等领域,逐步占据了越来越大的市场份额。随着国民经济的不断繁荣,与现代科技水平的不断提升,锂离子电池在当今社会又大大扩展了其应用领域。如近年来为降低ニ氧化碳排放而兴起的电动汽车,以及伴随电子器件小型化、集成化而产生的薄膜电池等。锂离子电池技术的改进与完善,扩展了其应用领域,同时新的使用条件又对锂离子电池提出了更为苛刻与高端的要求;两者相互影响与促进,带动了科学研究与产业经济的共同进步。目前,在市场上广泛使用的锂离子电池主要采用的是液态电解质,它是易燃易爆的有机物,这给锂离子电池的使用带来了安全隐患,如,电池在某些条件下会由于封装不好而发生漏液,或在温度升高时发生爆炸。这些事故会造成人身伤害与经济损失。同时,对于某些特殊场合的使用,如为高度集成的小型电子产品提供能量,或者在较宽的温度范围内实现稳定储能等,现有的离子电池技术都受到了严峻的挑战。针对上述问题,使用全固体电解质(快离子导体)是最佳的解决方案。固体电解质由于良好的热稳定性、电化学稳定性及机械加工性,可杜绝漏液与爆炸等安全事故,同时又使其能够满足很多苛刻的环境要求与使用条件。然而,目前限制固态电解质使用的最大瓶颈问题是其电导率较低,还不能够满足目前商用锂电池的使用要求。因此,寻找并合成具有高锂离子电导率的固体电解质材料就成为了解决上述问题的核心与关键。在目前见诸报道的固体电解质材料中,具有立方石榴石结构的锂镧锆氧是ー种极具应用前景的材料,其化学式可写成Li7La3Zr2O12 (简写作LLZ)。在室温条件下,其离子电导率可以达到10_4S/cm的量级,这一指标已较接近实用化(10_3S/cm)。此外,与其它固体电解质材料相比,LLZ还具有十分良好的热稳定性与电化学稳定性,在电池的循环寿命与可靠性等方面更具优势。目前,通过固相反应方法,在一定的温度下进行热处理,是制备锂镧锆氧固体电解质材料的主要方法。在制备过程中掺入ー些含量较低的元素,可以起到缩短烧结时间、促进晶粒长大等作用。然而,目前报道的掺杂元素大多存在着来源少、价格昂贵等不足。因此,寻找并尝试具有价格优势的新掺杂元素,在促进锂镧锆氧固体电解质材料的推广应用方面具有极大的应用前景。

发明内容
本发明的目的是提供ー种锂镧锆氧基氧化物固体电解质材料及其制备方法。本发明所提供的锂镧锆氧基氧化物固体电解质材料由基体材料和掺杂元素组成;其中,所述基体材料为锂镧锆氧固体电解质,其化学式为Li7La3Zr2O12,所述掺杂元素选自下述至少ー种:钙(Ca)、锶(Sr)、钡(Ba)和锗(Ge),所述掺杂元素的质量不超过所述基体材料质量的15%。所述锂镧锆氧基氧化物固体电解质材料的化学式可表述为Li7+X(La3_xMx)Zr2O12,其中,0 < 1,M代表下述四种掺杂元素中的至少ー种:钙、锶、钡和锗。所述锂镧锆氧基固体电解质材料的结构为立方相的石榴石结构;所述锂镧锆氧基固体电解质材料在室温下的总离子电导率大于lX10_4S/cm,具体可为2.1OXlO-4S/cm-4.85X 10 4S/cm。制备所述锂镧锆氧基固体电解质材料的方法,为固相反应法,包括如下步骤:将锂源化合物、镧源化合物、锆源化合物和含掺杂元素的化合物按照L1、La、Zr、M摩尔比为(7+x): (3-x): 2: X的比例混匀后进行煅烧并冷却至室温,再进行高温烧结,得到所述锂镧锆氧基固体电解质材料;其中,0 < X < I。在上述方法中,为了减少由于高温热处理造成的锂源挥发,需在原料中加入适当过量的锂源物质。上述方法中,所述锂源化合物选自氢氧化锂、碳酸锂、硝酸锂和高氯酸锂中的至少ー种,优选碳酸锂。所述镧源化合物选自氧化镧、硝酸镧和氢氧化镧中的至少ー种,优选氧化镧。所述锆源化合物选自氧化锆、硝酸氧锆和氢氧化锆中的至少ー种,优选氧化锆。所述掺杂兀素包括Ca、Sr、Ba和Ge中的一种或几种;掺杂元素钙源化合物选自碳酸钙、氧化钙、硝酸钙、こ酸钙和磷酸钙中的至少ー种,优选碳酸钙;掺杂元素锶源化合物选自碳酸锶、氧化锶、硝酸锶、こ酸锶、氢氧化锶和草酸锶中的至少ー种,优选碳酸锶;掺杂元素钡源化合物选自碳酸钡、氧化钡、硝酸钡和磷酸钡中的至少ー种,优选碳酸钡;掺杂元素锗源化合物选自氧化锗。所述混匀步骤中,混合介质为醇,混合方法为球磨混合,时间为6-24小时,优选10小时;所述煅烧步骤中,温度为700-950°C,优选900°C,时间为10-20小时,优选15小时;所述烧结步骤中,温度为1100-1230°C,优选1200°C,时间为8-24小时,优选24小时。所述混匀步骤中,所述醇选自こ醇、异丙醇、こニ醇和丙三醇中的至少ー种,优选こ醇。上述制备锂镧锆氧基固体电解质材料的方法,还包括如下步骤:在所述混匀步骤之后,所述煅烧步骤之前,将混匀后的反应物进行干燥;在所述煅烧步骤之后,所述烧结步骤之前,将煅烧后的产物于所述醇中进行混合均匀后再进行干燥和压片。其中,所述混合方法为球磨混合,时间为6-24小时,优选12小时;所述干燥步骤中,温度均为70-90°C,优选75-80°C,时间为5_24小时,优选6_10小时;所述压片步骤包括如下步骤:先将干燥后的产物进行预压成型,再进行冷等静压。所述预压成型步骤中,压カ为2-10MPa,优选4MPa,时间为1_10分钟,优选3分钟;所述冷等静压步骤中,压カ为150-250MPa,优选200MPa,时间为5_15分钟,优选10分钟。以本发明提供的锂镧锆氧基固体电解质材料为电解质材料的锂离子电池以及该锂镧锆氧基固体电解质材料在制备锂离子电池中的应用,也均属于本发明的保护范围。 本发明提供的锂镧锆氧基固体电解质材料,在保持了基体材料的立方石榴石结构的同时,引入了来源广泛、价格低廉的掺杂元素,可以在相对较短的热处理时间内制备具有较高的室温离子电导率的氧化物固体电解质材料,扩展了锂镧锆氧基固体电解质材料的成分组成,具有重要的应用前景与价值。


图1为掺杂不同含量锶元素的锂镧锆氧基固体电解质材料,电导率随温度的变化关系曲线,该固体电解质材料的名义化学式可写成Li7+x(La3_xSrx)Zr2012(x = 0-1)。图2为掺杂不同含量锶元素的锂镧锆氧基固体电解质材料,离子电导率与激活能随掺杂含量的变化关系曲线,该固体电解质材料的名义化学式可写成Li7+x(La3_xSrx)Zr2O12 (X = 0-1)。
具体实施例方式下面结合具体实施例对本发明作进ー步阐述,但本发明并不限于以下实施例。下述实施例中所述方法如无特别说明均为常规方法。所述材料如无特别说明均能从公开商业途径而得。下述实施例中,所得锂镧锆氧基固体电解质材料的总离子电导率是在室温下,通过电化学阻抗谱方法进行测量的,具体方法为:首先在制备的块体陶瓷上下表面分别溅射约200纳米厚的金层,作为离子阻塞电极;然后在砂纸上打磨掉样品侧面的金层,以防止在测试过程中发生短路;最后将样品通过合适的夹具连接到电化学工作站或阻抗分析仪等频谱测试设备上。主要测试參数如下:交流电压幅值5 50mV,频率范围0.1Hz 8MHz (电化学工作站)或40Hz IlOMHz (阻抗分析仪)。对于得到的电化学阻抗数据,通过软件进行等效电路拟合,可以得到样品的总电阻。最后,根据样品的厚度和金电极的面积等參数,计算得到样品的总电导率。实施例1、制备钙元素掺杂的锂镧锆氧基固体电解质材料将锂源化合物碳酸锂7.315克、镧源化合物氧化镧11.404克、锆源化合物氧化锆
6.161克和钙源化合物碳酸钙0.5克按照L1、La、Zr、Ca摩尔比为7.92: 2.80: 2: 0.20,掺杂元素占基体材料的0.95%,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在900°C煅烧15小时,再在异丙醇介质中球磨12小时,在75°C干燥6小时后,在4MPa的压カ下预压成型I分钟,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结24小时,得到本发明提供的钙元素掺杂锂镧锆氧基固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为685欧姆,厚度为1.15毫米,电极面积为73.5平方毫米,在室温下的总离子电导率为2.29X10_4S/cm。实施例2、制备锶元素掺杂的锂镧锆氧基固体电解质材料将锂源化合物碳酸锂7.315克、镧源化合物氧化镧11.404克、锆源化合物氧化锆6.161克和锶源化合物碳酸锶0.738克按照L1、La、Zr、Sr摩尔比为
7.92: 2.80: 2: 0.20,掺杂元素占基体材料的2.2%,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在9000C煅烧15小吋,再在异丙醇介质中球磨12小时,在75°C干燥8小时后,在4MPa的压カ下预压成型5分钟,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结24小时,得到本发明提供的锶元素掺杂锂镧锆氧基固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为457欧姆,厚度为1.72毫米,电极面积为77.5平方毫米,在室温下的总离子电导率为4.85X 10_4S/cm。将上述加入的碳酸锶的量分别替换为其它质量的碳酸锶,其余制备条件均相同。得到了一系列锶掺杂含量不同(即 Li7+x(La3^xSrx)Zr2O12, x = 0,0.1,0.2,0.3,0.5,1)的锂镧锆氧基固体电解质材料。对所得锂镧锆氧基固体电解质材料随温度的变化的电导率进行測定,结果见图1。由图1可知,在室温下,所制备样品的离子电导率大于IX 10_4S/cm,且随着测试温度的升高,离子电导率继续升高。(图1中不含掺杂元素的锂镧锆氧基固体电解质材料,其烧结时间为36小时)对所得锂镧锆氧基固体电解质材料的离子电导率与激活能进行測定,绘制了离子电导率与激活能随掺杂含量的变化关系曲线,见图2。由图2可知,在室温下,锶掺杂的锂镧锆氧基固体电解质材料随着掺杂含量的増加,呈现出先升高再降低的变化规律,当掺杂含量在2.2%吋,获得了最高的室温离子电导率,为4.85X 10_4S/cm,相应的激活能为0.31eV。实施例3、制备钡元素掺杂的锂镧锆氧基固体电解质材料将锂源化合物碳酸锂7.315克、镧源化合物氧化镧11.404克、锆源化 合物氧化锆6.161克和钙源化合物碳酸钡0.987克按照L1、La、Zr、Ba摩尔比为7.92: 2.80: 2: 0.20,掺杂元素占基体材料的3.27%,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在9000C煅烧15小吋,再在异丙醇介质中球磨12小吋。C,在75°C干燥8小时后,在4MPa的压カ下预压成型10分钟,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结24小时,得到本发明提供的钡元素掺杂锂镧锆氧基固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为1120欧姆,厚度为1.63毫米,电极面积为69.59平方晕米,在室温下的总尚子电导率为2.10X 10 4S/cm。实施例4、制备锗元素掺杂的锂镧锆氧基固体电解质材料将锂源化合物碳酸锂8.469克、镧源化合物氧化镧14.594克、锆源化合物氧化锆
7.336克和锗源化合物氧化锗0.09克按照L1、La、Zr、Ge摩尔比为7.70: 2.97: 2: 0.03,掺杂元素占基体材料的0.30%,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在900°C煅烧15小时,再在异丙醇介质中球磨12小时,在75°C干燥10小时后,在4MPa的压カ下预压成型,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结24小时,得到本发明提供的锗元素掺杂锂镧锆氧基固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为1541欧姆,厚度为0.80毫米,电极面积为23.85平方毫米,在室温下的总离子电导率为2.27X 10_4S/cm。实施例5、制备锗元素掺杂的锂镧锆氧基固体电解质材料将锂源化合物碳酸锂8.469克、镧源化合物氧化镧14.594克、锆源化合物氧化锆
7.336克和锗源化合物氧化锗0.09克按照L1、La、Zr、Ge摩尔比为7.70: 2.97: 2: 0.03,掺杂元素占基体材料的0.30%,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在900°C煅烧15小时,再在异丙醇介质中球磨12小时,在75°C干燥10小时后,在4MPa的压カ下预压成型,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结20小时,得到本发明提供的锗元素掺杂锂镧锆氧基固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为1560欧姆,厚度为0.80毫米,电极面积为23.85平方晕米,在室温下的总尚子电导率为2.15X 10 4S/cm。
实施例6、制备锗元素掺杂的锂镧锆氧基固体电解质材料将锂源化合物碳酸锂8.469克、镧源化合物氧化镧14.594克、锆源化合物氧化锆
7.336克和锗源化合物氧化锗0.09克按照L1、La、Zr、Ge摩尔比为7.70: 2.97: 2: 0.03,掺杂元素占基体材料的0.30%,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在900°C煅烧15小时,再在异丙醇介质中球磨12小时,在75°C干燥10小时后,在4MPa的压カ下预压成型,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结8小时,得到本发明提供的锗元素掺杂锂镧锆氧基固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为2266欧姆,厚度为0.80毫米,电极面积为23.85平方晕米,在室温下的总尚子电导率为1.48X 10 4S/cm。对比例1、制备不掺杂的锂镧锆氧固体电解质材料将锂源化合物碳酸锂8.469克、镧源化合物氧化镧14.594克、锆源化合物氧化锆
7.336克按照L1、La、Zr摩尔比为7.7: 3: 2,在こ醇介质中进行球磨混合10小时,然后在60°C干燥后,在900°C煅烧15小时,再在异丙醇介质中球磨12小时。C,在75°C干燥8小时后,在4MPa的压カ下预压成型,然后在200MPa的压カ下冷等静压5分钟后,将成型后的坯体在1200°C下烧结24小时,得到不掺杂锂镧锆氧固体电解质材料。该锂镧锆氧基固体电解质材料总电阻为1548欧姆,厚度为1.34毫米,电极面积为86.59平方毫米,在室温下的总离子电导率为1.00X10_4S/cm。由此可知,在不添加本发明所涉及的掺杂元素(钙、银、钡和锗)的情况下,缩短烧结时间,所获得到的材料的离子电导率大大降低。
权利要求
1.ー种锂镧锆氧基氧化物固体电解质材料,由基体材料和掺杂元素组成;其中,所述基体材料为锂镧锆氧固体电解质,其化学式为Li7La3Zr2O12,所述掺杂元素选自下述至少一种:钙、锶、钡和锗,所述掺杂元素的质量不超过所述基体材料质量的15%。
2.根据权利要求1所述的固体电解质材料,其特征在于:所述锂镧锆氧基固体电解质材料的结构为立方相的石榴石结构;所述锂镧锆氧基固体电解质材料在室温下的总离子电导率大于I X 10 4S/cm。
3.根据权利要求1或2所述的固体电解质材料,其特征在于:所述锂镧锆氧基固体电解质材料是按照权利要求4-8中任一项所述方法制备得到的。
4.制备权利要求1或2所述的锂镧锆氧基氧化物固体电解质材料的方法,包括下述步骤:将锂源化合物、镧源化合物、锆源化合物和含掺杂元素的化合物按照L1、La、Zr、M摩尔比为(7+x): (3-x): 2: X的比例混匀后进行煅烧并冷却至室温,然后再进行烧结,得到所述锂镧错氧基固体电解质材料;其中,0 < X < I。
5.根据权利要求4所述的方法,其特征在干:所述烧结的步骤中,烧结温度为1100-1230°C,时间为 8-24 小时。
6.根据权利要求4或5所述的方法,其特征在于:所述锂源化合物选自氢氧化锂、碳酸锂、硝酸锂和高氯酸锂中的至少ー种; 所述镧源化合物选自氧化镧、硝酸镧和氢氧化镧中的至少ー种; 所述锆源化合物选自氧化锆、硝酸氧锆和氢氧化锆中的至少ー种; 所述含掺杂元素的化合物为钙源化合物,所述钙源化合物选自碳酸钙、氧化钙、硝酸钙、乙酸钙和磷酸钙中的至少一种; 所述含掺杂元素的化合物为锶源化合物,所述锶源化合物选自碳酸锶、氧化锶、硝酸锶、こ酸锶、氢氧化锶和草酸锶中的至少ー种; 所述含掺杂元素的化合物为钡源化合物,所述钡源化合物选自碳酸钡、氧化钡、硝酸钡和磷酸钡中的至少ー种; 所述含掺杂元素的化合物为锗源化合物,所述锗源化合物选自氧化锗; 所述混匀步骤中,混合介质为醇,混合方法为球磨混合,时间为6-24小时;所述醇选自こ醇、异丙醇、こニ醇和丙三醇中的至少ー种; 所述煅烧步骤中,温度为700-950°C,时间为10-20小时。
7.根据权利要求4-6中任一项所述的方法,其特征在于:所述方法还包括如下步骤:a)在所述混匀步骤之后,所述煅烧步骤之前,将混匀后的反应物进行干燥; b)在所述煅烧步骤之后,所述烧结步骤之前,将煅烧后的产物于所述醇中进行混合均匀后再进行干燥和压片。
8.根据权利要求7所述的方法,其特征在干:步骤a)中,所述混合方法为球磨混合,时间为6-24小时;所述干燥步骤中,温度均为70-90°C,具体为75-80°C,时间为5_24小时,具体为6-10小时; 步骤b)中,所述压片步骤包括如下步骤:先将干燥后的产物进行预压成型,再进行冷等静压;所述预压成型步骤中,压カ为2-10MPa,时间为1-10分钟;所述冷等静压步骤中,压カ为150-250MPa,时间为5-15分钟。
9.权利要求1-3中任一项所述的锂镧锆氧基固体电解质材料在制备锂离子电池中的应用。
10.以权利要求1-3中任一项所述的锂镧锆氧基固体电解质材料为电解质材料的锂离子电池 。
全文摘要
本发明公开了一种锂镧锆氧基氧化物固体电解质材料及其制备方法。所述固体电解质材料由基体材料和掺杂元素组成;所述基体材料为锂镧锆氧固体电解质,其化学式为Li7La3Zr2O12,所述掺杂元素选自下述至少一种钙、锶、钡和锗,所述掺杂元素的质量不超过所述基体材料质量的15%。制备方法如下将锂源化合物、镧源化合物、锆源化合物和掺杂元素化合物混匀后进行煅烧和烧结,得到所述锂镧锆氧基固体电解质材料。该材料可以在采用来源广泛的掺杂元素条件下、在较低的烧结温度和较短的烧结时间下制备锂镧锆氧基固体电解质材料,并且总的室温离子电导率均大于1×10-4S/cm,具有重要的应用价值。
文档编号H01M10/0562GK103117413SQ201310041349
公开日2013年5月22日 申请日期2013年2月1日 优先权日2013年2月1日
发明者南策文, 黄冕, 亚历山大, 沈洋, 林元华, 刘振国, 裴佳宁 申请人:清华大学, 华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1