一种硫铜化合物碳基复合材料为正极的铝离子电池的制作方法

文档序号:11777021阅读:346来源:国知局
一种硫铜化合物碳基复合材料为正极的铝离子电池的制作方法与工艺

本发明涉及铝离子电池,尤其是涉及一种cu2-xs-碳基复合材料及使用该材料做正极的铝离子电池。



背景技术:

在20世纪末,锂离子电池出现,并被证明是一种有效的能量储存系统,因为它能量密度高、循环寿命长、工作电势高。然而,锂资源的分布不均以及大量消耗导致锂金属价格不断上涨,外加近些年来关于有机型锂离子电池事故的报道屡见不鲜。这都促使人们研发更便宜、更安全以及更高能量密度的能量储存系统。

近年来,以铝离子电池为代表的多价离子电池广受关注。铝资源丰富,是地壳中储量最丰富的金属。再者,可充放电铝离子电池拥有很高的理论比容量(2980mahg-1,8063mahcm-3)。外加铝离子电池还有可弯折性强、对环境友好、安全性高等优点,因此对于未来的可穿戴设备电池,易发生碰撞危险易燃易爆的汽车电池,大规模智能电网储能等领域,铝离子电池都有极大的应用前景和应用价值。然而,在之前的报道中,铝离子电池的研究遇到了不少问题,比如正极材料分解、电池电压低、循环性能差、电解液选择困难等,这些都亟待解决。当然,这些文章也介绍了一系列新型的铝离子电池电极材料,比如v2o5(文献:wang,h.etal.binder-freev2o5cathodeforgreenerrechargeablealuminumbattery[j].acsappliedmaterials&interfaces,2015)、tio2(文献:he,y.etal.blackmesoporousanatasetio2nanoleaves:ahighcapacityandhighrateanodeforaqueousal-ionbatteries[j].j.mater.chem.a,2014)等,但这些材料的放电比容量低且循环性能不理想,远不能达到商业化铝离子电池电极材料的要求,因此,开发高比容量、高循环稳定性的铝离子电池正极材料显得尤为重要。

迄今为止尚未报道过关于cu2-xs-碳基复合材料作为正极及用这种正极的铝离子电池。



技术实现要素:

本发明的目的是提供一种硫铜化合物碳基复合材料为正极的铝离子电池。

本发明包括电池正极、电池负极、电解液、金属箔片集流体和隔膜;所述电池正极的活性物质为cu2-xs-碳基复合材料,电池负极为金属铝或含铝合金;所述电解液为含铝离子非水系电解液;所述金属箔片集流体为在电解液中表现电化学惰性的金属箔片集流体;所述隔膜为分隔电池正极和电池负极的隔膜。

所述cu2-xs选自cu2s、cu1.96s、cu1.8s、cu1.75s、cu1.6s、cu1.39s、cu1.12s、cu0.5s等中的一种,所述cu2-xs-碳基复合材料中碳含量的质量百分比为0.1%~20%。

所述cu2-xs-碳基复合材料的制备方法如下:将cu2-xs溶于水中,再加入碳源,复合后得cu2-xs-碳基复合材料。

所述碳源可选自无定形碳、结晶碳、导电有机碳材料等中的至少一种。

所述cu2-xs-碳基复合的方法可采用水热法、溶胶凝胶法、高温煅烧法、喷雾干燥法等中的一种或两种。

所述电池负极材料可采用纯度大于90%的金属铝、或金属铝与铜、银、镍、铅、锡、铋、铁等中的合金。

所述含铝离子非水系电解液包括卤化铝和离子液体,所述卤化铝和离子液体的摩尔比可为(1.1~2)︰1。

所述离子液体的阴离子包括cl-,br-,i-,pf6-,bf6-,cn-,scn-,[n(cf3so2)2]-或[n(cn)2]-等离子;阳离子包括咪唑鎓离子、吡啶鎓离子、吡咯鎓离子、哌啶鎓离子、吗啉鎓离子、季铵盐离子、季磷盐离子或叔硫盐离子等。

所述电化学惰性的金属箔片集流体包括钽片、铌片、钼片、钛片、不锈钢片、金及铂族金属。

所述分隔电池正极和电述负极的隔膜材料包括但不限于:聚烯烃类,所述聚烯烃类可选自聚乙烯和聚丙烯、玻璃纤维滤纸和陶瓷材料。

所述硫铜化合物碳基复合材料为正极的铝离子电池的制备方法包括以下步骤:

1)将cu2-xs-碳基复合材料、导电材料、粘结剂按照比例分别称取均匀混合,制成活性材料浆料均匀地涂抹在惰性金属集流体上,在60~100℃烘箱中烘干,制成厚度为0.5~2mm片状复合正极材料;

2)将厚度为0.1~1mm的金属铝或铝合金,用细砂纸打磨双面,用无水乙醇清洗后,干燥,即得到负极材料;

3)将离子液体在真空干燥箱80~150℃下干燥12h,随后卤化铝和离子液体以摩尔比为(1.1~2)︰1在氩气环境的手套箱内混合,室温磁力搅拌0.5h,即配制成含有可自由移动铝离子的非水溶液电解液;

4)将步骤1)得到电池正极材料、步骤2)得到的电池负极材料、步骤3)得到的含铝离子非水溶液电解液、隔膜在手套箱中组装完成,得到铝离子软包电池或者扣式电池,即cu2-xs-碳基复合材料为正极的铝离子电池;

5)电池组装好后,静置12~20h后再进行充放电测试。

与现有技术相比,本发明的有益效果是:使用cu2-xs-碳基复合材料作为正极材料,高纯铝或含铝合金作为负极材料,构成了一种可充放电的铝离子电池。由于本发明对正负极材料、隔膜、集流体以及电解液等通过实验研究进行了精细的选择,并结合上述所提到的制备方法,所以本发明可总结出如下特点:提出了一种新型多价离子电池,即铝离子电池体系;铝资源储量丰富,每年开采量是锂的1000多倍,价格低廉,大大降低了电池的制备成本;cu2-xs-碳基复合材料易于合成,成本低廉,且对环境友好,故在电化学储能领域有极大的应用前景;离子液体作为一种新型的铝离子电池电解液,具有电化学窗口宽、离子电导率高、无可燃性等优点;本发明所提供的铝离子电池具有比容量高、制备工艺简单、原材料便宜且对环境友好等优点,其首圈放电比容量高达140mahg-1,电化学曲线显示有两对充放电平台,与循环伏安曲线中两对还原氧化峰对应,说明在al的嵌入过程中发生了两步反应。本发明的铝离子电池可应用于如便携式电子设备、电动汽车、大型储能电站多种领域。

附图说明

图1为本发明实施例1制备的铝离子电池第一圈和第二圈的充放电测试曲线。

图2为本发明实施例1制备的铝离子电池前五圈的循环伏安测试曲线。

具体实施方式

本发明下面将通过具体实施例进行更详细的描述。

【实施例1】

将1g的cu2s溶于50ml水,加入2g的葡萄糖,转移至100ml水热釜中,反应24h,再在500℃高温下煅烧10h,得到cu2s-碳基复合材料。将该材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(pvdf)按照质量比7︰2︰1混合研磨均匀,用n-甲基吡咯烷酮(nmp)调浆,充分搅拌均匀,涂覆于大小合适的不锈钢网上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成正极极片。高纯铝片双面用细砂纸打磨,用乙醇浸泡1~2h后烘干,裁剪成大小合适的片状作为负极。将无水氯化铝和1-乙基-3-甲基-氯化咪唑鎓按摩尔比为1.3︰1在氩气环境的手套箱配制成铝离子电池电解液。将pe膜作为隔膜。最后把准备好的正极、负极、隔膜及电解液在手套箱内组装成软包铝离子电池。电池装好16h后,在0.05~0.95v之间进行充放电测试。由图1可知,采用cu2s-碳基复合材料为正极的铝离子电池其首圈放电比容量为140mahg-1,该材料具有两对清晰的放电平台和充电平台。从图2的循环伏安图也可看出,其电化学过程包括两对可逆的还原氧化峰,分别对应于电化学曲线中的两对放电平台和充电平台,说明在al的嵌入过程中发生了两步反应。

【实施例2】

将1g的cu2s溶于50ml水,加入2g的蔗糖,转移至100ml水热釜中,反应24h,再在500℃高温下煅烧10h,得到cu2s-碳基复合材料。将该材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(pvdf)按照质量比7︰2︰1混合研磨均匀,用n-甲基吡咯烷酮(nmp)调浆,充分搅拌均匀,涂覆于大小合适的不锈钢网上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成正极极片。高纯铝片双面用细砂纸打磨,用乙醇浸泡1~2h后烘干,裁剪成大小合适的片状作为负极。将无水氯化铝和1-乙基-3-甲基-氯化咪唑鎓按摩尔比为1.3︰1在氩气环境的手套箱配制成铝离子电池电解液。将pe膜作为隔膜。最后把准备好的正极、负极、隔膜及电解液在手套箱内组装成软包铝离子电池。电池装好16h后,在0.05~0.95v之间进行充放电测试。

【实施例3】

将1g的cu2s溶于50ml水,加入2g的尿素,转移至100ml水热釜中,反应24h,再在500℃高温下煅烧10h,得到cu2s-碳基复合材料。将该材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(pvdf)按照质量比7︰2︰1混合研磨均匀,用n-甲基吡咯烷酮(nmp)调浆,充分搅拌均匀,涂覆于大小合适的不锈钢网上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成正极极片。高纯铝片双面用细砂纸打磨,用乙醇浸泡1~2h后烘干,裁剪成大小合适的片状作为负极。将无水氯化铝和1-乙基-3-甲基-氯化咪唑鎓按摩尔比为1.3︰1在氩气环境的手套箱配制成铝离子电池电解液。将pe膜作为隔膜。最后把准备好的正极、负极、隔膜及电解液在手套箱内组装成软包铝离子电池。电池装好16h后,在0.05~0.95v之间进行充放电测试。

【实施例4】

将1g的cu2s溶于50ml水,加入2g的石墨烯,转移至100ml水热釜中,反应24h,再在500℃高温下煅烧10h,得到cu2s-碳基复合材料。将该材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(pvdf)按照质量比7︰2︰1混合研磨均匀,用n-甲基吡咯烷酮(nmp)调浆,充分搅拌均匀,涂覆于大小合适的不锈钢网上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成正极极片。高纯铝片双面用细砂纸打磨,用乙醇浸泡1~2h后烘干,裁剪成大小合适的片状作为负极。将无水氯化铝和1-乙基-3-甲基-氯化咪唑鎓按摩尔比为1.3︰1在氩气环境的手套箱配制成铝离子电池电解液。将pe膜作为隔膜。最后把准备好的正极、负极、隔膜及电解液在手套箱内组装成软包铝离子电池。电池装好16h后,在0.05~0.95v之间进行充放电测试。

【实施例5】

将1g的cu2s溶于50ml水,加入2g的碳纳米纤维,转移至100ml水热釜中,反应24h,再在500℃高温下煅烧10h,得到cu2s-碳基复合材料。将该材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(pvdf)按照质量比7︰2︰1混合研磨均匀,用n-甲基吡咯烷酮(nmp)调浆,充分搅拌均匀,涂覆于大小合适的不锈钢网上(厚度0.01mm),在真空烘箱80℃下烘干过夜,制作成正极极片。高纯铝片双面用细砂纸打磨,用乙醇浸泡1~2h后烘干,裁剪成大小合适的片状作为负极。将无水氯化铝和1-乙基-3-甲基-氯化咪唑鎓按摩尔比为1.3︰1在氩气环境的手套箱配制成铝离子电池电解液。将pe膜作为隔膜。最后把准备好的正极、负极、隔膜及电解液在手套箱内组装成软包铝离子电池。电池装好16h后,在0.05~0.95v之间进行充放电测试。

本发明所提供的铝离子电池具有比容量高、制备工艺简单、原材料便宜且对环境友好等优点,其首圈放电比容量高达140mahg-1,具有两对清晰的充放电平台,与循环伏安曲线中两对还原氧化峰对应,说明在al的嵌入过程中发生了两步反应。本发明的铝离子电池可应用于如便携式电子设备、电动汽车、大型储能电站多种领域。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1