一种用于燃料电池阴极电催化剂及其制备和应用

文档序号:8397253阅读:1334来源:国知局
一种用于燃料电池阴极电催化剂及其制备和应用
【技术领域】
[0001] 本发明涉及燃料电池催化剂,具体地说是一种掺杂型纳米碳电催化剂的制备及其 应用,该催化剂可用作质子交换膜燃料电池(PEMFC)和直接甲醇燃料电池(DMFC)阴极电催 化剂。
【背景技术】
[0002] 能源是国民经济发展和社会文明进步的基础,20世纪形成的以石油、天然气和煤 炭等化石燃料为主体的能源系统,已无法满足未来社会对高效、清洁、经济、安全能源体系 的要求,能源发展正面临前所未有的挑战。为了实现人类社会的可持续发展,多年来人们一 直在努力寻找高效可靠且环境友好的能源利用方式。
[0003] 聚合物膜燃料电池(PEFCs)包括质子交换膜燃料电池(ProtonExchange MembraneFuelCell,PEMFC)是以纯氢或净化重整气为燃料,而直接甲醇燃料电池(DMFC) 等均是以全氟磺酸膜为电解质的一种燃料电池。由于他们具有可室温快速启动、比功率和 比能量高等特点,所以在在固定式电站、电动汽车、军用特种电源和便携电源等领域具有广 阔的应用前景。21世纪以来,PEMFC在关键材料、电池组和系统等方面取得长足进步。用于 电动汽车动力系统的PEMFC已成功示范运行,正逐步向产业化迈进。DMFC由于其体积小、便 携等特点,在便携式电源领域已成功示范运行。目前,在PEMFC和DMFC中广泛应用的催化 剂为Pt/C催化剂。PEMFC的Pt用量一般为0.SgptIdT1,而DMFC中催化剂的用量远远高于此 数值,从而导致电催化剂的成本居高不下。同时,PEFCs均采用环境空气作为氧化剂,随着 环境日趋恶化,空气质量严重下降,空气中杂质引起的催化剂中毒问题成为影响其耐久性 的重要因素之。同时,DMFC由于甲醇容易从阳极渗透到阴极,引起阴极催化剂中毒,电池性 能下降。。因此,开发低成本钼替代催化剂是目前PEMFC领域的研究重点之一。
[0004] 多孔炭材料是一种具有一定孔隙结构的新型炭材料,由于其具有资源丰富、高比 表面积、孔体积、高导电性及可设计的孔结构,因而广泛应用于电子工业、气体和液体的分 离、医疗卫生等领域。研究表明,在半导体材料和碳等材料中进行微量元素(N、B等)掺 杂或修饰,可以改变材料的物理、化学和热力学性质,从而使其具有优异的催化性能。研 究表明,Ru/C催化剂在相对较低的电位下易被氧化为RuOx,但当加入Se原子修饰之后, Ru和Se之间的化学键合作用制备的RuxSey催化剂可以抑制Ru原子的氧化,增强催化剂 的氧还原活性和稳定性[V.Zaikovskii,K.Nagabhushana,V.Kriventsov,K.Loponov,S. Cherepanova,R.Kvon,H.Bonnemann,D.Kochubey,E.Savinova.Synthesisand StructuralCharacterizationofSe-ModifiedCarbon-SupportedRuNanoparticles fortheOxygenReductionReaction.TheJournalofPhysicalChemistry B,2006(110):6881-6890. ]〇

【发明内容】

[0005] 本发明的目的在于提供一种燃料电池电催化剂及其制备和应用,为达到上述目 的,采用的技术方案如下,
[0006] -种用于燃料电池阴极电催化剂,所述催化剂活性组分为具有多孔纳米结构的掺 杂型催化剂,包含Se掺杂纳米碳或Se与氮共掺杂的纳米碳;其中的掺杂Se原子的总质 量百分含量为0. 1~10% ;氮原子的总质量百分含量为0~10% ;炭材料的比表面积为 50-3000m2/g;炭材料总孔容为 0? 5-5cm3/g。
[0007] 本发明以在高压条件下将炭前驱体与Se前驱体复合形成复合前驱体,然后将其 在惰性气体和/或氨气气氛保护下高温炭化制备得到多孔结构的Se掺杂纳米炭或Se和氮 共掺杂纳米碳催化剂。通过Se对纳米炭的修饰,在纳米炭中形成更多缺陷活性位,以提高 纳米碳催化剂的催化活性。
[0008] 包括以下步骤:
[0009] (1).将炭前驱体与溶剂按物质的量比为1:1~1:100的比例混合,加热(室温~ 95°C)搅拌,使其充分溶解,形成透明溶液A;
[0010] (2).将含有〇? 5mg/L-20mg/LSe的含Se前驱体与溶剂以物质的量比为1:1~ 1:100混合物得到B;
[0011] (3).将B加入到A中,继续搅拌,使之形成均匀分散,得到C;其中Se前驱体与炭 前驱体的物质的量比为1:10~1:1000;优选比例为1:5~1:100 ;
[0012] (4).将C倒入高压水热反应釜中,在一定温度和压力子下密封反应l-10h,得到D; 其中反应温度为40-200°C,优选温度为60°C_160°C;反应压力为0?l_3MPa,优选压力范 围为 0? 1-1. 5MPa;
[0013] (5).将D在室温~95°C环境中持续搅拌,待水分或有机溶剂完全蒸发后在60~ 80°C干燥,得到复合物E;
[0014] (6).将复合物E干燥老化处理1~7天,取出后粉碎,得到固体粉末F;
[0015] (7).将固体粉末F于500~1200°C惰性气体保护条件下或氮化气氛下炭化化处 理0. 5~8小时,得到固体粉末G;优选温度为700-1000°C;
[0016] (8).将混合物G洗漆,并在IOO-1000 rpm下球磨l-8h,干燥后得到本发明所保护 的催化剂。
[0017] 所述的掺杂型催化剂,所述炭前驱物包括以下中的一种或二种以上:
[0018] (1)低分子的糖类,包括蔗糖、淀粉、葡萄糖、麦芽糖、木糖、糠醇等中的一种或几 种;
[0019] (2)小分子的有机物,包括甲醛、乙二胺、三甲胺,三聚氰胺、苯酚、乙烯、乙炔、丙 烯、苯中的一种或几种;
[0020] (3)高分子聚合物,包括中间相浙青、聚氨酯、聚吡啶、聚乙二醇、聚吡咯、聚丙烯 腈、聚苯胺、苯酚甲醛树脂、间苯二酚甲醛树脂、二/三聚氰胺甲醛树脂、脲醛树脂、明胶及 生物蛋白等中的一种或几种;
[0021] 所述的掺杂型催化剂,其溶剂为水、乙醇、异丙醇、丙酮、N-N二甲基甲酰胺、N-N二 甲基乙酰胺或N-甲基吡咯烷酮中的一种或二种以上;
[0022] 所述的制备方法,所述采用在惰性气体或还原性气氛时,惰性气体为氮气、氩气、 氦气中的一种;所述氮化气氛为NH3/N2、NH3、CH3CN或HCN气氛中的一种;
[0023] 所述的制备方法,所述的Se前驱体是硒酸钠、硒脲、硒酸、硒酸钾、单质Se、二氧化 硒等中的任意一种或一种以上混合物;
[0024] 所述的燃料电池,包括质子交换膜燃料电池和直接甲醇燃料电池,其阴极为包括 权利要求1中掺杂型催化剂的一种或几种。
[0025] 将如上所述的催化剂用于组装燃料电池时,表现出良好的催化活性、稳定性及抗 毒性能,因而有希望替代钼成为质子交换膜燃料电池和直接甲醇燃料电池中的电催化剂。 本发明将此类非金属催化剂作为燃料电池催化剂,成本非常低,具有良好的催化性能,且增 加了催化剂的多样化,加快了燃料电池产业化的进程。与文献报道的各类催化剂及其制备 方法相比,本发明具有如下优点:
[0026] 1.本发明提出一种新型燃料电池的催化剂及其制备方法和应用。与仅未掺杂的纳 米碳催化剂相比,该类催化剂在质子交换膜燃料电池和甲醇燃料电池中具有更高的氧还原 催化活性、选择性和抗N0X、SOx及甲醇等毒性物质毒化能力。
[0027] 2.本发明提出的催化剂具有很高的抗毒化性能。该类催化剂具有优异的抗杂质气 体N0X、SOx以及甲醇等毒化的能力。
[0028] 3.与传统的RuxSey/C等催化剂相比,此类催化剂的成本非常低,但其性能却与其 性能相当,或优于具有相同Se含量的RuxSey/C等催化剂。
[0029] 4.提供了一种新型掺杂纳米碳催化剂的制备方法,即在炭化过程中掺入Se元素, 不仅能使Se均匀的分散在炭纳米结构中,Se与炭之间形成的价键能够提高Se与炭之间的 作用力,进一步提高催化剂的活性和稳定性。
[0030] 5.本发明提出的催化剂成本低。与传统的Pt/C催化相比,本发明的主要组份为 Se或Se和氮共掺杂的纳米碳,且不含任何金属,这些组份价格低廉、资源丰富,制备过程简 单,因而使催化剂的总成本非常低。
[0031] 6.本发明提出的催化剂制备工艺简单、流程少、易操作、环境友好、制备成本低且 易于形成批量化生产规模。
【附图说明】
[0032] 图1为根据实施例1和实施例2制备的纳米碳催化剂的氧还原极化曲线。电解质 溶液:0. 5MH2SO4;参比电极:饱和甘汞电极,对电极:钼丝;扫描速率:5mV/s,电极旋转速 率:1600rpm;电位扫描:0-1. 04Vvs.SHE。
【具体实施方式】
[0033] 将如上所述的负载型催化剂用于阴极中。所述燃料电池可为聚合物电解质膜燃料 电池(PEMFC)、或者直接甲醇燃料电池(DMFC)。
[0034] 工作电极的制备
[0035] 将5mg催化剂、Iml无水乙醇、50li1的5%Nafion溶液,混合后,超声振荡均匀,取 10 混合溶液分散到面积为0. 1256cm2的玻碳(GC)圆盘电极表面,晾干后得到薄膜电极。
[0036] 质子交换膜燃料电池中氧还原极化性能测试方法
[0037] 将氧气溶解在0. 5MH2SO4电解质中直至电解质饱和,然后在从开路电压(OCV) 以负向(negativedirection)扫描的方法测量电流(扫描速率:5mV/s,电极旋转速率: 1600rpm)。在低于其中大部分氧气在电极中还原的0. 6~0. 8V的电势下,电流达到材料极 限电流。材料极限电流是由反应物缺乏导致的电流的最大值。在RDE试验中,随着电极旋 转速率提高,溶解在电解质中的氧气更多地提供至电极表面,从而材料极限电流和整个电 势区域中的电流均提高。
[0038] 下文中,将参照以下实施例对本发明的一个或者多个实施方式进行详细描述。然 而,这些实施例不仅限制本发明的一个或者多个实施方式的目的和范围。
[0039] 根据本发明的实施方式,所述催化剂活性组分为具有多孔纳米结构的掺杂型催化 齐U,包含Se掺杂纳米碳或Se与氮共掺杂的纳米碳;其中的掺杂Se原子的总质量百分含量 为0. 1~10% ;氮原子的总质量百分含量为0~10% ;炭材料的比表面积为50-
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1