金属-陶瓷-基板的制作方法

文档序号:2471719阅读:305来源:国知局
专利名称:金属-陶瓷-基板的制作方法
金属-陶瓷-基板本发明涉及根据权利要求1的前序部分的金属-陶瓷-基板,还涉及根据权利要求26的前序部分的方法。具有金属化的金属-陶瓷-基板或陶瓷基板在各种实施方案中是已知的,特别是还作为印刷电路板或作为用于电器和电子电路或者模块的基板,并特别用于具有高功率的电路或模块。另外已知的是所谓的DCB-方法,用于与陶瓷材料或陶瓷基板直接连接来制造线路、接口等所需的在陶瓷基板上的金属化,例如在铝氧化物-陶瓷-基板上。其中例如在 US-PS 3744 120或DE-PS 23 19邪4中描述的方法是金属层或金属箔,例如铜层或铜箔, 在它们的表面侧设置有由化合物构成的覆盖层,所述化合物由金属(例如铜)和反应性气体(优选氧)形成。该覆盖层与相邻的金属薄层形成共晶体(熔化层),它的熔点低于所述金属(例如铜)的熔点,以便通过在陶瓷上铺置金属层或金属箔,并通过加热所有的层可以将它们互相结合起来,具体而言,通过所述金属基本上只在熔融层或氧化物层的熔融。使用铜或铜合金作为金属时,该方法还称为DCB键合或DCB方法(直接铜键合方法)。所述DCB方法具有下列方法步骤>这样氧化铜箔,使其提供均勻的铜氧化物层;>在陶瓷层上铺置铜箔;>将所述复合物加热至在约1025至1083°C之间的过程温度,例如加热至约 10710C ;>冷却至室温。另外已知的是所谓活性焊料法(DE 22 13 115 ;EP-A-153 618),用于将形成金属化的金属层或金属箔,特别是铜层或铜箔与相应陶瓷材料接合。在这种特别是还用于制造金属-陶瓷-基板的方法中,在约800至1000°C之间的温度在金属箔例如铜箔,和陶瓷基板例如氮化铝-陶瓷之间使用硬焊料制造连接,所述硬焊料除了主要组分例如铜、银和/或金之外它还包含活性金属。所述活性金属例如是Hf、Ti、Zr、Nb、Ce组中的至少一种元素, 通过化学反应在焊料和陶瓷之间产生连接,而焊料和金属之间的连接是金属的硬焊料-连接。还已知的是具有由氮化硅-陶瓷构成的内层或基层的金属-陶瓷-基板(EP 798 781),与其它陶瓷相比,特别是与氧化铝-陶瓷(Al3O2-陶瓷)相比,它具有高得多的机械强度。为了使得可以利用DCB方法涂覆金属化,提出在由氮化硅-陶瓷构成的基层上分别施加由纯的氧化铝-陶瓷构成的中间层。但该方法不能得到完全的,特别是还不能得到陶瓷材料和金属化之间没有缺陷的连接。更确切地说,在使用铜构成的金属化时, 特别是还在金属化和陶瓷材料之间产生很多气孔,它们是通过来自铜-或铜氧化物-共晶体(Cu/Cu20-共晶体)的氧和氮化硅-陶瓷之间的反应形成的,具体而言对应于下式 6Cu0+Si3N4 — 3Si&+6Cu+&。通过该反应一方面消耗了键合所必需的液态共晶01/012相。另一方面通过所产生的气态氮(N2)形成气泡。由纯的氧化铝-陶瓷构成中间层不能避免这种不利的反应。根据本发明的一个认知,这主要归因于氮化硅(3. OxKr6IT1)和氧化铝(SxKr6IT1)的热膨胀系数的非常不同。热膨胀系数的这种不同例如在由氧化铝-陶瓷构成的中间层锻烧或烧结期间,但是也在金属化的键合(DCB方法)期间导致在中间层产生裂缝,从而通过这些裂缝可以进行在Cu/Cu20-共晶体和氮化硅-陶瓷之间的前述反应。另外已知(EP 0 499 589)在陶瓷基层上设置至少一个由纯氧化硅(SiO2)构成的中间层,并随后借助于DCB方法施加金属化。所述方法同样没有得出实用的结果,因为DCB 方法所必需的共晶熔体与S^2反应生成液态Cu2O-SiO2。因此,由S^2构成的中间层不可用于用DCB方法施加金属化。本发明的目的在于,说明一种金属-陶瓷-基板,其在保持氮化硅-陶瓷的基本优点下,避免前述的缺点。为了实现这个目的,构造对应权利要求1的金属-陶瓷-基板。制造金属-陶瓷-基板的方法是权利要求沈的主题。改进方案是从属权利要求的主题。适用于中间层的特别是锆-氧化物和/或硅酸盐,特别是锆-硅酸盐(&Si04)和 /或钛-硅酸盐和/或铪-硅酸盐。形成基层的氮化硅-陶瓷和/或中间层(任选地额外的烧结添加物(例如稀土元素)),优选还具有氧化成分,例如 LiO2, TiO2, BaO, ZnO, B203、CsO、Fe2O3' ZrO2, CuO, Cu2O0 还可以使用至少两种这些成分的组合作为氧化性附加组分,其中所述氧化性附加组分的份额以所述中间层的总质量计最大为20重量%。利用该氧化性附加组分可以有针对性地控制或调整中间层的特性,主要是涉及软化温度。另外,利用该附加组分还可以在DCB方法中抑制可能产生熔化的反应产物的铜氧化物(特别是Cu2O)的反应。在中间层燃烧时稀土元素还可以通过从氮化硅-陶瓷-基层的扩散而存在于中间层中。根据本发明的基板具有金属化在陶瓷材料上的高粘附性或剥脱强度。根据本发明的基板的另一主要优点在于,中间层具有小于300GPa的弹性模量,从而经由所述中间层实现最佳地平衡了氮化硅-陶瓷和金属化的金属(例如铜)的非常不同的热膨胀系数,具体而言与氧化铝具有390GPa的相对高的弹性模量形成对比。由于所述中间层很低的弹性模量,特别是具有较大厚度的金属化是可能的,并且厚度可以是由氮化硅-陶瓷构成的基层的厚度的直至三倍。在本发明的改进方案中例如这样设计所述基板,硅酸盐层的硅酸盐是锆-硅酸盐和/或钛-硅酸盐和/或铪-硅酸盐,和/或所述至少一个中间层的热膨胀系数小于或最高等于exiol—1,和/或游离的氧化硅(SiO2)在所述至少一个中间层中的份额至少在中间层和金属化之间的连接区域内是极小的,可以忽略,和/或游离的氧化硅在所述至少一个中间层中的份额至少在中间层和金属化之间的连接区域内等于零或接近等于零,和/或所述至少一个由氮化硅-陶瓷构成的基层在两个表面侧上分别设置至少一个中间层,和/或在两个中间层上分别施加至少一个金属化,和/或所述陶瓷材料在陶瓷层的层顺序和厚度方面,与平行于陶瓷材料的表面侧伸展的中间平面对称地构造,和/或在层顺序和/或在层厚度方面,包括中间层的厚度和金属化的厚度,与平行于所述基板的表面侧伸展的中间平面对称地构造,和/或用于所述至少一个中间层的材料的弹性模量小于300GPa,特别是具有在 100和300GPa之间范围的弹性模量,和/或所述至少一个中间层的厚度显著小于支承该中间层的由氮化硅-陶瓷构成的基层的厚度(d。),和/或显著小于所述至少一个金属化的厚度(dm),和/或所述至少一个金属化的厚度(dm)最大等于由氮化硅-陶瓷构成的基层的厚度(d。)的三倍,和/或所述至少一个中间层的厚度在0. 1至10 μ m之间的范围,和/或所述至少一个由氮化硅-陶瓷构成的基层的厚度(d。)在0. 1和2mm之间的范围,和/或所述至少一个金属化的厚度(dm)在0. 5至Imm之间的范围,和/或所述至少一个铜金属化由铜合金构成,和/或所述基层和/或所述至少一个中间层包含烧结助剂,特别是以至少一种稀土元素形式的烧结助剂,禾Π /或所述至少一个中间层的陶瓷包含Ho、Er、Yb、Y、La、Sc、Pr、Ce、Nd、Dy、Sm、 Gd的氧化物或该氧化物中的至少两种的混合物作为烧结助剂,和/或所述烧结助剂的份额在1. 0至8. 0重量%的范围,禾Π /或所述至少一个中间层包含至少一种选自Li20、TiO2, BaO, ZnO, B2O3> CsO, Fe2O3,ZrO2, CuO, Cu2O的氧化成分作为附加组分,其中该附加组分的份额以所述中间层的总质量计最大为20重量%,和/或所述至少一个由氮化硅-陶瓷构成的基层的热导率大于45W/mK,和/或所述至少一个金属化在陶瓷材料上的粘附强度或剥脱强度大于40N/cm,和/或在所述至少一个中间层和相邻的金属化之间设置至少一个由活性焊料构成的其它层,和/或所述活性焊料由适合作为焊料的基础成分和活性金属,例如Ti、Hf、Zr、Nb 和/或Ce构成,和/或所述基板的外尺寸大于80x80mm,优选大于100x150mm,其中所述基板可以分别单独或以任意组合提供前述的技术特征。在本发明的改进方案中,例如这样实施所述方法施加由锆-氧化物构成的层和/或硅酸盐层作为中间层,该中间层的热膨胀系数小于或最高等于exK^r1,且其游离硅(SiO2)的份额至少在中间层(6,7)和金属化之间的连接区域,或在所述中间层和所述金属化之间的过渡区域是极小的,可以忽略,和/或所述中间层这样构造,使得游离硅(SiO2)在所述至少一个中间层的份额至少在中间层和金属化之间的连接区域,或在所述中间层和所述金属化之间的过渡区域等于零或接近等于零,和/或所述至少一个基层在两个表面侧上分别设置有中间层,且在两个中间层上分别施加至少一个金属化,和/或制造具有一定厚度的中间层,所述厚度显著小于基层的厚度((1。),和/或显著小于所述至少一个金属化的厚度(dm),
和/或所述至少一个金属化使用具有一定厚度(dm)的金属箔,所述厚度最大等于基层的厚度(d。)的三倍,和/或制造厚度在0. 1至10 μ m之间范围的所述至少一个中间层,和/或所述基层和/或所述至少一个中间层使用的材料为,包含至少一种烧结助剂,特别是以至少一种稀土元素形式的烧结助剂,其中所述烧结助剂的份额特别是在1.0
至8.0重量%范围,和/或所述至少一个中间层使用的材料为,包含至少一种选自Li20、Ti02、Ba0、 ai0、403、Cs0、Fe203,ZrO2, CuO, Cu2O的氧化成分作为附加组分,其中所述附加组分的份额以所述中间层的总质量计最大为20重量%,和/或所述基层在至少一个表面侧上用所述中间层材料之一涂覆,且该涂层在 1200和1680°C之间范围的温度下煅烧或密封烧结,和/或所述煅烧或密封烧结在氧化气氛中进行,和/或所述涂覆通过喷涂、浸渍,例如由水性分散体,或者以溶胶-凝胶-方法进行。和/或所述涂覆使用包含锆-氧化物和/或至少一种硅酸盐的微分散至纳米分散的混合物进行,其中所述方法的前述技术特征进而可以分别单独或可以分别单独的或以任
意组合使用。本发明的改进方案、优点和应用可能性还可以从下列对实施例的说明和附图中得出。所有描述和/或图示的技术特征本身或它们的任意组合是本发明的基本主题,不依赖于权利要求或它们的参考文献(R uckbeziehung)中的总结。权利要求的内容是说明书的组成部分。下面依据附图和实施例详细说明本发明。附图示出

图1以简化图示出了根据本发明基板的截面;图2以示意图示出了用于确定施加在陶瓷材料上的由箔形成的金属化的粘附强度或剥脱强度的方法;图3在图表中示出游离氧化硅(SiO2)在由锆-氧化物和/或至少一种硅酸盐构成的中间层中的分布;图4以与图1类似的图示出根据本发明的基板的另一可能的实施方案。在图1中普遍以1表示的金属-陶瓷-基板由板状陶瓷材料2构成,在其两个表面侧上借助于DCB方法分别设置了由金属箔(在所述实施方案中是铜箔)提供的、厚度为 dm的金属化3或4。所述陶瓷材料2被设计成多层,并且包括氮化硅(Si3N4)构成的基层5 或内陶瓷层,在其两个表面侧上分别设置了由锆-氧化物和/或至少一种硅酸盐构成的中间层6或7,从而使得可以借助于DCB方法没有缺陷地施加金属化3和4,并且可以实现形成金属化3和4的铜在陶瓷材料2上的高粘附强度。基层5具有厚度d。,并且还包含例如以Ho、Er、Yb、Y、La、Sc、Pr、Ce、Nd、Dy、Sm和 /或Gd的氧化物形式的烧结助剂。还可以使用一种或多种该氧化物的组合作为烧结助剂, 其中特别是使用Ho2O3或Er203。烧结助剂在中间层5中的份额例如以形成基层5的陶瓷计在1和8重量%之间的范围。在所述的实施方案中,两个金属化3和4具有相同的厚度dm,最大可以是厚度d。的三倍。但是金属化3和4的厚度通常在0.01至Imm之间的范围。厚度d。通常例如在0. 1 和2mm之间的范围。与基层5以及金属化3和4相比薄得多的中间层6和7 (厚度例如在0. 1和10 μ m 之间的范围)由锆-氧化物和/或由至少一种硅酸盐构成,其中相应的中间层6或7不具有游离的氧化硅(SiO2),或者游离的S^2的份额至少在中间层6和7邻近金属化3和4的区域很小,可以忽略。除了锆-氧化物之外,特别是还有锆-硅酸盐和/或钛-硅酸盐和/或铪-硅酸盐也适用于中间层6和7,并且特别是热膨胀系数小于、最高等于exio—r1的硅酸盐。相对地,氧化铝(AI2O3)的热膨胀系数为SxKr6IT1。多种前述材料的混合物也适合用于中间层6和7,但是其中在各种情况下优选中间层的弹性模量力求小于、最高等于300GPa,以便经由相应的中间层6或7达到金属化3和 4的金属或铜与内层5的Si3N4之间非常不同的热膨胀系数的某种平衡。采用前述用于中间层6和7的材料也使得关于中间层的膨胀性能或弹性方面可以最佳地遵循所述要求。所述中间层6和7,如所阐明的,优选包含一种或多种选自Li20、TiO2, BaO, ZnO, B203>CsO,Fe2O3' ZrO2, CuO和/或Cu2O的添加物作为附加组分,并且以相应的中间层的质量计直至最大份额为20重量%。在制造基板1的过程中,使用形成基层5的由氮化硅-陶瓷(Si3N4-陶瓷)构成的板材作为原材料。随后利用适当的方法用适合所述中间层的组分两面地涂层来形成相应的中间层6或7。对于涂层可用各种技术,其中例如将形成相应的中间层的材料以与适合的液体例如水的混合物,沉积在板状原材料的表面侧上。随后任选地在进行预先干燥之后,在1200 和1680°C之间范围的温度下在氧化气氛下煅烧和密封烧结所述相应的中间层6或7。原材料的涂层例如使用包含中间层6或7的材料的微分散或纳米分散混合物来进行,例如通过由水性分散体喷涂、浸渍(浸涂或旋涂)来进行。还可以使用其它方法,例如溶胶-凝胶-方法。在施加中间层6和7之后,借助于已知的DCB方法进行形成金属化3和4的金属箔或铜箔的键合或施加。可以大面积地制造基板1,例如尺寸大于80x80mm,优选大于100x150mm,从而用基板1通过进一步加工获得,即,通过多次进行金属化3和4的相应结构化,可以制成多个单独的基板。具有所述结构的基板1具有得到改善的机械强度,并且该改善的机械强度由氮化硅-陶瓷构成的基层5造成。另外,利用所提到的DCB方法使用常用的方法手段可以使金属化3和4键合,并且在金属化3和4与陶瓷材料2之间的连接中没有出现缺陷的风险,所述缺陷对金属化在陶瓷材料上的粘附有很大的不利影响,并且还可能对基板的抗电强度有不利影响。具有前面描述的结构的基板1实现了金属化在陶瓷材料2上足够高的粘附。所述粘附强度或剥脱强度利用图2中描述的方法测量。以前述方法制造结构上与基板1对应, 但只具有金属化3和中间层6的试样1. 1,其中所述金属化3制成条状,宽度为1cm,厚度dm为0. 3mm。在条状金属化3的向上延伸的端3. 1,对夹紧的试样1. 1施加力F,并且力F的大小为以0. 5cm/min的速度将条状金属化3从陶瓷材料2上取下。这样为此所需的力F决定了粘附强度或剥脱强度。对于具有前述构造的基板1来说大于40N/cm。在图3的图表中示出游离氧化硅(SiO2)在中间层6或7中,具体而言,自内层5始直至金属化3或4的分配(曲线A)。曲线A表明,基于形成中间层的锆-氧化物和/或硅酸盐的份额,直至相应的金属化3或4,其中游离S^2的份额大大降低了,其中游离S^2的份额在金属化区域内以所述中间层的总质量计降至0重量%。图3中曲线B描述了形成中间层的锆-氧化物和/或硅酸盐(任选具有前述附加物)的份额的分布。图4示出类似图1的描述,作为其它可能的实施方案,基板Ia与基板1的区别在于,金属化3和4不是利用DCB方法,而是利用活性焊料法施加在陶瓷材料2上。为此在陶瓷材料上施加由活性焊料构成的层8或9,所述陶瓷材料则由Si3N4陶瓷构成的基层5和由两个中间层6和7构成,施加由活性焊料构成的层8或9,经由层8或9分别将相应的金属化或形成该金属化的金属箔或铜箔与陶瓷材料2平面地连接。适合作为活性焊料的通常使用如下材料,例如包含基础组分或焊料成分以及活性组分的活性焊料,所述焊料成分例如铜/银,所述活性组分例如Ti、Hf、&。基板Ia的制造进而如下进行,首先在一个或多个前述的方法步骤中制成陶瓷材料2。接下来根据本身已知的活性焊料法进行金属化3和4的施加,其中层8和9由活性焊料作为糊或作为箔来施加。为了制造印刷电路板、接触面等,将金属-陶瓷-基板以常规方式和利用常规技术结构化,例如利用已知的掩模技术和蚀刻技术。以上依据实施例说明了本发明。应理解,还可以对本发明作出很多改变和转换,而不由此偏离本发明的主题思想。附图标记列表1,Ia金属-陶瓷-基板1. 1 试样2陶瓷材料3,4金属化5由氮化硅-陶瓷构成的内层5,6由氧化陶瓷构成的中间层8,9活性焊料层F分离力dc由氮化硅-陶瓷构成的内层的厚度dm形成金属化的金属层的厚度
权利要求
1.金属-陶瓷-基板,所述基板具有多层、板状陶瓷材料O),且具有至少一个设置在所述陶瓷材料的表面侧的金属化(3,4),所述金属化通过直接键合(DCB方法)或活性焊料与陶瓷材料结合,其中所述陶瓷材料(2)由至少一个由氮化硅-陶瓷构成的内层或基层(5) 构成,并且其中所述设置有至少一个金属化(3,4)的陶瓷材料O)的表面侧由施加在至少一个基层(5)上的由氧化陶瓷构成的中间层(6,7)形成,其特征在于,所述至少一个中间层 (6,7)是由锆-氧化物构成的层和/或硅酸盐层。
2.根据权利要求1的基板,其特征在于,所述硅酸盐层的硅酸盐是锆-硅酸盐和/或钛-硅酸盐和/或铪-硅酸盐。
3.根据权利要求1或2的基板,其特征在于,所述至少一个中间层(6,7)的热膨胀系数小于或最高等于exio—r1。
4.根据前述权利要求之一的基板,其特征在于,游离的氧化硅(SiO2)在所述至少一个中间层(6,7)中的份额至少在中间层(6,7)和金属化(3,4)之间的连接区域内极小,可以忽略。
5.根据前述权利要求之一的基板,其特征在于,游离的氧化硅在所述至少一个中间层 (6,7)中的份额至少在中间层和金属化(3,4)之间的连接区域内等于零或者接近等于零。
6.根据前述权利要求之一的基板,其特征在于,所述至少一个由氮化硅-陶瓷构成的基层( 在两个表面侧上都分别设置有至少一个中间层(6,7)。
7.根据权利要求6的基板,其特征在于,在两个中间层(6,7)上分别施加至少一个金属化(3,4) 0
8.根据前述权利要求之一的基板,其特征在于,所述陶瓷材料( 在层顺序和陶瓷层 (5,6,7)的厚度方面与平行于陶瓷材料的表面侧伸展的中间平面对称地构造。
9.根据前述权利要求之一的基板,其特征在于,在层顺序方面和/或在层厚度方面,包括中间层(6,7)和金属化(3,4)的厚度,与平行于所述基板的表面侧伸展的中间平面对称地构造。
10.根据前述权利要求之一的基板,其特征在于,用于至少一个中间层(6,7)的材料的弹性模量小于300GPa,特别是具有在100和300GPa之间范围的弹性模量。
11.根据前述权利要求之一的基板,其特征在于,所述至少一个中间层(6,7)的厚度显著小于支承所述中间层的由氮化硅-陶瓷构成的基层(5)的厚度((1。),和/或显著小于所述至少一个金属化(3,4)的厚度(dj。
12.根据前述权利要求之一的基板,其特征在于,所述至少一个金属化(3,4)的厚度 (dm)最大等于由氮化硅-陶瓷构成的基层(5)的厚度(d。)的三倍。
13.根据前述权利要求之一的基板,其特征在于,所述至少一个中间层(6,7)的厚度在 0. 1至10 μ m之间的范围。
14.根据前述权利要求之一的基板,其特征在于,所述至少一个由氮化硅-陶瓷构成的基层(5)的厚度(d。)在0. 1和2mm之间的范围。
15.根据前述权利要求之一的基板,其特征在于,所述至少一个金属化的厚度(dm)在 0.5至Imm之间的范围。
16.根据前述权利要求之一的基板,其特征在于,所述至少一个铜金属化由铜合金构成。
17.根据前述权利要求之一的基板,其特征在于,所述基层( 和/或所述至少一个中间层(6,7)包含烧结助剂,特别是以至少一种稀土元素形式的烧结助剂。
18.根据权利要求17的基板,其特征在于,所述至少一个中间层(6,7)的陶瓷包含Ho、 Er、Yb、Y、La、Sc, Pr, Ce、Nd、Dy、Sm、Gd的氧化物或所述氧化物中的至少两种的混合物作为烧结助剂。
19.根据权利要求17或18的基板,其特征在于,所述烧结助剂的份额在1.0至8. 0重量%的范围。
20.根据前述权利要求之一的基板,其特征在于,所述至少一个中间层(6,7)包含至少一种选自 Li2O, TiO2, BaO, ZnO, B2O3> CsO, Fe2O3' ZrO2, CuO, Cu2O 的氧化成分作为附加组分, 其中所述附加组分的份额以所述中间层的总质量计最大为20重量%。
21.根据前述权利要求之一的基板,其特征在于,所述至少一个由氮化硅-陶瓷构成的基层的热导率大于45W/mK。
22.根据前述权利要求之一的基板,其特征在于,所述至少一个金属化(3,4)在陶瓷材料上的粘附强度或剥脱强度大于40N/cm。
23.根据前述权利要求之一的基板,其特征在于,在至少一个中间层(6,7)和相邻的金属化(3,4)之间设置有至少一个由活性焊料构成的其它层(8,9)。
24.根据权利要求23的基板,其特征在于,所述活性焊料由适合作为焊料的基础成分和活性金属,例如Ti、Hf、Zr、Nb和/或Ce构成。
25.根据前述权利要求之一的基板,其特征在于,所述基板的外尺寸大于80x80mm,优选大于 100x150mm。
26.制造金属-陶瓷-基板的方法,所述基板具有多层、板状陶瓷材料O),且具有至少一个设置在所述陶瓷材料O)的表面侧的金属化(3,4),其中所述陶瓷材料由至少一个由氮化硅-陶瓷构成的内层或基层(5)构成,并且其中在所述设置有至少一个金属化(3,4) 的基层(5)的表面侧形成中间层(6,7),并且在该中间层上通过至少一个金属层或金属箔的直接键合(DCB方法)或活性焊料法而施加所述至少一个金属化(3,4),其特征在于,所述中间层(6,7)使用由锆-氧化物构成的层和/或硅酸盐层。
27.根据权利要求沈的方法,其特征在于,所述中间层(6,7)使用由锆-氧化物构成的层和/或硅酸盐层,所述中间层的热膨胀系数小于或最高等于exK^r1,且其中游离硅 (SiO2)的份额至少在中间层(6,7)和金属化(3,4)之间的连接区域或在中间层(6,7)和金属化(3,4)之间的过渡区域是极小的,可以忽略。
28.根据权利要求27的方法,其特征在于,所述中间层(6,7)这样构成,使得游离氧化硅(SiO2)在至少一个中间层(6,7)的份额至少在中间层(6,7)和金属化(3,4)之间的连接区域或在中间层(6,7)和金属化(3,4)之间的过渡区域等于零或接近等于零。
29.根据权利要求27或观的方法,其特征在于,所述至少一个基层( 在两个表面侧上分别设置中间层(6,7),且在两个中间层(6,7)上分别施加至少一个金属化(3,4)。
30.根据前述权利要求之一的方法,其特征在于,制造具有一定厚度的中间层(6,7), 所述厚度显著小于基层(5)的厚度(d。),和/或显著小于至少一个金属化(3,4)的厚度(dm) ο
31.根据前述权利要求之一的方法,其特征在于,所述至少一个金属化(3,4)使用具有厚度(dm)的金属箔,所述厚度最大等于基层(5)的厚度(d。)的三倍。
32.根据前述权利要求之一的方法,其特征在于,制造所述至少一个厚度在0.1至 ΙΟμπι之间范围的中间层(6,7)。
33.根据前述权利要求之一的方法,其特征在于,所述基层( 和/或至少一个中间层 (6,7)使用如下材料,它包含至少一种烧结助剂,特别是以至少一种稀土元素形式的烧结助剂,其中所述烧结助剂的份额特别是在1. 0至8. 0重量%范围。
34.根据前述权利要求之一的方法,其特征在于,所述至少一个中间层(6,7)使用如下材料,它包含至少一种选自 Li20、TiO2, BaO, ZnO, B203、CsO、Fe2O3> ZrO2, CuO, Cu2O 的氧化成分作为附加组分,其中所述附加组分的份额以所述中间层的总质量计最大为20重量%。
35.根据前述权利要求之一的方法,其特征在于,所述基层( 在至少一个表面侧涂覆中间层(6,7),该涂层在1200和1680°C之间范围的温度煅烧或密封烧结。
36.根据权利要求35的方法,其特征在于,所述煅烧或密封烧结在氧化气氛中进行。
37.根据权利要求35或36的方法,其特征在于,所述涂覆通过喷涂、浸渍,例如由水性分散体,或者以溶胶-凝胶-方法进行。
38.根据前述权利要求之一的方法,其特征在于,所述涂覆使用包含锆-氧化物和/或至少一种硅酸盐的微分散至纳米分散的混合物进行。
全文摘要
本发明涉及金属-陶瓷-基板,所述基板具有多层、板状陶瓷材料,且具有至少一个设置在所述陶瓷材料的表面侧的金属化,所述金属化通过直接键合(DCB方法)或活性焊料与陶瓷材料结合,其中所述陶瓷材料由至少一个由氮化硅构成的基层或内层构成,并且其中设置有至少一个金属化的陶瓷材料的表面侧由施加在至少一个基层上的由氧化陶瓷构成的中间层形成。
文档编号B32B18/00GK102421725SQ201080019205
公开日2012年4月18日 申请日期2010年3月26日 优先权日2009年4月2日
发明者J·舒尔茨-哈德, L·米勒 申请人:库拉米克电子学有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1