采用整体式催化剂生产合成气的催化部分氧化工艺的制作方法

文档序号:3443654阅读:110来源:国知局
专利名称:采用整体式催化剂生产合成气的催化部分氧化工艺的制作方法
技术领域
将氢化合物转变成含有氢气和一氧化碳的气体是一种人们熟知的方法。这种工艺的例子有催化水蒸气重整、自热催化重整、催化部分氧化和非催化部分氧化。这些工艺各有优缺点,生产出不同比例的氢气和一氧化碳,即合成气。本发明将介绍一种催化部分氧化工艺。
背景技术
部分氧化工艺是人们熟知的,目前,有许多不同的催化氧化工艺。部分氧化是一个放热反应,是一种碳氢化合物气体例如甲烷和一种含有氧气的气体例如空气,在较高的温度下与催化剂接触进行的反应,得到含有高浓度氢气和一氧化碳的反应产物。这些工艺中使用的催化剂一般是贵金属,如铂、铑和其他过渡金属,例如,在一种适合载体上的镍。
部分氧化工艺将含有碳氢化合物的气体,例如天然气,转化为氢气、一氧化碳和其他微量成分,例如二氧化碳和水。一般的工艺流程是将经预热的碳氢化合物和含有氧气的空气注入到燃烧室中,在其中碳氢化合物被氧化,所耗的氧气量要小于其完全燃烧时所需的氧气量。这个反应需很高的温度才能发生,例如超过700℃,一般需超过1000℃,同时需高达150个大气压的压力。在某些反应中,也可将水蒸气或二氧化碳注入到燃烧室中,用以改变合成气产物和调整氢气并一氧化碳的比例。
最近,在已报道的部分氧化工艺中,在存在催化剂例如沉积于多孔陶瓷(整体式)载体上的金属的情况下,碳氢化合物气体以很高的空速与含有氧气的气体接触反应。整体式载体上承载了贵金属,例如铂、钯或铑,或其他过渡金属,例如镍、钴、铬和类似的金属。一般而言,这些整体式载体是由难熔固体或陶瓷材料,例如氧化铝、氧化锆、氧化镁和类似材料制成的。进行这些反应的时候,碳氢化合物进气和含氧气体开始接触金属催化剂时的温度要高于400℃,一般要高于600℃,标准的气体小时空速(GHSV)大于100,000每小时。

发明内容
本发明提供一种改进的催化部分氧化工艺,由碳氢化合物来生产氢气和一氧化碳和低于~2%的二氧化碳。根据本发明,该工艺可在室温下就引发反应,从而降低运行和资金成本。本发明的工艺使用一种沉积于有二氧化铈涂层氧化锆整体式载体上的金属催化剂,能以高转化率催化碳氢化合物成为合成气。
一方面,本发明提供一种用来生产氢气和一氧化碳的碳氢化合物部分氧化工艺,该工艺是将含碳氢化合物的进气和含氧进气的混合物与足量的还原金属催化剂接触进行反应,其压力为1到20个大气压,进气的标准气体小时空速为50,000左右到100,000每小时左右,线速度为0.2左右到2.0m/s左右,所述催化剂是将过渡金属承载于有二氧化铈涂层氧化锆整体式载体上而制得,过渡金属可以是镍、钴、铁、铂、钯、铱、铼、钌、铑、锇和它们的组合。
另一方面,本发明提供一种用来生产氢气和一氧化碳的碳氢化合物部分氧化工艺,,该工艺中,所述催化剂和进气混合物(注入了少量的氢气)在10℃和10℃以上的条件下接触就能引发反应。在本发明的另一实施方案中,在进气混合物中注入少量的氢气也能在室温下引发反应,在进气时应保持连续的CO2气流,以使催化剂的温度逐步升高,避免温度急剧升高。
在一个优选实施方案中,本发明提供一种生产一氧化碳和氢气的方法,该方法是将含碳氢化合物的气体和含氧气体与承载于二氧化铈涂层氧化锆整体式载体上的还原金属催化剂接触反应。
在另一个优选实施方案中,本发明提供了一种生产一氧化碳和氢气的方法,该方法是将含碳氢化合物的气体和含氧气体在存在有氢气的情况下与承载于有二氧化铈涂层氧化锆整体式载体上的还原金属催化剂接触进行反应。
本发明的另外一个实施方案是一个反应器,该反应器包括容器、至少一个载有催化剂的多孔陶瓷盘和至少一个空白多孔陶瓷盘。
本发明的又一个实施方案是一种生产一氧化碳和氢气的方法,该方法是将含碳氢化合物的气体、二氧化碳和含氧气体与承载于有二氧化铈涂层氧化锆整体式载体上的还原金属催化剂接触进行反应。
在本发明的另一个实施方案中,在生产一氧化碳和氢气的过程中,连续地往天然气和氧气的混合进气中加入氢气,以保证催化剂以还原态的形式存在。


图1是本发明所使用的反应器的示意图。
图2是连续地往进气中加入氢气的生产一氧化碳和氢气的工艺流程图。
图3是连续地往进气中加入氢气的生产一氧化碳和氢气的工艺流程图。
图4是在往进气混合物的连续CO2气流中注入氢气的反应起始阶段时的流量和温度对于时间的曲线图。
图5A是甲烷转化率与进气中CO2百分含量的关系图。
图5B是二氧化碳转化率与进气中CO2百分含量的关系图。
具体实施例方式
天然气和含氧气体通过管路1和2以超过天然气火焰速度的速度(以免着火)进入一简易混合装置3中进行混合。混合气中的C/O2比在1.5到2之间,最好是在1.6到1.9之间。也可以往天然气中加入水蒸气或CO2以调节产物中的H2/CO比。也可以通过与热的产物气流热交换或其他方式将天然气预热到80℃左右或更高。由于部分氧化反应放出大量热,反应器的结构是有耐火材料衬里的容器4,以便得到好的绝热效果。整体式催化剂6位于底部,并用氧化锆水泥仔细地密封,以防止未反应气体的泄漏。上部空间用许多惰性的多孔陶瓷盘填满,用以改善流量的分配并避免着火。在空多孔陶瓷之间可以放置一个气体分配装置,例如不锈钢分配板。
本发明的一个关键因素,是要将进行部分氧化反应性的压力控制在1.0巴左右到10.0巴左右,最好是1.5巴左右到3.0巴左右。在此压力范围内,完全可以避免碳的形成,也就不需要加入水蒸气来防止形成碳,而这在高压操作时是需要的。在反应时不需加入水蒸气的主要益处在于生产出来的合成气的H2/CO比为2∶1,而这在合成气的很多应用中是很重要的。由于反应是在较低压力下进行的,制得的合成气在冷却后,要将其压缩至所需的压力。
本发明所使用的金属催化剂由整体式陶瓷载体和承载于其上的一种过渡金属或过渡金属的组合组成,其中,整体式陶瓷载体是由二氧化铈涂敷于氧化锆基质上而得。本文中的“金属催化剂”是指整个催化剂结构,包括金属和整体式载体。整体式载体一般是一种单一结构形式的多孔陶瓷结构,其中,许多通道其排列有规则,或者不规则,相邻通道之间有间隔。这里采用单一结构形式来代替传统的颗粒催化剂,后者在本工艺中不适合。通道不规则整体式载体的例子有应用于熔融金属的过滤器。通道规则整体式载体的例子有用于净化机动车排气的和应用于各种化工工艺中的整体式蜂窝载体。这里较好的是具有不规则通道的多孔陶瓷结构。两种类型的整体式载体都是很常见的,都能在市场上购得。
催化剂包括由氧化锆和15~20重量%二氧化铈涂层(二氧化铈涂层增大了表面积以便于承载金属)构成的多孔陶瓷整体式载体和0.5~5重量%的贵金属,首选为金属铑,最好是2重量%的Rh。也可使用一种过渡金属例如2~4重量%的镍,或者与Rh一起使用,反应器有好几层多孔陶瓷圆盘,包括承载有催化剂的和用来填充空隙空间的空白圆盘。空白圆盘可由氧化铝、氧化锆和堇青石或它们的混合物来制造。承载的金属(Rh)与二氧化铈起协同作用来催化部分氧化过程。有催化剂的圆盘的孔隙率在40到70个孔每英寸(ppi)之间,使得催化剂的承载量达到最大。另一方面,空白圆盘也具有较高的空隙率,在20到40ppi之间,使得压力降较小。选择反应器的尺寸即直径和高度,以达到两条标准,即进气的气体小时空速在50,000左右到500,000每小时左右之间(每单位整体式催化剂体积的每小时的进气标准体积流量),并且在类似基础上(指标准状态)的线速度约为0.2到2m/s。
在催化剂表面上,进气混合物中的碳氢化合物和氧气迅速反应,生成H2和CO,还有微量的CO2和H2O,以及未反应的甲烷,同时放热。热合成气(H2+CO)迅速地被冷却水7所冷却,防止碳的形成,而由冷却水产生水蒸气。图1所示的反应器具有冷却系统,当合成气从整体式催化剂排出时,就可对其进行冷却。冷却系统被设计成可进行多种模式的操作。例如,●在最小冷却模式中,合成气被冷却到可降低碳形成趋势的温度,使得对合成气的热回收达到最大。
●在最大冷却模式中,合成气被冷却到100℃至150℃,当不需要进行热回收时,这是一个降低资金成本的方法。
●在部分冷却模式中,合成气被冷却到后续工艺,例如将大部分CO转化为H2的水煤气轮换反应所需的温度。
如上所述,金属催化剂是一个单一的整体,其尺寸随反应器的尺寸和结构而异在一个优选实施方案中,反应器是由一个合适材料的管子,其直径在1左右到100英寸左右。进体混合物从管子的一端进入,部分氧化反应在催化剂上发生,生成的气体从管子另一端排出。金属催化剂也可由许多个整体式催化剂单元形成一个集合体,呈一种末端到末端的排列。最好是,金属催化剂具有多孔性和孔隙的取向性,这样就能减小进气通过金属催化剂时的压力降。而且,许多个单独的反应器可并联排列形成一个反应器组合件,从而增加产量。例如,多个反应管可放在一起形成一个单一的反应器单元,每个管子中都装有金属催化剂。
所有早期部分氧化工艺的一个显著的缺点是,它们需要一个外部的热源来引发部分氧化反应,或者需要一个涉及一种化学反应的单独预热步骤。如上所述,部分氧化反应是放热的,一旦反应进行了,其放出的热就可以保持很高的温度,也就不需要外部加热了。然而,由于需要超过400℃的温度来引发反应,还是需要外部加热或其他方式。当然,这样就会增加工艺的资金成本和工程复杂程度,从而降低其商业吸引力。为解决这个问题,一些过去的工艺使用了特殊的引发化合物来降低引发温度。例如,美国专利No.4,879,253用甲醇作为引发化合物,将引发温度降低至100℃到500℃之间。美国专利No.6,458,334 B1用二氧化铈整体式催化剂把引发温度降低到100℃左右,所以不需加入引发化合物。
本发明提供一种改进的部分氧化工艺,其引发温度只有10℃左右。本工艺所以不需外部加热或单独的预热步骤来引发反应,从而提高了它的商业吸引力。本发明的工艺是通过控制氢气加入到进气混合物中,同时以合适的顺序把各种气体成分加入到进气混合物中,从而能在室温下引发反应。
此外,只有使用有二氧化铈涂层整体式载体,包括金属和陶瓷整体式载体,例如不锈钢、氧化锆和氧化钛等时,才可能用少量的氢气在室温(高于10℃)引发反应。试验表明,使用实施例1中的无二氧化铈涂层的氧化锆整体式催化剂时,用少量氢气不能在室温下引发反应。本发明的较佳操作步骤如下1. 首先,以所需流量注入天然气。
2.当天然气流达到所要的设定部位时,开始注入氢气。从安全方面来考虑,这是很重要的,同时这样也可在加入氧气前保持天然气富余的状态。
3.然后开始注入氧气。
4.氢气流一般占总流量的0.5~4%,维持其注入时间10秒到30秒。
5.催化剂温度迅速升高到400℃以上,表明反应开始。在氧气流达到其设定部位以前,反应可能就被引发,这说明只需要很短的氢气注入时间。这里需强调的是,注入氢气并不是一个附加的步骤。在实际操作中,是在注入天然气和氧气之间注入氢气的。例如,如果不需注入氢气,混合和注入天然气与氧气到反应器的方法不变。
此外,连续地将CO2作为反应物注入到进气中去,也能在室温下引发反应。如图4所示,本发明工艺的较佳操作步骤如下1.首先,以所需的流量注入天然气和二氧化碳。
2.当天然气和二氧化碳达到所要的设定部位时,开始注入氢气。
3.然后注入氧气。
4. 气流一般占总流量的0.5~4%,维持其注入时间10秒到30秒。
5.催化剂温度迅速升高到400℃以上,表明反应开始。
需要指出的是,加入CO2不仅能有效地控制催化剂的前沿温度,而且能控制催化床的升温速率。因此,通过这个方法能就能避免整体式催化剂初期的温度突增。
本发明还提供了另一种选择,即连续地往天然气和氧气的混合进气中注入氢气。为保持工艺的最佳效率,整体式催化剂需要处于还原状态。当工艺开始、结束和处于不稳定状态时,整体式催化剂会暴露于氧气中,这将使催化剂失活,尤其是当催化剂的温度很高时。通过连续地往混合进气中注入氢气可以使整体式催化剂处于还原状态,从而保持催化剂的活性。
本发明提供两种将氢气连续注入混合进气中的方法。第一种方法是,富含氢气的气体来自一氧化碳压力回转吸附装置或冷箱。第二种方法是利用热回收和冷却之后的合成气。
图2是氢气和一氧化碳的一个生产流程图。管路10和12连到进气混合器A上,是分别通氧气和天然气的。管路11将氢气通到混合器A中,在本发明的某些实施方案中,在工艺开始阶段用来注入氢气。
从混合器A引出的管路14,用来将氧气、氢气和天然气注入到含有整体式催化剂的反应器B中。整体式催化剂是由具有二氧化铈涂层和氧化锆基质的陶瓷整体式载体结构和承载的某种过渡金属或其组合组成的。在那里发生部分氧化反应,之后,主要由一氧化碳和氢气组成的产物气通过管路16进入冷箱或一氧化碳压力回转吸附装置C,在装置C中一氧化碳从产物气中分离出来。一氧化碳从管路18排出,剩余的气体通过管路20进入氢气压力回转吸附装置D,在装置D中氢气被分离出来,并经管路22排出。
在这里叙述的使用循环氢气的本发明实施方案中,从冷箱或一氧化碳压力回转吸附装置C出来的气体富含氢气,这个气流的一部分通过阀21沿管路23流回到进气混合器A中。在生产工艺运行时,富含氢气的气流可以连续地从冷箱或一氧化碳压力回转吸附装置C转移出来,从而可以使氢气连续地存在于混合进气中这样一个稳定状态。
图3是另一种可选择的流程,不是通过阀21和管路23来将富含氢气的气体注入进气混合器A中,而是在管路16中设置一个阀25。这个阀与管路27相连,而管路27与进气混合器A相连。在这个实施方案中,主要含有一氧化碳和氢气的产物气通过阀25和管路27被引回到进气混合器A中,只要部分氧化反应进行,氢气将连续地在混合器A中与进气混合。这也可使混合进气中一直含有氢气。
美国专利No.6,458,334 B1以空速4000到10,000每小时的速度注入空气和少量氢气的混合气体,用来加热和还原催化剂,这是在开始工艺进气前的一个单独步骤。美国专利6,329,434 B1报道了一种启动部分氧化工艺的方法,是先注入已预热到50至300℃的含有冲稀气体或不含有冲稀气体的H2/O2混合气。混合气在催化剂上反应,将催化剂的温度升高到可以开始部分氧化反应的温度。
本发明的方法的独特之处在于,是在室温下将碳氢化合物和氧气的混合物注入反应器中,然后在短时间内注入少量的H2来引发部分氧化反应。我们也发现仅仅注入氢气是不足以在室温下引发反应的。只有注入氢气和正确的注入天然气与氧气的顺序结合起来才能在室温下引发反应。用少量氢气的室温启动(高于10℃)作用可能主要归功于整体式载体上使用了二氧化铈涂层,整体式载体包括金属和陶瓷载体,例如不锈钢、氧化锆、氧化钛等。而且,在本发明的实施氢气注入的过程中,时间、量和安全性都是很重要的。这样,在启动阶段获得了更进一步的改进。
要关闭反应器时,先往反应器中注入N2,然后停止通O2,最后关天然气。要注意确保系统中没有着火或形成碳的条件。关闭反应器时,在没有天然气时,务必保证反应器中没有氧气,以防止催化剂被氧化,否则,将使催化剂失活。
本发明的另一个实施方案是将含有碳氢化合物、O2和CO2的混合气与承载铑的有二氧化铈涂层整体式催化剂接触,来部分氧化碳氢化合物例如甲烷(天然气)的工艺,CO2可以通过产物气中的部分H2转化为CO。这样CO产量就显著增加。加入CO2从防火方面又增加了部分氧化的安全性。将混合进气预热到较高温度可以进一步促进CO2的转化。我们发现,即使加入30体积%的CO2对工艺也没有什么有害的影响,能在本发明的短接触时间反应器获得约30%左右的CO2转化率。低压操作又是很关键的,它有助于在这些条件下防止碳的形成。
我们也注意到,在使用本发明的工艺时,甲烷转化为氢气和一氧化碳的转化率依赖于,进气中C/O比固定时的空速和线速度。很重要的是,多层整体式催化剂不仅在相同空速时有较高的生产能力,而且在相同线速度时还具有较高的甲烷转化率。实施方案2说明了多层催化剂对工艺效果的影响。
下面的实施将对本发明改进的部分氧化工艺进行说明。
实施例1一个氧化锆整体式载体每英寸有45个孔,直径为0.7英寸,长0.39英寸,先在这个载体上涂覆20重量%二氧化铈,然后承载上2重量%的铑,从而制得整体式催化剂。详细的制备方法在待审美国专利申请Serial No.10/143,705中有详细地叙述。用N2在10℃下吹扫此装有整体式金属催化剂的反应器60分钟。
首先,以8.8slpm的流量注入甲烷。往甲烷气流中注入少量的H2(0.5slpm),注入时间最长为30秒。同时,开始注入O2,调节所需的C/O2比例到1.75。随着氢气和一氧化碳的产生,催化剂温度迅速地在几秒钟之内升高到高于800℃的温度,这表明反应已经启动。因此,为了启动甲烷的部分氧化,只需要在混合进气中含有约4%的氢气为时30秒。
比较例A依照实施例1中的方法制备金属催化剂。将相同量的铑金属承载到有二氧化铈涂层的氧化锆载体上。
含有甲烷(8.8slpm)、氧气(5.0slpm)和氢气(0.5slpm)的预混合气体在10℃通到装有金属催化剂的反应器中。当氢气量增加到22摩尔%(3slpm)时,反应才引发。这就说明混合进气中各种气体加入顺序的重要性。
比较例B依照实施例1中的方法制备金属催化剂,不同的是整体式载体是由氧化锆制成的。将相同量的铑金属承载到氧化锆载体上,但没有实施例1中所述的二氧化铈涂层。
当按照实施例1中的所述步骤注入氢气来启动反应时,反应并不能被启动,直到温度达到150℃后才启动。这就清楚地说明二氧化铈具有协同作用。
实施例2使用具有不同直径(0.7”和1”)的两种实施例1中所述的整体式催化剂来比较线速度和空速的影响。为了能在相同催化剂体积的基础上比较实验结果,对4块0.7”直径x0.39”厚度催化盘堆叠体和2块1”x0.39”的催化盘堆叠体的实验数据进行了比较。注入含有64%甲烷和36%氧气的混合进气到反应器中,然后依照实施例1中的步骤启动工艺。这里的空速是指总的进气流量除以整体催化剂的体积,线速度是指总的进气流量除以整体式催化剂的横截面积。由表1可知,在相同空速和相同反应条件下,增加线速度会提高甲烷的转化率,而H2与CO2的选择性也较高。另一方面,相同的线速度下,较低的空速能提高甲烷的转化率,甲烷的损失略微减少。也就是说,增大整体式催化剂的L/D比可以改善部分氧化反应的性能。
表1

实施例3使用实施例1中的金属催化剂,依照实施例1中所述的步骤来启动部分氧化反应。将混合气注入到装有整体式催化剂的反应器中,该混合气含有甲烷、氧气和二氧化碳,甲烷和氧气的C/O比为1.75,CO2含量为0到30%体积。这种混合气和用来引发反应的混合气不同。此混合气体的进气体小时空速为150,000hr-1。由于逆向水煤气轮换反应是吸热的,因此反应温度从1020℃降到750℃。产物气中一般含有39%的氢气,33%的一氧化碳,13.1%的二氧化碳,1.3%的甲烷和12.6%的水。甲烷和二氧化碳的转化率通过测量它们在产物气中的浓度来计算。实验结果见图5a和5b。当混合进气被预热到300℃时,甲烷和二氧化碳的转化率都略微升高。转化率是通过元素守恒来计算的。
虽然本发明已通过一些实施方案进行了说明,但对于行业内的专家而言,很显然,本发明还有很多种其他的形式,本发明还能进行很多的修改。附加的权利要求和本发明自然要包括所有这些明显的形式和修改,只要它们是在本发明的精神和本发明的范围之内。
权利要求
1.一种对碳氢化合物进行部分氧化生产氢气和一氧化碳的方法,该方法的特征在于将还原态金属催化剂与含有碳氢化合物气体、含氧气体和氢气的混合进气接触,在10℃左右或高于10℃的温度引发所述部分氧化反应,所述催化剂是将过渡金属承载于有二氧化铈涂层氧化锆整体式载体上而制得,过渡金属选自镍、钴、铁、铂、钯、铱、铼、钌、铑、锇和它们的组合。
2.权利要求1中所述的方法,其特征在于所述的氢气是连续进气的。
3.权利要求1中所述的方法,其特征在于所述还原态金属催化剂是承载于有二氧化铈涂层整体式载体上的铑催化剂,所述混合气可进一步包含二氧化碳。
4.权利要求1中所述的方法,其特征在于所述混合气的压力在1.0巴到10.0巴之间。
5.权利要求1或2中所述的方法,其特征在于所述的氢气是注入到所述混合气中去的。
6.权利要求1中所述的方法,其特征在于所述的氢气是在加入所述含碳氢化合物进气和加入所述含氧进气之间注入的。
7.权利要求1-3任一项所述的方法,其特征在于所述温度要高于10℃,低于100℃。
8.权利要求1-3任一项所述的方法,其特征在于所述有二氧化铈涂层氧化锆整体式载体含有约5重量%到约30重量%的二氧化铈。
9.权利要求1中所述的方法,其特征在于所述氢气的注入时间为10秒左右到30秒左右。
10.权利要求1-3任一项所述的方法,其特征在于所述氢气在所述进气的总流量中约占0.5体积%到4.0体积%。
11.权利要求2中所述的方法,该方法还包括往所述进气中注入连续的二氧化碳气流。
12.权利要求3中所述的方法,其特征在于所述二氧化碳在所述混合进气中的含量高达约80体积%。
13.权利要求4中所述的方法,其特征在于通过所述部分氧化工艺产生的合成气中,氢气和二氧化碳的比例为2∶1。
14.权利要求1-4任一项所述的方法,其特征在于所述二氧化铈涂层氧化锆整体式载体含有约5重量%到约30重量%的二氧化铈。
15.权利要求1-4任一项所述的方法,其特征在于所述部分氧化工艺是在包括容器、至少一个载有催化剂的多孔陶瓷盘和至少一个空白多孔陶瓷盘的反应器中进行的。
全文摘要
本发明揭示了一种催化部分氧化碳氢化合物来生产氢气、一氧化碳和少于2%的二氧化碳的改进的工艺。本工艺可在室温下引发反应,此时使用一种沉积于有二氧化铈涂层氧化锆整体式载体上的金属催化剂,该催化剂能有效地催化碳氢化合物转化为合成气(氢气和一氧化碳)。
文档编号C01B31/18GK1509980SQ200310124500
公开日2004年7月7日 申请日期2003年12月23日 优先权日2002年12月23日
发明者江伟斌, 朴承斗, 汤姆科萨克, M·S·汤姆科萨克, 阿恰亚, D·R·阿恰亚, 谭汉卡, S·S·谭汉卡, 砬 吕, R·拉马钱德兰 申请人:波克股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1