石墨烯-碳纳米管复合薄膜及电化学电容器的制备方法

文档序号:3471280阅读:182来源:国知局
石墨烯-碳纳米管复合薄膜及电化学电容器的制备方法
【专利摘要】一种石墨烯-碳纳米管复合薄膜的制备方法,包括如下步骤:将石墨进行氧化,得到氧化石墨;将所述氧化石墨分散在去离子水中,超声1小时~2小时后得到浓度为0.5g/L~1.0g/L的氧化石墨分散液;将碳纳米管分散在乙醇中,超声3小时~6小时后得到浓度为0.2g/L~1g/L碳纳米管分散液;将所述氧化石墨分散液和所述碳纳米管分散液按体积比1:1~1:2混合后超声5小时~8小时,得到混合液,去除去离子水和乙醇,得到氧化石墨烯-碳纳米管薄膜;及将所述氧化石墨烯-碳纳米管薄膜置于惰性气体的气氛下,升温至700°C~900°C并保温0.5小时~2小时,冷却至室温,得到储能性能较高石墨烯-碳纳米管复合薄膜。本发明还提供一种电化学电容器的制备方法。
【专利说明】石墨烯-碳纳米管复合薄膜及电化学电容器的制备方法
【技术领域】
[0001]本发明涉及石墨烯复合材料领域,特别是涉及石墨烯-碳纳米管复合薄膜的制备方法及使用了该石墨烯-碳纳米管复合薄膜的电化学电容器的制备方法。
【背景技术】
[0002]电化学电容器作为一种新型储能器件,由于其充放电速率快、功率密度高、循环寿命长等优点,是继锂离子电池后又一极具应用潜力和开发价值的储能器件。然而能量密度较低是制约超级电容器发展和应用的一个关键因素,探索如何提高超级电容器的能量密度是目前该领域研究的重点。
[0003]根据能量密度的计算公式E=1/2CV2,提高能量密度主要从两方面入手,一方面提高电化学电容器的电压窗口 ;另外一方面是提高电极材料的比容量,这两方面的提高都会带来能量密度的提高。石墨烯作为一种二维单分子层材料,具有较高的比表面积和较高的电导率,是一种理想的电化学电容器电极材料,但石墨烯片层容易团聚,致使石墨烯片层很多表面不能用于储能,从而使石墨烯的储能性能并不高。

【发明内容】

[0004]基于此,有必要提供一种具有较高储能性能的石墨烯-碳纳米管复合薄膜的制备方法及使用了该石墨烯-碳纳米管复合薄膜的电化学电容器的制备方法。
[0005]一种石墨烯-碳纳米管复合薄膜的制备方法,包括:
[0006]将石墨进行氧化,得到氧化石墨;
[0007]将所述氧化石墨分散在`去离子水中,超声I小时小时后得到浓度为0.5g/L^l.0g/L的氧化石墨分散液;
[0008]将碳纳米管分散在乙醇中,超声3小时飞小时后得到浓度为0.2g/L~lg/L碳纳米管分散液;
[0009]将所述氧化石墨分散液和所述碳纳米管分散液按体积比1: f 1:2混合后超声5小时I小时,得到混合液,去除去离子水和乙醇,得到氧化石墨烯-碳纳米管薄膜;及
[0010]将所述氧化石墨烯-碳纳米管薄膜置于惰性气体的气氛下,升温至700° (T900° C并保温0.5小时小时,冷却至室温,得到石墨烯-碳纳米管复合薄膜。
[0011]在其中一个实施例中,所述制备氧化石墨的步骤包括:
[0012]将石墨加入浓硫酸和浓硝酸的混合溶液中,在O° C温度下搅拌;
[0013]加入高锰酸钾至所述混合溶液中并加热至85° C进行反应,并保温30分钟;
[0014]加入去离子水至加入了高锰酸钾的混合溶液,继续在85° C下保持30分钟;
[0015]加入过氧化氢至加入了去离子水的混合溶液中;
[0016]将加入了过氧化氢的混合溶液进行抽滤并用稀盐酸和去离子水对固体物进行洗涤;及
[0017]干燥所述固体物,得到氧化石墨。[0018]在其中一个实施例中,所述石墨的纯度为99.5%。
[0019]在其中一个实施例中,所述去除去离子水和乙醇的步骤为将所述混合溶液置于100° C环境中,让去离子水和乙醇完全挥发。
[0020]在其中一个实施例中,所述惰性气体为氩气或氖气,所述惰性气体的流速为10OmT,/min ~400mL/min。
[0021]在其中一个实施例中,所述升温的升温速率为5° C/mirT20° C/min。
[0022]一种电化学电容器的制备方法,包括:
[0023]根据所述的石墨烯-碳纳米管复合薄膜的制备方法得到石墨烯-碳纳米管复合薄膜;
[0024]将所述石墨烯-碳纳米管复合薄膜进行辊压后,经干燥和切片处理,得到电极片;
[0025]按照所述电极片、隔膜和所述电极片的顺序依次层叠组装得到电芯;及
[0026]在所述电芯外包覆壳体,并向所述壳体内注入电解液,密封后得到电化学电容器。
[0027]在其中一个实施例中,所述干燥为于真空下80° C处理2小时。
[0028]在其中一个实施例中,所述电解液为离子液体。
[0029]在其中一个实施例中,所述离子液体为1- 丁基-3-甲基咪唑六氟硼酸盐([BMM][BF6D0
[0030]上述石墨烯-碳纳米管复`合薄膜的制备方法和使用该石墨烯-碳纳米管复合薄膜的电化学电容器的制备方法中,先用氧化石墨与碳纳米管制得氧化石墨烯-碳纳米管薄膜,然后采用高温还原法制得石墨烯-碳纳米管复合薄膜,碳纳米管位于石墨烯片层与片层间,防止石墨烯片层团聚,石墨烯片层的表面能有效地用于储能,从而使石墨烯-碳纳米管复合薄膜的储能性能较高。同时该复合材料用作电化学电容器电极材料时具有较高的储能容量。
【专利附图】

【附图说明】
[0031]图1为一实施方式的石墨烯-碳纳米管复合薄膜的制备方法的流程图;
[0032]图2为一实施方式的电化学电容器的制备方法的流程图。
【具体实施方式】
[0033]下面结合实施方式及附图,对石墨烯-碳纳米管复合薄膜的制备方法和电化学电容器的制备方法作进一步的详细说明。
[0034]请参阅图1,一实施方式的石墨烯-碳纳米管复合薄膜的制备方法包括以下步骤:
[0035]S101,将石墨进行氧化,得到氧化石墨。
[0036]其具体步骤为:将石墨加入至浓硫酸和浓硝酸的混合溶液中,在冰水混合浴中,保持温度为0° C左右的条件下搅拌;然后慢慢地加入高锰酸钾至混合溶液中,由于高锰酸钾在酸性条件下具有强氧化性,可以对石墨进行氧化;再将混合溶液加热至85° C进行反应,并保温30分钟,该保温过程中,可以对石墨进一步进行氧化;加入去离子水,继续保持85° C温度30分钟;然后加入过氧化氢至混合溶液中,去除过量的高锰酸钾,得到氧化石墨溶液;将氧化石墨溶液进行抽滤,得到固体物,并用稀盐酸和去离子水对固体物反复洗涤,去除杂质,将固体物在真空干燥箱中60° C温度下干燥12小时,得到氧化石墨。[0037]本实施例中,石墨优选为99.5%的石墨。浓硫酸的质量分数为98%,浓硝酸的质量分数为65%。过氧化氢的质量分数为30%。
[0038]S102,将氧化石墨分散在去离子水中,超声I小时~2小时后得到浓度为0.5g/L^l.0g/L的氧化石墨分散液。
[0039]本实施例中,氧化石墨分散在去离子水中,超声I小时~2小时的过程中,氧化石墨在超声波的作用下在水中可形成稳定性较好的氧化石墨分散液。
[0040]S103,将碳纳米管分散在乙醇中,超声3小时飞小时后得到浓度为0.2g/L~lg/L碳纳米管分散液。
[0041]本实施例中,碳纳米管具有疏水基,直接在水中的分散性较差,将碳纳米管分散在乙醇中,通过超声作用能得到碳纳米管分散液。
[0042]S104,将氧化石墨分散液和所述碳纳米管分散液按体积比1: f 1:2混合后超声5小时I小时,得到混合液,去除去离子水和乙醇,得到氧化石墨烯-碳纳米管薄膜。
[0043]本实施例中,将氧化石墨分散液和碳纳米管分散液混合后,由于乙醇和水能互溶,因此能得到混合液。
[0044]S105,将氧化石墨烯-碳纳米管薄膜置于惰性气体的气氛下,升温至700° (T900° C并保温0.5小时小时,冷却至室温,得到石墨烯-碳纳米管复合薄膜。
[0045]本实施例中,惰性气体优选为氩气或氖气,惰性气体的流速优选为IOOmL/min~400mL/min。升温的升温速率优选为5° C/min~20° C/min。当周围环境温度升高至所需值后保温0.5小时1.0小时,氧化石墨烯-碳纳米管在惰性气体的保护下于高温中发生还原反应,得到石墨烯-碳纳米管。·
[0046]上述石墨烯-碳纳米管复合薄膜的制备方法中,先用氧化石墨与碳纳米管制得氧化石墨烯-碳纳米管薄膜,然后采用高温还原法制得石墨烯-碳纳米管复合薄膜,碳纳米管位于石墨烯片层与片层间,防止石墨烯片层团聚,使得该复合材料用作电化学电容器电极材料时具有较高的储能容量。且上述石墨烯-碳纳米管复合薄膜制备方法采用氧化还原法,设备、工艺要求简单,便于操作,容易实现大规模工业化生产。
[0047]请参阅图2,一实施方式的电化学电容器的制备方法包括以下步骤:
[0048]S201,根据上述石墨烯-碳纳米管复合薄膜的制备方法得到石墨烯-碳纳米管复合薄膜;
[0049]S202,将石墨烯-碳纳米管复合薄膜进行辊压后,经干燥和切片处理,得到电极片。
[0050]本实施例中,干燥过程为在真空环境下80° C处理2小时。
[0051 ] S203,按照电极片、隔膜和电极片的顺序依次层叠组装得到电芯。
[0052]S204,在电芯外包覆壳体,并向所述壳体内注入电解液,密封后得到电化学电容器。
[0053]本实施例中,从壳体的注液口注入电解液至壳体内,再密封注液口,得到电化学电容器。电解液优选为离子液体,离子液体优选为[bmim][bf6]。
[0054]上述电化学电容器的制备方法步骤简单,操作可控,适合大规模的工业生产。
[0055]以下结合具体实施例来进行说明。
[0056]实施例1[0057](I)称取纯度为99.5%的石墨lg,加入由90mL质量分数为98%的浓硫酸和25mL质量分数为65%的浓硝酸组成的混合溶液中,将混合物置于冰水混合浴环境下进行搅拌20分钟;再慢慢地往混合物中加入6g高锰酸钾,搅拌I小时,将混合物加热至85° C并保持30分钟;加入92mL去离子水继续在85° C下保持30分钟;加入IOmL质量分数30%的过氧化氢溶液,搅拌10分钟;对混合物进行抽滤,再依次分别用IOOmL稀盐酸和150mL去离子水对
固体物进行洗涤,共洗涤三次,最后固体物质在60° C真空烘箱中干燥12小时得到氧化石
[0058](2)将(I)中制备的氧化石墨加入去离子水中,采用超声波清洗机在功率为500W的作用下超声2小时;得到浓度为lg/L的氧化石墨分散液。
[0059](3)将碳纳米管加入乙醇中,采用超声波清洗机在功率为500W的作用下超声4小时,得到浓度为0.5g/L的碳纳米管分散液。
[0060](4)将(2)中获得的氧化石墨分散液和(3)中获得的碳纳米管分散液按照体积比为1:1混合,得到混合液,继续超声5小时,将混合液置于100° C下进行溶剂挥发,待溶剂挥发完全,得到氧化石墨烯-碳纳米管薄膜。
[0061](5)将(4)中获得的氧化石墨烯-碳纳米管薄膜置于流速为400mL/min的氩气的气氛下,以20° C/min升温速率将氧化石墨烯-碳纳米管薄膜周围的温度升至800° C,并保持I小时,最后在流速为400mL/min的氩气的气氛下降至室温,得到石墨烯-碳纳米管复
合薄膜。
[0062]实施例2
[0063](I)称取纯度为99.5%的石墨5g,加入由475mL质量分数为98%的浓硫酸和120mL质量分数为65%的浓硝酸组成的混合溶液中,将混合物置于冰水混合浴环境下进行搅拌20分钟;再慢慢地往混合物中加入20g高锰酸钾,搅拌I小时,将混合物加热至85° C并保持30分钟;加入92mL去离子水继续在85° C下保持30分钟;加入30mL质量分数30%的过氧化氢溶液,搅拌10分钟;对混合物进行抽滤,再依次分别用300mL稀盐酸和450mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60° C真空烘箱中干燥12小时得到氧化石墨。
[0064](2)将(I)中制备的氧化石墨加入去离子水中,采用超声波清洗机在功率为500W的作用下超声I小时,得到浓度为0.5g/L氧化石墨分散液。
[0065](3)将碳纳米管加入乙醇中,采用超声波清洗机在功率为500W的作用下超声4小时,得到浓度为0.5g/L碳纳米管分散液。
[0066](4)将(2)中获得的氧化石墨分散液和(3)中获得的碳纳米管分散液按照体积比为1:1混合,得到混合液,继续超声6小时,将混合液置于100° C下进行溶剂挥发,待溶剂挥发完全,得到氧化石墨烯-碳纳米管薄膜。
[0067](5)将(4)中得到的氧化石墨烯-碳纳米管薄膜置于流速为200mL/min的氩气的气氛下,以15° C/min升温速率将氧化石墨烯-碳纳米管薄膜周围的温度升至900° C,并保持0.5小时,在流速为200mL/min的氩气的气氛下降至室温,得到石墨烯-碳纳米管复合薄膜。
[0068]实施例3
[0069](I)称取(I)中纯度为99.5%的石墨2g,加入由170mL质量分数为98%的浓硫酸和48mL质量分数为65%的浓硝酸组成的混合溶液中,将混合物置于冰水混合浴环境下进行搅拌20分钟;再慢慢地往混合物中加入8g高锰酸钾,搅拌I小时,将混合物加热至85 ° C并保持30分钟;加入92mL去离子水继续在85° C下保持30分钟,最后加入16mL质量分数30%的过氧化氢溶液,搅拌10分钟;对混合物进行抽滤,再依次分别用250mL稀盐酸和300mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60° C真空烘箱中干燥12小时得到氧化石墨。
[0070](2)将(I)中制备的氧化石墨加入去离子水中,采用超声波清洗机在功率为500W的作用下超声2小时,得到浓度为lg/L的氧化石墨分散液。
[0071](3)将碳纳米管加入乙醇中,采用超声波清洗机在功率为500W的作用下超声3小时,得到浓度为0.2g/L的碳纳米管分散液。
[0072](4)将(2)中获得的氧化石墨分散液和(3)中获得的碳纳米管分散液按照体积比为1:2混合,得到混合液,继续超声7小时,将混合液置于100° C下进行溶剂挥发,待溶剂挥发完全,得到氧化石墨烯-碳纳米管薄膜。
[0073](5)将(4)中得到的氧化石墨烯-碳纳米管薄膜置于流速为lOOmL/min的氩气气氛下,以10° C/min升温速率将氧化石墨烯-碳纳米管薄膜周围的温度升至700° C,并保持2小时,最后在流速为100mL/min的氩气气氛下降至室温,得到石墨烯-碳纳米管复合薄膜。
[0074]实施例4
[0075](I)称取中纯度为99.5%的石墨lg,加入由90mL质量分数为98%的浓硫酸和25mL质量分数为65%的浓硝酸组成的混合溶液中,将混合物置于冰水混合浴环境下进行搅拌20分钟;再慢慢地往混合物中加入4g高锰酸钾,搅拌I小时,将混合物加热至85° C并保持30分钟;加入92mL去离子水继续在`85° C下保持30分钟;加入9mL质量分数30%的过氧化氢溶液,搅拌10分钟;对混合物进行抽滤,再依次分别用IOOmL稀盐酸和150mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60° C真空烘箱中干燥12小时得到氧化石墨。
[0076](2)将(I)中制备的氧化石墨加入去离子水中,采用超声波清洗机在功率为500W的作用下超声I小时,得到浓度为0.5g/L的氧化石墨分散液。
[0077](3)将碳纳米管加入乙醇中,采用超声波清洗机在功率为500W的作用下超声6小时,得到浓度为lg/L的碳纳米管分散液。
[0078](4)将(2)中获得的氧化石墨分散液和(3)中获得的碳纳米管分散液按照体积比为1:1混合,得到混合液,继续超声8小时,将混合液置于100° C下进行溶剂挥发,待溶剂挥发完全,得到氧化石墨烯-碳纳米管薄膜。
[0079](5)将(4)中得到的氧化石墨烯-碳纳米管薄膜置于流速为400mL/min氖气氛围下,以5° C/min升温速率将氧化石墨烯-碳纳米管薄膜周围的温度升至800° C,并保持
0.5小时,最后在流速为400mL/min的氖气气氛下降至室温,得到石墨烯-碳纳米管复合薄膜。
[0080]实施例5
[0081 ] (I)按照实施例1的石墨烯-碳纳米管复合薄膜材料的制备方法获得石墨烯-碳纳米管复合薄膜材料。[0082](2)将(I)中得到的石墨烯-碳纳米管复合薄膜材料进行辊压,经真空80° C干燥2小时、切片处理,制得电化学电容器电极片。
[0083](3)按照将(2)中获得的电极片、隔膜、(2)中获得的电极片的顺序依次叠片组装成电芯。
[0084](4)用壳体密封(3)中获得的电芯,随后往设置在壳体上的注液口往壳体里注入[BMIM] [BF6],密封注液口,得到电化学电容器。
[0085]实施例6
[0086]( I)按照实施例2的石墨烯-碳纳米管复合薄膜材料的制备方法获得石墨烯-碳纳米管复合薄膜材料。
[0087](2)将(I)中得到的石墨烯-碳纳米管复合薄膜材料进行辊压,经真空80° C干燥2小时、切片处理,制得电化学电容器电极片。
[0088](3)按照将(2)中获得的电极片、隔膜、(2)中获得的电极片的顺序依次叠片组装成电芯。
[0089](4)用壳体密封(3)中获得的电芯,随后往设置在壳体上的注液口往壳体里注入[BMIM] [BF6],密封注液口,得到电化学电容器。
[0090]实施例7
[0091 ] (I)按照实施例3的石墨烯-碳纳米管复合薄膜材料的制备方法获得石墨烯-碳纳米管复合薄膜材料。
`[0092](2)将(I)中得到的石墨烯-碳纳米管复合薄膜材料进行辊压,经真空80° C干燥2小时、切片处理,制得电化学电容器电极片。
[0093](3)按照将(2)中获得的电极片、隔膜、(2)中获得的电极片的顺序依次叠片组装成电芯。
[0094](4)用壳体密封(3)中获得的电芯,随后往设置在壳体上的注液口往壳体里注入[BMIM] [BF6],密封注液口,得到电化学电容器。
[0095]实施例8
[0096]( I)按照实施例4的石墨烯-碳纳米管复合薄膜材料的制备方法获得石墨烯-碳纳米管复合薄膜材料。
[0097](2)将(I)中得到的石墨烯-碳纳米管复合薄膜材料进行辊压,经真空80° C干燥2小时、切片处理,制得电化学电容器电极片。
[0098](3)按照将(2)中获得的电极片、隔膜、(2)中获得的电极片的顺序依次叠片组装成电芯。
[0099](4)用壳体密封(3)中获得的电芯,随后往设置在壳体上的注液口往壳体里注入[BMIM] [BF6],密封注液口,得到电化学电容器。
[0100]对实施例5、制备的电化学电容器进行充放电测试,充放电电流密度为0.5A/g,电压窗口为4V,其测试结果如表1所不。
[0101]表1为实施例5、的电化学电容器的比容量
[0102]
【权利要求】
1.一种石墨烯-碳纳米管复合薄膜的制备方法,其特征在于,包括如下步骤: 将石墨进行氧化,得到氧化石墨; 将所述氧化石墨分散在去离子水中,超声1小时~2小时后得到浓度为0.5g/n.0g/L的氧化石墨分散液; 将碳纳米管分散在乙醇中,超声3小时~6小时后得到浓度为0.2g/L~lg/L碳纳米管分散液; 将所述氧化石墨分散液和所述碳纳米管分散液按体积比1: 1~ 1:2混合后超声5小时I小时,得到混合液,去除去离子水和乙醇,得到氧化石墨烯-碳纳米管薄膜;及 将所述氧化石墨烯-碳纳米管薄膜置于惰性气体的气氛下,升温至700° 0-900° C并保温0.5小时~2小时,冷却至室温,得到石墨烯-碳纳米管复合薄膜。
2.根据权利要求1所述的石墨烯-碳纳米管复合薄膜的制备方法,其特征在于,所述制备氧化石墨的步骤包括: 将石墨加入浓硫酸和浓硝酸的混合溶液中,在0° C温度下搅拌; 加入高锰酸钾至所述混合溶液中并加热至85° C进行反应,并保温30分钟; 加入去离子水至加入了高锰酸钾的混合溶液,继续在85° C下保持30分钟; 加入过氧化氢至加入了去离子水的混合溶液中; 将加入了过氧化氢的混合溶液进行抽滤并用稀盐酸和去离子水对固体物进行洗涤;及 干燥所述固体物,得到氧化石墨。
3.根据权利要求1所述的石墨烯-碳纳米管复合薄膜的制备方法,其特征在于,所述石墨的纯度为99.5%。
4.根据权利要求1所述的石墨烯-碳纳米管复合薄膜的制备方法,其特征在于,所述去除去离子水和乙醇的步骤为将所述混合溶液置于100° C环境中,让去离子水和乙醇完全挥发。
5.根据权利要求1所述的石墨烯-碳纳米管复合薄膜的制备方法,其特征在于,所述惰性气体为氩气或氖气,所述惰性气体的流速为100mL/mirT400mL/min。
6.根据权利要求1所述的石墨烯-碳纳米管复合薄膜的制备方法,其特征在于,所述升温的升温速率为5° C/mirT20° C/min。
7.—种电化学电容器的制备方法,其特征在于,包括: 根据权利要求1所述的石墨烯-碳纳米管复合薄膜的制备方法得到石墨烯-碳纳米管复合薄膜; 将所述石墨烯-碳纳米管复合薄膜进行辊压后,经干燥和切片处理,得到电极片; 按照所述电极片、隔膜和所述电极片的顺序依次层叠组装得到电芯 '及 在所述电芯外包覆壳体,并向所述壳体内注入电解液,密封后得到电化学电容器。
8.根据权利要求7所述的电化学电容器的制备方法,其特征在于,所述干燥为于真空下80° C处理2小时。
9.根据权利要求7所述的电化学电容器的制备方法,其特征在于,所述电解液为离子液体。
10.根据权利要求9所述的电化学电容器的制备方法,其特征在于,所述离子液体为[BMIM] [BF6]。
【文档编号】C01B31/04GK103787311SQ201210428433
【公开日】2014年5月14日 申请日期:2012年10月31日 优先权日:2012年10月31日
【发明者】周明杰, 钟辉, 王要兵, 刘大喜 申请人:海洋王照明科技股份有限公司, 深圳市海洋王照明技术有限公司, 深圳市海洋王照明工程有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1