一种铁磁性砷化镉单晶薄膜的制备方法与流程

文档序号:23502159发布日期:2021-01-01 18:08阅读:190来源:国知局
一种铁磁性砷化镉单晶薄膜的制备方法与流程

本发明涉及凝聚态物理拓扑材料技术领域,具体涉及一种铁磁性砷化镉(cd3as2)单晶薄膜的制备方法。



背景技术:

在如今的凝聚态物理研究领域,具有非传统能带结构的材料,如拓扑狄拉克半金属与拓扑绝缘体等一直受到人们的广泛关注。其中,在拓扑狄拉克半金属中导带和价带仅在布里渊区中几个孤立的点上相接触,而在这些点附近能带色散关系是线性的。这样的能带结构往往使得此类材料具有很高的电子迁移率和电导率,从而可以用来开发更薄和更快的电子器件。通常,二维狄拉克半金属材料容易受到外界干扰产生带隙而破坏其内部狄拉克费米子特性,但三维拓扑狄拉克半金属材料可以有效地克服这个问题。因此,人们在理论和实验上不断努力寻找三维拓扑狄拉克半金属材料,以期在基础物理研究和下一代电子学的革命性应用中取得突破性进展。

2013年,有理论研究预言ii-v族化合物砷化镉(cd3as2)是一种稳定的三维拓扑狄拉克半金属材料,且当cd3as2超薄膜的能隙大于100mev时将有可能观察到量子自旋霍尔效应。此外,cd3as2具有极高的载流子迁移率,且磁性元素mn的掺入不会明显改变其迁移率,这使得有望通过磁性掺杂来获得既有高迁移率又有铁磁性的材料。在高温下,cd3as2也表现出巨大的各向异性线性磁阻,是一种良好的磁传感器备选材料。



技术实现要素:

(一)要解决的技术问题

针对上述问题,本发明提供了一种铁磁性cd3as2单晶薄膜的制备方法,用于至少部分解决传统方法难以获得高迁移率磁性半导体材料等技术问题。

(二)技术方案

本发明提供了一种铁磁性cd3as2单晶薄膜的制备方法,包括:s1,在第一温度下,在脱氧后的半绝缘gaas(111)b衬底上分子束外延生长gaas缓冲层;s2,降低第一温度至第二温度,在gaas缓冲层上分子束外延一层磁性元素掺杂的cd3as2单晶薄膜;s3,在单晶薄膜表面分子束外延一层gaas薄膜,用于防止单晶薄膜氧化。

进一步地,s2中磁性元素包括ni、mn。

进一步地,s1中gaas缓冲层的厚度为10nm~10μm。

进一步地,s1中gaas缓冲层的生长温度为400℃~480℃。

进一步地,s2中分子束外延一层磁性元素掺杂的cd3as2单晶薄膜中cd与as的等效束流压强比为2.8~3.3。

进一步地,cd3as2单晶薄膜的厚度为2nm~200nm。

进一步地,cd3as2单晶薄膜的生长温度为170℃~210℃。

进一步地,s3中gaas薄膜厚度为1nm~200nm。

(三)有益效果

本发明实施例提供的一种铁磁性cd3as2单晶薄膜的制备方法,利用了分子束外延技术,在实验上确立了一种全新的合成cd3as2单晶薄膜的方法,并获得了高质量的铁磁性掺杂cd3as2单晶薄膜。

附图说明

图1示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的制备方法的流程图;

图2示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的样品结构图;

图3(a)示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的纵向电阻对温度的依赖特性曲线;

图3(b)示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的纵向电阻对磁场的依赖特性曲线;

图3(c)示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的横向电阻对磁场的依赖特性曲线;

图4(a)示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的磁化强度对温度的依赖特性曲线;

图4(b)示意性示出了根据本发明实施例铁磁性cd3as2单晶薄膜的磁化强度对磁场的依赖特性曲线。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。

本发明的实施例提供了一种铁磁性cd3as2单晶薄膜的制备方法,请参见图1,包括:s1,在第一温度下,在脱氧后的半绝缘gaas(111)b衬底上分子束外延生长gaas缓冲层;s2,降低第一温度至第二温度,在gaas缓冲层上分子束外延一层磁性元素掺杂的cd3as2单晶薄膜;s3,在单晶薄膜表面分子束外延一层gaas薄膜,用于防止单晶薄膜氧化。

分子束外延技术有以原子级精度生长样品的优点,铁磁性cd3as2单晶薄膜采用分子束外延技术可以达到对样品生长进行原子级精细调控的技术效果。衬底选用脱氧后的半绝缘gaas(111)b是因为该衬底表面原子排布方式与cd3as2单晶都是准六角紧密排布,外延磁性元素掺杂的cd3as2单晶薄膜需要降低温度是为了避免杂相的产生。最后选用gaas薄膜作为防氧化层是因为gaas的生长无需改变腔体中的富as氛围。这里的第一温度、第二温度仅用来使具有某一温度范围下的操作得以和另一温度范围下的操作能作出清楚区分。

在上述实施例的基础上,s2中磁性元素包括ni、mn。

常见的磁性元素有3d过渡族金属如cr、mn、fe、co和ni等。cd3as2具有极高的载流子迁移率,且磁性元素mn的掺入不会明显改变其迁移率,因此可使用磁性掺杂mn元素来获得既有高迁移率又有铁磁性的材料。ni单质是铁磁性材料,ni的掺入理论上能让样品获得具有更强磁性,为获得具有高居里温度和大饱和磁化强度的cd3as2单晶薄膜提供了一种探索途径。

在上述实施例的基础上,gaas缓冲层的厚度为10nm~10μm。

gaas缓冲层的厚度在该范围内,具有平滑样品表面的技术效果。

在上述实施例的基础上,s2中分子束外延一层磁性元素掺杂的cd3as2单晶薄膜中cd与as的等效束流压强比为2.8~3.3。

cd与as的等效束流压强比对cd3as2单晶薄膜的晶体质量有影响,等效束流压强比在该范围内,具有避免样品表面原子出现反位缺陷的技术效果。

在上述实施例的基础上,cd3as2单晶薄膜的厚度为2nm~200nm。

cd3as2单晶薄膜的厚度在该范围内,具有防止杂相出现的技术效果。

在上述实施例的基础上,cd3as2单晶薄膜的生长温度为170℃~210℃。

cd3as2单晶薄膜的生长温度在该范围内,具有防止出现杂相的技术效果。

在上述实施例的基础上,s3中gaas薄膜厚度为1nm~200nm。

gaas薄膜的厚度在该范围内,具有兼顾防氧化和防止样品表面粗糙化的技术效果。

该方法在cd3as2单晶薄膜表面沉积一层gaas薄膜之后,还包括:利用综合物性测量系统表征样品的电学输运性质,具体包括:

利用综合物性测量系统测量cd3as2单晶薄膜的纵向电阻对温度的依赖特性;利用综合物性测量系统测量低温下cd3as2单晶薄膜的纵向电阻对磁场的依赖特性;利用综合物性测量系统测量低温下cd3as2单晶薄膜的横向电阻对磁场的依赖特性。

该方法在cd3as2单晶薄膜表面沉积一层gaas薄膜之后,还包括:利用超导量子干涉仪磁强计表征样品的磁学性质,具体包括:

利用超导量子干涉仪磁强计测量cd3as2单晶薄膜的磁化强度对温度的依赖特性;利用超导量子干涉仪磁强计测量低温下cd3as2单晶薄膜的磁化强度对磁场的依赖特性。

下面以一具体实施例对本发明进行详细描述。

以制备20nmcd3as2单晶薄膜为例,样品结构见图2,本发明实施例首先在经过除气和脱氧后的半绝缘gaas(111)b上生长约150nm厚的gaas缓冲层,生长温度约为480℃。之后,将衬底温度降至180℃左右生长厚度约20nm的ni掺杂cd3as2单晶薄膜,最后生长约3nm的gaas薄膜用于保护样品防止ni掺杂cd3as2单晶薄膜的氧化。

图3(a)给出了cd3as2单晶薄膜的纵向电阻对温度的依赖特性曲线。可以看出,ni掺杂cd3as2单晶薄膜的纵向电阻随着温度的降低而增大,呈现出半导体的导电行为。

图3(b)给出了3k下ni掺杂cd3as2单晶薄膜的纵向电阻对磁场的依赖特性曲线。图中该曲线表现出明显的shubnikov-dehaas震荡。根据该曲线中震荡峰对应的磁场大小,可以得出薄膜中载流子浓度约为8.0×1011cm-2

图3(c)给出了3k下ni掺杂cd3as2单晶薄膜的横向电阻对磁场的依赖特性曲线。由此可以得出,样品在3k和300k下的迁移率分别约为1000cm2/vs和310cm2/vs。

图4(a)给出了cd3as2单晶薄膜的磁化强度对温度的依赖特性曲线。可以看出,样品的居里温度约为45k。

图4(b)给出了5k下ni掺杂cd3as2单晶薄膜的磁化强度对磁场的依赖特性曲线(即磁滞回线)。磁场沿不同方向施加时,样品的磁滞回线略有不同,表明其磁各向异性较弱。

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1