用于纯化抗体的方法

文档序号:3557675阅读:313来源:国知局

专利名称::用于纯化抗体的方法
技术领域
:本发明涉及多肽纯化领域。本文描述了使用离子交换树脂纯化免疫球蛋白的新方法。本文同时提供了快速确定纯化条件的方法。
背景技术
:蛋白质,尤其是免疫球蛋白在当今的医学领域中起着重要作用。对于人的应用,每一种药物必须满足独特的标准。为确保生物药剂对人的安全性,尤其要除去可导致严重伤害的核酸、病毒和宿主细胞蛋白质。为满足质量管理规格标准,必须在生产过程之后进行一个或多个纯化步骤。其中,纯度、生产量和产率在确定合适的纯化方法中起着重要作用。已良好地建立不同的方法并且已将其广泛地用于蛋白质的纯化,例如使用微生物蛋白质的亲和层析(例如A蛋白或G蛋白亲和层析)、离子交换层析(例如,阳离子交换(羧曱基树脂)、阴离子交换(氨乙基树脂)和混合模式的交换)、亲硫吸附(例如使用p-巯基乙醇和其他SH配体)、疏水性相互作用或芳香族化合物吸附层析(例如使用苯基-琼脂糖、氮杂-arenophilic树脂或间-氨基苯基硼酸)、金属螯合亲和层析(例如使用Ni(II)-和Cu(II)-亲和材料)、大小排阻层析和电泳方法(例如凝胶电脉、毛细管电泳)(Vijayalakshmi,M.A.,Appl.Biochem.Biotech.75(1998)93-102)。Necina,R.等人,Biotechnol.Bioeng.60(1998)689-698,报导了通过表现为高电荷密度的离子交换介质从细胞培养物上清液直接捕获人单克隆抗体。在WO89/05157中,报导了通过直接对细胞培养基进行阳离子交换处理纯化产物免疫球蛋白的方法。Danielsson,A.等人,J.Immun.Meth.115(1988),79-88描述了从小鼠腹水一步纯化单克隆IgG抗体的方法。Raweerith,R.等人(J.Immun.Meth,282(2003)63-72)使用方法的組合,即,辛酸沉淀法(caprylicacidprecipitation)和离子交换层析的組合作为分级分离胃蛋白酶消化的马抗蛇毒素F(ab')2抗体的方法。在WO2003/102132中报导了用于纯化蛋白质的非亲和纯化步骤和高效切向流过滤的组合。在WO92/19973中报导了两种亲和层析步骤的组合。Follman,D.K.和Fahrner,R丄.报导了使用无A蛋白的三个层析步骤的抗体纯化方法的析因篩选(factorialscreening)(J.Chrom.A1024(2004)79-85)。Mhatre,R,等人(J.Chrom.A707(1995)225-231)4笨究了使用阳离子交换层析和pH梯度洗脱对抗体Fab片段进行纯化。WO94/00561^^导了人单克隆抗猕猴抗体和产生该抗体的细胞系。在WO2004/024866中报导了通过离子交换层析纯化多肽的方法,在所述方法中,使用梯度洗涤从一种或多种污染物中分离出目的多肽。Schwarz,A.等人(Laborpraxis21(1997)62-66)报导了使用CM-HyperD-柱对单克隆抗体的纯化。WO2004/076485报导了使用A蛋白和离子交换层析进行抗体纯化的方法。在EP0530447中报导了通过组合三个层析步骤纯化IgG单克隆抗体的方法。在US4,983,722中报导了从抗体制品中除去A蛋白。WO95/16037报导了通过A蛋白阳离子交换层析进行的从杂种杂交瘤纯化抗EGF-R/抗-CD3双特异性单克隆抗体。在EP1084136中报导了通过使用离子交换层析从抗体多聚体分离其单体。US5,429,746涉及^f吏用疏水作用层析组合层析纯化抗体分子蛋白质。发明概述因此本发明的目的是提供用于纯化重组产生的免疫球蛋白和用于分离单体和多聚体免疫球蛋白种类的另一种方法。本发明提供了用于纯化免疫球蛋白的方法,其中所述方法包括下列步骤a)提供包含免疫球蛋白、緩冲物质和任选的盐的溶液;b)在免疫球蛋白借以与弱离子交换材料结合的条件下,使溶液和该弱离子交换材料接触;c)通过使用包含緩冲物质和盐的溶液,以单步骤从弱离子交换材料回收免疫球蛋白。本发明还提供了用于确定在单步骤纯化方法中从离子交换层析材料洗脱多肽的盐浓度的方法,其包括下列两个步骤a)步骤l包括下列亚步骤al)提供包含多肽、緩冲物质和任选的盐的溶液;a2)在多肽借以与离子交换材料结合的条件下,使包含该多肽的溶液的第1等分试样与该离子交换材料接触;a3)通过使用包含緩冲物质和盐的溶液从离子交换材料回收多肽,其中所述盐的浓度线性增加;a4)确定当多肽的第l级分开始从离子交换柱上洗脱时盐的起始浓度;b)步骤2包括下列亚步骤bl)在多肽借以与离子交换材料结合的条件下,使包含该多肽的溶液的第2等分试样与该离子交换材料接触;b2)通过使用三步洗脱方法从离子交换材料回收多肽,其中i)将第1洗脱步骤的盐浓度计算为下列的总和步骤a4)中确定的起始盐浓度与该盐分子式中指示的非氢单价阳离子总数的乘积,以及緩冲盐浓度与该緩冲盐分子式中指示的非氢单价阳离子总数的乘积;ii)第2洗脱步骤的盐浓度是第1洗脱步骤的盐浓度与1.25和1.35之间的因子的乘积;iii)第3洗脱步骤的盐浓度是第1洗脱步骤的盐浓度与1.50和1.70之间的因子的乘积;其中如下确定步骤ii)和iii)的因子当10mM和40mM之间的起始浓度时,因子分别为1.35和1.70,当40mM和70mM之间的起始浓度时,因子分别是1.30和1.60,以及当超过70mM的起始浓度时,因子分别是1.25和1.50。b3)确定多肽从离子交换柱洗脱时处于步骤b2)的三步骤洗脱法中的哪个亚步骤,从而确定单步骤纯化法中用于从离子交换层析材料洗脱多肽的盐浓度。发明详述按照下列定义在本申请中使用这些术语本申请中所用的术语"离子交换树脂"或"离子交换材料"是指携带共价结合带电荷的取代基的固定高分子量基质。为了获得总体电中性,将非共价结合的平衡离子结合至其上。"离子交换材料"具有将其非共价结合的平衡离子与周围溶液的带相似电荷的离子交换的能力。根据其可交换的平衡离子的电荷,"离子交换树脂"被称为阳离子交换树脂或阴离子交换树脂。根据带电荷基团(取代基)的性质,"离子交换树脂"例如在阳离子交换树脂的情况下是指磺酸树脂(S)或羧甲基树脂(CM)。根据带电基团/取代基的化学性质,可将"离子交换树脂,,另外分类为强或弱离子交换树脂,这取决于于共价结合的带电荷的取代基的强度。例如,强阳离子交换树脂具有磺酸基团作为带电荷的取代基,弱阳离子交换树脂具有J^&基团(优选羧甲基基团)作为带电荷的取代基,并且弱阴离子交换树脂具有二乙氛乙基基团作为带电荷的取代基。可以以不同的名称从许多公司获得阳离子交换树脂,例如Bio-Rex、Macro-PrepCM(可从BioradLaboratories,Hercules,CA,美国获才寻)、弱阳离子交换剂WCX2(可从Ciphergen,Fremont,CA,美国获得)、DowexMAC画3(可从Dowchemicalcompanyliquidseparations,Midland,MI,美国获得)、MustangC(可从PallCorporation,EastHills,NY,美国获得)、纤维素CM-23、CM-32、CM-52、hyper-D和partisphere(可从Whatmanpic,Brentford,UK获得)、AmberliteIRC76、IRC747、IRC748、GT73(可从TosohBioscienceGmbH,Stuttgart,德国获得)、CM1500、CM3000(可从BioChromLabs,TerreHaute,IN,美国获得)和CM-SepharoseTMFastFlow(可从GEHealthcare-AmershamBiosciencesEuropeGmbH,Freiburg,德国获得)。优选地,弱离子交换材料的带电荷取代基是至少约90%的羧酸基团,超过卯%羧酸基团或超过95%的羧酸基团。可在本申请中互换使用的术语"单步骤洗脱"和"单步骤梯度洗脱"是指这样的方法,其中例如引起洗脱(即从材料分离出结合的化合物)的物质浓度立即上升或下降,即在单步骤中直接从起始值/水平到终值/水平。"多肽"是天然或合成产生的,通过肽键连接的氨基酸残基的聚合物。少于大约20个氨基酸残基的多肽称为"肽"。"蛋白质"是包含一个或多个多肽链的大分子或超过100个氨基酸残基的多肽链。蛋白质也可包含非肽组分,例如糖基。糖类和其他非肽取代基可通过在其中产生蛋白质的细胞加入至该蛋白质,并且将随细胞类型的变化而变化。此处根据其氨基酸主链结构定义蛋白质;通常不指定取代基如糖基,但是它们是存在的。可在本申请中互换使用的术语"抗体"和"免疫球蛋白,,包含至少两条轻多肽链和两条重多肽链。各重多肽链和轻多肽链包含含有与抗原相互作用的结合结构域的可变区(通常为多肽链的氨基端部分)。每条重多肽链和轻多肽链也包含恒定区(通常为羧基端部分),其可介导抗体与宿主組织或因子(包括免疫系统的各种细胞、一些吞噬细胞和经典补体系统的第一组分(Clq))的结合。一般地,轻多肽链和重多肽链是完整链,各自基本上由可变区(即Vl或Vh)和完整的恒定区(即在轻多肽链的情况下为Cl或在重多肽链的情况下为CH1、CH2、CH3和任选的Ch4)組成。可将本发明抗体的可变区嫁接至其他同种型的恒定区。例如,可将编码l-同种型重链可变区的多核苷酸嫁接至编码另一重链类型(或亚类)恒定区的多核苷酸上。本文所用的术语"抗体"或"免疫球蛋白"是指由一个或多个基本上由抗体基因编码的多肽组成的蛋白质。公认的抗体基因包括不同的恒定区基因和多种抗体可变区基因。抗体可以以多种形式存在,包括,例如Fv、Fab和F(ab)2以及单链(例如Huston,J.S.等人,PNAS美国85(1988)5879-5883;Bird等人,Science242(1988)423-426;和,一般地,Hood等人,Immunology,BenjaminN.Y.,第2版(1984)以及Hunkapiller和Hood,Nature323(1986)15-16)。在一个实施方案中,本发明的抗体包含单克隆抗体及其片段,例如分离的重链或轻链,或只由恒定区及其片段组成的重链或轻链。一般的层析方法及其用途对于本领域技术人员来说是已知的。参见例如,Chromatography,第5版,A部分FundamentalsandTechniques,Heftmann,E.(编著),ElsevierSciencePublishingCompany,NewYork,(1992);AdvancedChromatographicandElectromigrationMethodsinBiosciences,Deyl,Z.(编著),ElsevierScienceBV,Amsterdam,TheNetherlands,(1998);ChromatographyToday,Poole,C.F.,和Poole,S.K"ElsevierSciencePublishingCompany,NewYork,(1991);Scopes,ProteinPurification:PrinciplesandPractice(1982);Sambrook,J.,等人(编著),MolecularCloning:ALaboratoryManual,第2版,ColdSpringHarborLaboratoryPress,ColdSpringHarbor,N.Y.,1989;或CurrentProtocolsinMolecularBiology,Ausubel,F.M"等人(编著),JohnWiley&Sons,Inc"NewYork。本发明提供了纯化免疫球蛋白的方法,其中所述方法包括下列步骤a)提供包含免疫球蛋白、緩冲物质和任选的盐的溶液;b)在免疫球蛋白借以与弱离子交换材料结合的条件下,将该溶液与该弱离子交换材料接触;c)在单步骤中通过使用包含緩沖物质和盐的溶液从弱离子交换材料回收免疫球蛋白。免疫球蛋白的纯化方法一般包括多步骤层析部分。在第1步骤中通过亲和层析(例如使用A蛋白的亲和层析)将非免疫球蛋白多肽和蛋白质与免疫球蛋白级分分离。然后可进行离子交换层析,以使各免疫球蛋白类型分离并除去已从第一柱共洗脱出的微量A蛋白。最后对于将免疫球蛋白单体从多聚体和相同种类的片段中分开来说,第3层析步骤是必需的。有时集合物的量很高(5%或更多),因而不可能在第3个纯化步骤中将其有效地分离,从而需要进一步的纯化步骤。对于特定免疫球蛋白的重组产物,用于分离不同免疫球蛋白类型的分离步骤不是必需的。因此重组产生的免疫球蛋白的总体纯化方法可减少至两个层析步骤。通常在低于各个免疫球蛋白等电点的pH值下,在阳离子交换材料上层析条件A蛋白洗脱物。在进行本发明时,在我们的实验室中可获得足够量的抗IL-1R抗体(WO2005/023872)和Herceptin⑧(抗HER2抗体(WO99/57134)),因此用这两种免疫球蛋白举例说明本发明。同样一般可使用免疫球蛋白实施本发明。该示例性描述只是作为例子而并非是对本发明的限制。提供这些示例性例子有助于理解本发明,所附权利要求中显示了本发明的真正范围。本发明描述了用于从集合物和片段分离免疫球蛋白单体以及除去其他多肽杂质的纯化方法。如可从实验可看到的,通过使用弱离子交换树脂,优选通过使用弱阳离子交换树脂实现该纯化。如通过对比强和弱离子交换材料所举例说明的,弱离子交换材料提供了免疫球蛋白的单体和集合物形式的分离(参见实施例1和2以及实施例9和12)。在本发明的一个实施方案中,緩冲材料(物质)的pH值是pH3.0至pH10.0,优选pH3.0至pH7.0,更优选pH4.0至pH6.0以及最优选pH4.5至pH5,5。在一个实施方案中,在单步骤中保持pH值恒定,即将其在单步骤中保持在相同的值。本发明的另一个优选方面是可将本发明的方法用于免疫球蛋白,所述免疫;求蛋白具有6.0或更高(pl>6.0)的等电点(pl),因此在始于pH6.0至pH14的pH范围内具有净正电荷。本发明的优选实施方案是IgG或IgE类型的免疫球蛋白的纯化。将弱阳离子交换材料用于本发明的优选实施方案中。如所举例的,优选以5mM至100mM之间的浓度范围使用緩沖材料。为了从弱离子交换材料回收结合的免疫球蛋白,可增加緩沖液/溶液的导电率。这可通过增加的緩冲盐浓度或通过向緩冲溶液中加入其他盐(所谓的洗脱盐)来实现。优选的洗脱盐是柠檬酸盐、氯化钠、硫酸钠、磷酸钠、氯化钾、硫酸钾、磷酸钾、其他柠檬酸盐和礴酸盐,以及这些成分的任何混合物。尤其优选的是柠檬酸钠、氯化钠、氯化钾及其混合物。引起洗脱的盐浓度优选在5mM和500mM之间,更优选在5mM和400mM之间,尤其优选在5mM和250mM之间。本发明的另一个优选实施方案是引起洗脱同时又作为緩沖物质的盐(尤其是用柠檬酸及其盐,或磷酸及其盐)的用途。本发明的方法优选是层析法或分批法,尤其优选的是包括分批洗脱的方法。本发明的另一个优选实施方案是为单步骤纯化方法的纯化。"单步骤"是指这样的方法,其中一个或多个条件,例如pH、离子强度、盐浓度和/或层析流动突然从起始值变成终值,即与线性改变相反,所述条件是步进改变的,即逐步的。本发明的另一优选实施方案是这样的方法,其包括在该方法的步骤a)之前通过A蛋白亲和层析纯化免疫球蛋白的额外步骤。本发明还进一步提供了用于确定在单步骤纯化法中从离子交换层析材料洗脱多肽的盐浓度的方法,其包括下列两个步骤a)步骤l包括下列亚步骤al)提供包含多肽、緩冲物质和任选的盐的溶液;a2)在多肽借以与离子交换材料结合的条件下,使包含该多肽的溶液的第1等分试样与该离子交换材料接触;a3)通过使用包含緩冲物质和盐的溶液从离子交换材料回收多肽,其中所述盐的浓度线性增加;a4)确定当多肽的第l级分开始从离子交换柱上洗脱时盐的起始浓度;b)步骤2包括下列亚步骤bl)在多肽借以与离子交换材料结合的条件下,使包含该多肽的溶液的第2等分试样与该离子交换材料接触;b2)通过使用三步洗脱方法从离子交换材料回收多肽,其中i)将第1洗脱步骤的盐浓度计算为下列的总和步骤a4)中确定的起始盐浓度与该盐分子式中指示的非氢单价阳离子总数的乘积,以及緩冲盐的浓度与该緩冲盐分子式中指示的非氢单价阳离子总数的乘积;ii)第2洗脱步骤的盐浓度是第1洗脱步骤的盐浓度与1.25和1.35之间的因子的乘积;iii)第3洗脱步骤的盐浓度是第1洗脱步骤的盐浓度与1.50和1.70之间的因子的乘积;其中如下确定步骤ii)和iii)的因子当10mM和40mM之间的起始浓度时,因子分别为1.35和1.70,当40mM和70mM之间的起始浓度时,因子分别是1.30和1.60,以及当超过70mM的起始浓度时,因子分别是1.25和1.50;b3)确定多肽从离子交换柱洗脱时处于步骤b2)的三步骤洗脱法中的哪个亚步骤,从而确定单步骤纯化法中用于从离子交换层析材料洗脱多肽的盐浓度。步骤b2)的因子定义了已通过实验确定的范围。这些值不是绝对值,其只是耙值。可维持10%的偏差。本发明描述了用于确定在单步骤纯化法中从离子交换层析材料洗脱多肽的盐浓度,以用于从其他蛋白质材料纯化多肽的方法。在从离子交换树脂开始洗脱多肽(优选免疫球蛋白)时的浓度提供了第二优化步骤b)(三步骤洗脱法)的基础。如下计算用于分步洗脱的近似緩冲液/盐浓度-第一洗脱步骤中的盐浓度等于下列的总和作为第一被加数,其为从离子交换树脂开始洗脱时的盐浓度(通过线性增加盐梯度确定的)与引起洗脱的盐的分子式中所示的非氢单价阳离子的总数的乘积,以及作为第二被加数,其为緩冲盐浓度与该緩冲盐分子式中所示的非氢单价阳离子总数的乘积;-第二洗脱步骤的盐浓度等于第一洗脱步骤的盐浓度与1.25和1.35之间的因子的乘积;-第三洗脱步骤的盐浓度等于第一洗脱步骤的盐浓度与1.50和1.70之间的因子的乘积。在浓度计算步骤中所包括的因子说明了浓度水平之间的差別并且其调整取决于起始浓度。当低起始浓度(即在IOmM和40mM之间)时,因子分别是1.35和1.70,当40mM和70mM之间的中等起始浓度时,因子分别是1.30和1.60,当超过70mM的高起始浓度时,因子分别是1.25和1.50。这些因子定义了已通过实验确定的范围。这些值不是绝对值而仅仅是革巴值。可保持10%的偏差。在计算中必须考虑緩沖盐,因为如实施例3中所述,在层析期间,緩冲盐浓度的改变可能可影响蛋白质从离子交换树脂的洗脱。如果在层析期间緩冲盐浓度保持恒定,或与引起洗脱的盐的起始浓度相比很小,那么它在计算中可被忽略以减少复杂度。在一个实施方案中,引起洗脱的盐不是緩沖盐,并且步骤b2i)的盐浓度是在从离子交换柱开始洗脱时的盐浓度与引起洗脱的盐的分子式中所示的非氢单价阳离子的总数的乘积,所述盐浓度是用在步骤a4)中线性增加的盐梯度所确定的。可基于实施例4使用抗IL-1R抗体举例说明计算。对于由10mM緩冲液浓度和由线性梯度提供的5mM组成的15mM柠檬酸钠的起始浓度(如实施例3中确定的)来说,如下计算所述3个步骤画步骤1的靶浓度经计算为30mM(5mM*2+10m!VP2)柠檬酸钠,具体地5mM(起始浓度)乘以2(柠檬酸是三价酸,用作二钠盐;因此在分子式中存在2个非氢单价阳离子)加上10mM(緩冲盐浓度)乘以2(柠檬酸是三价酸,用作二钠盐;因此在分子式中存在2个非氢单价阳离子)-步骤2的耙浓度经计算为40.5mM(30mM".35)柠檬酸钠,具体地将作为步骤1的浓度的30mM柠檬酸钠乘以1.35(起始浓度为15mM,因此选择l.35作为因子)画步骤3的靶浓度经计算为51mM(30mMn.70)柠檬酸钠具体地将作为步骤1的浓度的30mM柠檬酸钠乘以1.70(起始浓度为lSmM,因此选择l/70作为因子)如可从实验中看到的,在优选实施方案中通过使用弱离子交换材料(尤其优选弱阳离子交换材料)实现该纯化。本发明的优选实施方案是多肽为免疫球蛋白,尤其优选为IgG或IgE类型的免疫球蛋白。在本发明的一个实施方案中,緩冲材料/物质的pH值为pH3.0至pH10.0,优选为pH3.0至pH7.0,更优选为pH4.0至pH6.0,以及最优选为pH4.5至pH5.5。本发明的另一个优选方面是本发明的方法可用于这样的免疫球蛋白,其具有的等电点(pl)为6.0或更大(pl^6.0),并且因此在始于pH6.0至pH14的pH范围内具有净正电荷。优选将緩冲材料/物质用于例示的5mM和100mM之间的浓度范围。为了从离子交换材料回收结合的免疫球蛋白,可增加緩冲液/溶液的导电率。这可通过增加的緩冲盐浓度或向緩沖溶液中加入其他盐(所谓的洗脱盐)来实现。优选的洗脱盐是柠檬酸钠、氯化钠、硫酸钠、磷酸钠、氯化钾、硫酸钾、磷酸钾、其他柠檬酸盐和磷酸盐,以及这些成分的任何混合物。尤其优选的是柠檬酸钠、氯化钠、氯化钾及其任何混合物。引起洗脱的盐浓度优选在5mM和500mM之间,更优选在5mM和400mM之间,尤其优选在5mM和250mM之间。本发明的另一优选实施方案是引起洗脱同时又用作緩冲物质(尤其是用柠檬酸及其盐,或磷酸及其盐)的盐的用途。本发明的方法优选是层析法或分批法,特别优选的是包括分批洗脱的万法。本发明的另一个优选实施方案是为单步骤纯化方法的纯化。本发明的另一优选实施方案是这样的方法,其包括在方法的步骤a)之前增加通过A蛋白亲和层析纯化免疫球蛋白的额外步骤。提供下列实施例和图以帮助理解本发明,而本发明真正的范围示于所附的权利要求中。要理解可在所示的方法中产生改变而不背离本发明的精神。图1抗IL-1R抗体从强阳离子交换树脂SP-Sepharose的单步骤洗脱;受体抗体的单体和集合物形式未分开并且作为一个峰被洗脱。图2抗IL-1R抗体从弱阳离子交换树脂CM-Toyopearl的单步骤洗脱;受体抗体的单体和集合物形式被部分分开,并且作为一个包含免疫球蛋白单体形式的主峰,和作为包含免疫球蛋白单体形式和集合物形式以及A蛋白的第二峰洗脱。图3在使用柠檬酸钠,pH5.0的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Toyopearl的线性梯度洗脱;受体抗体的单体和集合物形式被部分分开,并且在15mM的柠檬酸钠起始浓度下作为主峰和作为第二峰洗脱,所述主峰包含免疫球蛋白的单体形式,所述第二峰包含免疫球蛋白的单体形式和集合物形式,以及A蛋白的混合物。将两种级分的SEC分析插入离子交换层析镨。在主峰中,集合物不存在。相反地,在笫二峰中存在免疫球蛋白的集合物形式。图4在使用柠檬酸钠、pH5.0的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Toyopearl的三步骤梯度洗脱;受体抗体的单体和集合物形式被部分分开,并且作为主峰和第二峰洗脱,所述主峰在34mM的柠檬酸钠浓度下包含免疫球蛋白的单体形式,所述第二峰在44mM的柠檬酸钠浓度下包含免疫球蛋白的单体和集合物形式以及A蛋白。图5在使用150mM氯化钠、pH5.5的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱;受体抗体的单体和集合物形式被分开,并且作为主峰和第二峰洗脱,所述主峰包含免疫球蛋白的单体形式,所述第二峰包含免疫球蛋白的单体和集合物形式以及A蛋白。图6aCM-S印harosefastflow上的洗脱^瞽;可鉴定两个峰对应于抗IL-1R抗体单体的主峰,和主要包含集合物和其他杂质的较小的第二峰。图6bSP-Sepharosefastflow上的抗IL-1R抗体的洗脱镨;可鉴定包含单体免疫球蛋白、集合物和在该柱子上未被分离的其他杂质的一个峰。图7a在使用100mM氯化钠、pH5.5的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱。图在使用150mM氯化钠、pH5.5的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱。图7c在使用200mM氯化钠、pH5.5的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱。图8a在使用150mM氯化钠、pH4.0的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱。图8b在使用150mM氯化钠、pH6.0的情况下,抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱。图9a抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤洗脱;起始材料的大小排阻层析(SEC)显示免疫球蛋白的单体和集合物形式。图9b抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤洗脱;受体抗体的单体和集合物形式被部分分开,并且作为包含免疫球蛋白单体形式的一个主峰和作为包含免疫球蛋白单体和集合物形式以及其他蛋白质的第二峰洗脱。在该图中显示了第一(主)峰的大小排阻层析。从SEC柱只洗脱出一个峰,该峰为单体免疫球蛋白。图9c抗IL-1R抗体从弱阳离子交换树脂CM-Sepharose的单步骤洗脱;受体抗体的单体和集合物形式被部分分开,并且作为包含免疫球蛋白单体形式的一个主峰和作为包含免疫球蛋白单体和集合物形式以及其他蛋白质的第二峰洗脱。在该图中显示了第二峰的大小排阻层析。在层析谱中可看到至少三个峰,相当于免疫球蛋白的单体和集合物形式和其他蛋白质。图10抗HER-2抗体从强阳离子交换树脂SP-Sepharose的单步骤洗脱;抗体的单体和集合物形式未被分开且作为一个峰洗脱。图11在使用在柠檬酸钠緩冲液中的氯化钠,pH5.5的情况下,抗HER-2抗体从弱阳离子交换树脂CM-Sepharose的线性梯度洗脱;抗体的单体和集合物形式被部分分开,并且在使用80mM氯化钠的起始浓度的情况下作为包含免疫球蛋白单体形式的一个主峰洗脱;单体和集合物形式与A蛋白一起作为主峰拖尾中的混合物被洗脱。图12在使用在柠檬酸钠緩冲液中的氯化钠,pH5.5的情况下,抗HER-2抗体从弱阳离子交换树脂CM-Sepharose的三步骤梯度洗脱;抗体的单体和集合物形式被分开,并且在氯化钠浓度为80mM的情况下作为包含免疫球蛋白单体形式的一个主峰,和在氯化钠浓度为100mM的情况下作为包含免疫球蛋白单体形式和集合物形式以及A蛋白的第二峰洗脱。图13在使用80mM氯化钠,pH5.5的情况下,抗HER-2抗体从弱阳离子交换树脂CM-Sepharose的单步骤梯度洗脱;洗脱的单体形式不含集合物形式;在至120mM的第二氯化钠步骤之后集合物形式作为第二确定峰被洗脱。图14在使用80mM氯化钠,pH5.5的情况下,抗HER-2抗体从强阳离子交换树脂SP-Sepharose的单步骤梯度洗脱;获得两个峰峰l只包含单体Herceptin,在至120mM的第二氯化钠步骤后洗脱的峰2包含大量的单体Herceptii^和集合物;以其单体形式存在的Herceptin⑧的产率低于60%。实验部分材料在第一步骤中用A蛋白亲和层析纯化IgG4免疫球蛋白抗IL-1R抗体(在下文中称为免疫球蛋白,WO2005/023872)。在酸性条件(IOmM柠檬酸钠緩冲液,pH值3.0士0.5)下进行从A蛋白柱的洗脱。在过滤步骤之前,用浓缩的例如1M、pH9.0的緩冲溶液(例如三-羟甲基-氨基-甲烷(TRIS)或磷酸盐緩冲液)将包含免疫球蛋白的级分的pH值调节至pH5.0。A蛋白洗脱物是具有5mg/ml和15mg/ml之间的蛋白质浓度的溶液,并且用柠檬酸钠进行緩冲。在下文中该材料被称为条件A蛋白洗脱物,将其制备上样到阳离子交换树脂上。实施例1在此比较实施例中,描述了使用强阳离子交换树脂和单步骤洗脱的离子交换层析。层析条件树脂SP-Sepharose流速160厘米/小时平衡10mM柠檬酸钠緩冲液,调节至pH5.0上样最大20g蛋白质/L凝胶基质洗涤步骤lOmM柠檬酸钠緩冲液,调节至pH5.0。洗脱具有100mM氯化钠的25mM柠檬酸钠緩冲液,调节至pH5.0将条件A蛋白洗脱物用于包含强阳离子交换树脂(SP-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤洗脱方法洗脱结合的免疫球蛋白,其中使pH值保持恒定,通过加入氯化钠改变(增加)导电率。在图1中,显示了抗IL-1R抗体在强阳离子交换树脂SP-Sepharose上的阳离子交换层析的洗脱层析语。洗脱是使用氯化钠的单步骤置换洗脱,不改变层析系统的pH值。单体和集合的免疫球蛋白分子未^1分开,因而使用该方法不能通过减少洗脱物中集合物含量(与上样材料相比)而获得纯化。实施例2在此实施例中,描述了使用弱阳离子交换树脂和单步骤洗脱的离子交换层析。为实现单体和集合物形式的免疫球蛋白的分离,使用弱阳离子交换树脂。通过使用此类树脂,通过分步洗脱的导电率增加,并伴随着树脂上特定pH的变化(即使当洗脱緩冲液的pH保持恒定亦如此)。这一效应有助于分辨例如单体免疫球蛋白和集合物形式的免疫球蛋白。此外,可将其他杂质,如痕量宿主细胞蛋白或A蛋白从单体平均级分中有效分离,而不显著损失产率。层析条件树脂CM-Toy叩earl流速160厘米/小时平衡10mM柠檬酸钠緩冲液,调节至pH5.0上样最大20g蛋白质/L凝胶基质洗涤10mM柠檬酸钠緩冲液,调节至pH5.0。洗脱具有100mM氯化钠的25mM柠檬酸钠緩冲液,调节至pH5.0将条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Toyopearl)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤洗脱方法洗脱结合的免疫球蛋白,其中使流动相中的pH值保持恒定,并通过加入氯化钠来改变导电率。在图2中,显示了使用与实施例1中相同的层析条件(但这次使用弱阳离子交换树脂CM-Toyopearl)的洗脱谱。此处出现作为主峰的肩峰的第二峰。这一分离行为与使用强阳离子交换树脂例如SP-Sepharose的不同。对应于主峰和对应于第二肩峰的级分分析显示大量的集合物存在于肩峰级分中。在主峰级分中没有检测到集合物(也参见图9a至c)。实施例3层析方法的优化-第一步线性浓度梯度。为优化弱阳离子交换材料上的阳离子交换层析,进行由三个步骤组成的优化方法第1步骤是使用緩冲盐(柠檬酸钠)的线性浓度梯度进行的层析。幸好可能保持緩冲盐浓度恒定并且可能混合成《1起免疫球蛋白洗脱的盐的线性增加的浓度。在两种情况下都使溶液的导电率增加而不改变流动相的pH值。适合用于洗脱的盐是例如氯化钠、硫酸钠、磷酸钠、氯化钾、硫酸钾、磷酸钾、柠檬酸及其盐,以及这些成分的混合物。按照将导电率设置在大约1milliS/厘米至大约50milliS/厘米的范围内,将使用的浓度调整为10mM至500mM。层析条件树脂CM-Toyopearl流速160厘米/小时平衡10mM柠檬酸钠緩沖液,调节至pH5.0上样最大20g蛋白质/L凝胶基质洗涤10mM柠檬酸钠緩冲液,调节至pH5.0。洗脱线性梯度;从调节至pH5.0的10mM柠檬酸钠緩冲液至调节至pH5.0的100mM杵檬酸钠緩冲液。将条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Toyopearl)的层析柱。在上样步骤后用平衡緩沖液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用线性梯度洗脱方法洗脱结合的免疫球蛋白,其中4吏流动相中的pH值保持恒定。将緩冲盐(柠檬酸钠)的浓度在40倍柱体积内从10mM线性提高至100mM。在达到柠檬酸钠终浓度后,继续进行另外40倍柱体积的洗脱。在图3中显示了抗IL-1R抗体的线性緩冲梯度洗脱的层析谱。免疫球蛋白的单体和集合物形式洗脱在半分离式峰(semi-detachedpeak)中,所述半分离式峰开始于15mM柠檬酸钠的浓度,并且终止于55mM柠檬酸钠的浓度。从阳离子交换树脂回收结合的免疫球蛋白依赖于所用溶液的导电率。因此,在回收步骤中必须考虑到存在于洗脱溶液中的緩冲盐的阳离子对免疫球蛋白从阳离子交换树脂上洗脱的影响。流动相的导电率和离子强度受到溶液中离子总数的影响。因此,在此必须考虑所用的緩冲盐和所用的引起洗脱的盐的一个分子式中非氬单价阳离子的数目。实施例4层析法的优化-笫二步骤三步骤浓度梯度洗脱。在从离子交换树脂开始洗脱免疫球蛋白时的浓度(如实施例3中确定的)提供了第二优化步骤(三步骤洗脱法)的基础。如下计算用于分步洗脱的近似緩冲液/盐浓度-第一洗脱步骤中的盐浓度等于下列的总和作为第一被加数,其为从离子交换树脂开始洗脱时的盐浓度(通过线性增加盐梯度确定的)与引起洗脱的盐的分子式中所示的非氢单价阳离子的总数的乘积,以及作为第二,皮加数,其为緩沖盐浓度与该緩冲盐分子式中所示的非氢单价阳离子总数的乘积;-第二洗脱步骤的盐浓度等于第一洗脱步骤的盐浓度与1.25和1.35之间的因子的乘积;画第三洗脱步骤的盐浓度等于第一洗脱步骤的盐浓度与1.50和1.70之间的因子的乘积。在浓度计算步骤中所包括的因子说明了浓度水平之间的差别并且其调整取决于起始浓度。当低起始浓度(即在IOmM和40mM之间)时,因子分别是1.35和1.70,当40mM和70mM之间的中等起始浓度时,因子分别是1.30和1.60,当超过70mM的高起始浓度时,因子分别是1.25和1.50。因子定义了已通过实验确定的范围。这些值不是绝对值而仅仅是革巴值。可保持10%的偏差。在计算中必须考虑緩沖盐,因为如实施例3中所迷,在层析期间,緩冲盐浓度的改变可影响蛋白质从离子交换树脂的洗脱。如果在层析期间緩冲盐浓度保持恒定,或与规定浓度相比很小(<15%盐浓度),那么在计算中可被忽略以减少复杂度。对于由10mM緩沖液浓度和由线性梯度提供的5mM组成的15mM柠檬酸钠的起始浓度(如实施例3中确定的)来说,如下计算所述3个步骤國步骤1的耙浓度经计算为30mM(5mM*2+10mM论2)柠檬酸钠,具体地5mM(起始浓度)乘以2(柠檬酸是三价酸,用作二钠盐;因此在分子式中存在2个非氢单价阳离子)加上10mM(緩冲盐浓度)乘以2(柠檬酸是三价酸,用作二钠盐;因此在分子式中存在2个非氢单价阳离子)-步骤2的靼浓度经计算为40.5mM(30m!VP1.35)柠檬酸钠,具体地将作为步骤1的浓度的30mM柠檬酸钠乘以1.35(起始浓度为15mM,因此选择1.35作为因子)-步骤3的耙浓度经计算为51mM(30mM*1.70)柠檬酸钠具体地将作为步骤1的浓度的30mM柠檬酸钠乘以1.70(起始浓度为lSmM,因此选择l/70作为因子)层析条件树脂CM-Toyopearl流速160厘米/小时平衡10mM柠檬酸钠緩冲液,调节至pH5.0上样最大20g蛋白质/L凝胶基质洗涤lOmM柠檬酸钠緩冲液,调节至pH5.0洗脱步骤l:34mM种檬酸钠緩冲液,调节至pH5.0步骤2:44mM柠檬酸钠緩冲液,调节至pH5.0步骤3:54mM柠檬酸钠緩沖液,调节至pH5.0将条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Toyopearl)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用分步梯度洗脱法(-其中将洗脱盐的浓度从起始值/水平逐步改变至终值/水平的方法)洗脱结合的免疫球蛋白,其中使流动相中的pH值保持恒定。在第1步骤中将緩冲盐(柠檬酸钠)的浓度从起始条件的10mM升高至34mM,在第二步骤中升高至44mM,并在终步骤中升高至54mM。在每次盐浓度增加后,在下一步骤之前将10倍柱体积的洗脱緩冲液通过柱子。在达到柠檬酸钠终浓度后,继续用额外的IO倍柱体积进行洗脱。在图4中,显示了抗IL-1R抗体的三步骤梯度洗脱的洗脱谱。单体免疫球蛋白洗脱物在第1步骤级分中,而集合物洗脱物在第2步骤级分中。实施例5层析法的优化-第三步使用氯化钠的单步骤洗脱优化方法的最终步骤是对单步骤洗脱法(=其中将洗脱盐的浓度立即从起始值改变至终值的方法)的改良。为此,将层析的pH从5.0升至5.5。由于A蛋白具有低于5.5的等电点,从而该pH的变化促进了与A蛋白的分离。另外将洗脱盐从另外用作緩冲盐的柠檬酸钠改变为氯化钠。在该层析进行后用级分进行其他分析(DNA、宿主细胞蛋白质、A蛋白含量和使用LC-MS的糖基化模式)。层析条件树脂CM-Sepharose流速160厘米/小时平衡10mM柠檬酸钠,调节至pH5.5上样最大20g蛋白质/L凝g质洗涤10mM柠檬酸钠,调节至pH5.5。洗脱具有150mM氯化钠的10mM柠檬酸钠,调节至pH5.5将条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤梯度洗脱法(-其中将洗脱盐的浓度立即从起始值改变至终值的方法)洗脱结合的免疫球蛋白,其中使流动相中的pH值保持恒定。使緩冲盐(柠檬酸钠)的浓度保持恒定并混合150mM氯化钠。在盐浓度增加后,将15倍柱体积的洗脱緩冲液通过柱子以洗脱结合的免疫球蛋白。在图5中显示了使用氯化钠的单步骤洗脱的洗脱层析谙。单步骤梯度层析实现了主要的单体级分和集合物/A蛋白级分的分离。单体免疫球蛋白的产率大于80。/。。甚至可能大于95%的产率。实施例6使用强阳离子交换树脂(SP-Sepharosefastflow)和弱阳离子交换树脂(CM-Sepharosefastflow)进行的分离之间的比较。进行强SP-S印harose快流交换剂和CM-Sepharose快流之间的比较。根据实施例5,一式两份进行实验(在图6a和b中只显示来自每个柱子的一次实验)并进行额外的分析(DNA、宿主细胞蛋白质、A蛋白含量和使用LC-MS的糖基化模式)。分析方法大小排阻层析树脂TSK3000(Tosohaas)柱子300x7.8mm流速0.5ml/分钟緩冲液包含250mM氯化钾的200mM辨酸钾,调节至pH7.0DNA-阈值-系统参见例如Merrick,H.和Hawlitschek,G.,BiotechForumEurope9(1992)398-403A蛋白ELISA:用来源于鸡的多克隆A蛋白-IgG包被微量滴定板的小孑L在结合后,通过用样品緩冲液洗涤来除去未反应的抗体。对于A蛋白的结合,向小孔中加入确定的样品体积。存在于样品中的A蛋白被鸡抗体结合且保留在平板的小孔中。在温育后,移出样品溶液并对小孔进行洗涤。为进行检测,随后加入来源于鸡的多克隆抗A蛋白-IgG-生物素缀合物和链霉抗生物素蛋白过氧化物酶缀合物。在进一步的洗涤步骤后,加入底物溶液,从而导致显色反应产物形成。颜色的强度与样品中A蛋白含量成比例。在确定的时间后,终止反应并测量吸光度。宿主细J包蛋白质(HCP)ELISA:用血清白蛋白和链霉抗生物素蛋白的混合物包被微量滴定板的小孔壁。将来源于山羊的抗HCP多克隆抗体结合至微量滴定板的孔壁。在洗涤步骤后,将微量滴定板的不同小孔与不同浓度的HCP校准序列和样品溶液一起温育。在温育后,通过用緩冲溶液洗涤来除去未结合的样品材料。为进行检测,用抗体过氧化物酶缀合物温育小孔以检测结合的宿主细胞蛋白质。通过与ABTS一起温育和在405nm处检测来检测被固定的过氧化物酶的活性。层析条件树脂CM-S印harose;SP-Sepharose流速160厘米/小时平衡10mM柠檬酸钠緩冲液,调节至pH5.5上样最大20g蛋白质/L凝胶基质洗涂10mM柠檬酸钠緩冲液,调节至pH5.5。洗脱具有150mM氯化钠的10mM柠檬酸钠緩冲液,调节至pH5.5在图6a和图6b中显示了弱阳离子交换树脂和强阳离子交换树脂的洗脱层析镨之间的比较。使用弱阳离子交换树脂(图6a),实现了单体抗IL-1R抗体与其他杂质的分离。对于用强阳离子交换树脂(图6b),在相同条件下可能不产生分离。收集并分析对应于峰的级分。列于表l中的分析结杲显示,使用弱阳离子交换树脂,可有效地将集合物和其他杂质从免疫球蛋白制品中除去。表1中的数据显示可能用弱阳离子交换树脂将单体抗IL-1R抗体与抗体的集合物形式分离。此外可除去DNA和A蛋白杂质。表l:洗脱物的分析比较了SP-Sepharose和CM-Sepharose,显示了两种不同分离的结果。<table>tableseeoriginaldocumentpage26</column></row><table>实施例7比较实施例-在不同导电率下的洗脱。层析条件树脂CM-Sepharose流速160厘米/小时平衡lOmM柠檬酸钠緩冲液,调节至pH5.5上样最大20g蛋白质/L凝胶基质洗涤lOmM柠檬酸钠緩冲液,调节至pH5.5洗脱具有100mM、150mM或200mM氯化钠的10mM柠檬酸钠緩冲液,调节至pH5.5将条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤梯度洗脱法洗脱结合的免疫球蛋白,其中使流动相中的pH值保持恒定。使緩冲盐(柠檬酸钠)的浓度保持恒定并在三个不同的柱中分別混合100mM、150mM和200mM的氯化钠。在盐浓度增加后,将15倍柱体积的洗脱緩沖液通过柱子以洗脱结合的免疫球蛋白。洗脱层析镨示于图7a至图7c。使用150mM氯化钠和200mM氯化钠作为洗脱盐浓度获得良好的分离。实施例8比较实施例-在不同pH值下的洗脱。层析条件树脂CM-Sepharose流速160厘米/小时平衡10mM柠檬酸钠緩冲液,调节至pH5.5上样最大20g蛋白质/L凝胶基质洗涤lOmM柠檬酸钠緩冲液,调节至pH5.5洗脱具有150mM氯化钠的10mM柠檬酸钠緩冲液,调节至pH4.0或6.0将条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤梯度洗脱法洗脱结合的免疫球蛋白,其中使流动相中的pH值分別保持pH4.0和pH6.0。使緩冲盐(柠檬酸钠)的浓度保持恒定,混合150mM的氯化钠。在盐浓度增加后,将15倍柱体积的洗脱緩冲液通过柱子以洗脱结合的免疫球蛋白。洗脱层析语示于图8a和图8b。在pH4.0,形成此免疫球蛋白的集合物的倾向增加。但CM-Sepharose能够在两个峰中分离该更高量的集合物。实施例9使用强阳离子交换树脂(SP-Sepharose)进行的单克隆抗HER-2抗体(WO99/57134)的层析分离在下面用Herceptii^(单克隆抗HER-2抗体)进一步举例说明本发明。在SP-Sepharose(强阳离子交换树脂)上使用阳离子交换层析进行Herceptii^的纯化。在本发明的标准条件(即使用例如氯化钠的分步洗脱)下,抗体的单体和集合物形式的分离未受影响(图10)。层析条件树脂SP-Sepharose流速160厘米/小时平衡25mM2-吗啉代乙磺酸,50mM氯化钠,调节至pH5.6上样最大20g蛋白质/L凝胶基质洗涤25mM2-吗啉代乙磺酸,50mM氯化钠,调节至pH5.6洗脱25mM2-吗啉代乙磺酸,95mM氯化钠,调节至pH5.6在第一步骤中使用A蛋白亲和层析纯化单克隆抗HER-2抗体(在下文中称为Herceptin)。在酸性条件(IOmM柠檬酸钠緩沖液,pH值3.0±0.5)下进行从A蛋白柱的洗脱。在过滤步骤之前,用浓缩的三-羟甲基-氨基-曱烷(TRIS)将包含抗体的级分的pH值调节至pH5.6。A蛋白洗脱物是蛋白质浓度在5mg/ml和15mg/ml之间的溶液,并且用种檬酸钠进行緩冲。将条件A蛋白洗脱物用于包含强阳离子交换树脂(SP-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤洗脱法洗脱结合的免疫球蛋白,其中使pH值保持恒定,通过(分步)增加氯化钠浓度来改变导电率。洗脱层析镨示于图10中。未实现抗体的单体和集合物形式的分离。实施例10层析法的优化-第一步线性浓度梯度为改良两种级分的分离,按照对于抗IL-1R抗体所描述的方法对分离条件进行优化。与抗IL-1R抗体的优化方法相反,使用(洗脱)盐即氯化钠的线性梯度取代緩冲物质的梯度。图11中显示了对应于优化方法的第1步骤的线性氯化钠梯度洗脱的层析镨。分析确证了主峰的尾部富集了抗体的集合物形式。层析条件树脂CM國Sepharose流速160厘米/小时平衡10mM柠檬酸钠緩冲液,调节至pH5.5上样最大20g蛋白质/L凝胶J^质洗涤10mM柠檬酸钠緩冲液,调节至pH5.5洗脱线性梯度;从调节至pH5.5的10mM柠檬酸钠緩冲液,至调节至pH5.5的包含400mM氯化钠的10mM柠檬酸钠緩冲液将实施例9中描述的条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(IO倍柱体积)以160厘米/小时的流速洗涤柱子。用线性梯度洗脱法洗脱结合的免疫球蛋白,其中使流动相中的pH值和緩冲盐的浓度保持恒定。使洗脱盐氯化钠的浓度在40倍柱体积内从0mM线性升至400mM。洗脱层析镨示于图11。用弱阳离子交换树脂取代强阳离子交换树脂导致作为第一主峰的肩峰的第二峰的分离。这一观察与在抗IL-1R抗体的情况中的观察相似。在80mM的氯化钠浓度处免疫球蛋白开始从柱上洗脱。实施例11层析法的优化-第二步三步骤浓度梯度洗脱免疫球蛋白开始洗脱时的起始浓度(如实施例10中确定的和从图11中所示的层析语推导的)为80mM氯化钠。对于三种浓度步骤的计算中,第二个优化步骤中可以忽略緩冲液浓度,因为其很低且在层析过程中保持恒定。氯化钠的起始浓度是80mM且氯化钠在其分子式中具有一个非氢阳离子。因此,用于三步骤洗脱的浓度经计算分别为80mM、100mM(=80mM乘以1.25)和120mM(=80mM乘以1.50)氯化钠。层析条件树月旨CM-Sepharose流速160厘米/小时平衡10mM柠檬酸钠緩沖液,调节至pH5.5上样最大20g蛋白质/L凝胶基质洗涤lOmM柠檬酸钠緩冲液,调节至pH5.5洗脱步骤1:具有80mM氯化钠的10mM柠檬酸钠緩冲液,调节至pH5.5步骤2:具有100mM氯化钠的10mM柠檬酸钠緩沖液,调节至pH5.5步骤3:具有120mM氯化钠的10mM柠檬酸钠緩冲液,调节至pH5.5将实施例9中描述的条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(IO倍柱体积)以160厘米/小时的流速洗涤柱子。用分步梯度洗脱法洗脱结合的免疫球蛋白,其中使流动相中的pH值和緩冲盐(柠檬酸钠)的浓度保持恒定。在第一步骤中将洗脱盐(氯化钠)的浓度从作为起始条件的0mM升高至80mM,在第二步骤中升高至100mM,以及在终步骤中升高至120mM。在每次盐浓度增加后,在下一浓度步骤之前将10倍柱体积的具有特定氯化钠浓度的洗脱緩冲液通过柱子。在达到柠檬酸钠终浓度后,继续用额外的IO倍柱体积进行洗脱。洗脱层析谞示于图12中。在三步骤洗脱法中,在使用80mM的氯化钠浓度的步骤中洗脱单体抗体。大小排阻分析确证只有单体抗体被洗脱。在将氯化钠浓度在第二步骤中增加至100mM后,洗脱集合物形式的抗体(图12)。实施例12层析法的优化-第三步使用氯化钠的单步洗脱层析条件树脂CM-Sepharose;SP-Sepharose流速160厘米/小时平衡10mM柠檬酸钠,调节至pH5.5上样最大20g蛋白质/L凝g质洗涤10mM柠檬酸钠,调节至pH5.5洗脱具有80mM氯化钠的10mM柠檬酸钠,调节至pH5.5将实施例9中描述的条件A蛋白洗脱物用于包含弱阳离子交换树脂(CM-Sepharose)的层析柱。在上样步骤后用平衡緩冲液(10倍柱体积)以160厘米/小时的流速洗涤柱子。用单步骤梯度洗脱法洗脱结合的免疫球蛋白,其中流动相中的pH值和緩沖盐浓度保持恒定。使緩冲盐(柠檬酸钠)的浓度保持恒定并混合80mM氯化钠。在盐浓度增加后,将15倍柱体积的具有氯化钠的洗脱緩冲液通过柱子以洗脱单体形式的结合的抗HER-2抗体。为验证抗体的单体和集合物形式的分离,进行氯化钠浓度达到120mM的第二步骤,该步骤不是制备单体抗体所必需的。在该第二次增加后,从柱子上洗脱抗体的集合物形式。洗脱层析谱示于图13。如果使用强阳离子交换树脂进行相同的方法,尽管可看到抗体的单体和集合物形式的分离,但观察到单体抗体的显著损失(与在弱阳离子交换柱上的95%和更多的产率相比,只有大约60%的产率)(图14)。将适合于在弱阳离子交换材料上进行分离的条件用于强阳离子交换树脂SP-S印harose是没有益处。虽然可分离两个级分,但单体抗体的产率减少至60%或甚至更低。表2:洗脱物的分析比较了SP-S印harose和CM-Sepharose,显示了两种不同分离的结果。<table>tableseeoriginaldocumentpage32</column></row><table>权利要求1.用于纯化免疫球蛋白的方法,其中所述方法包括a)提供包含免疫球蛋白、缓冲物质和任选的盐的溶液;b)在免疫球蛋白借以与弱离子交换材料结合的条件下,使溶液与所述弱离子交换材料接触;c)通过使用包含缓冲物质和盐的溶液,以单步骤从弱离子交换材料回收免疫球蛋白。2.根据权利要求l的方法,其特征在于弱离子交换材料是弱阳离子交换材料。3.根据权利要求1或2的方法,其特征在于緩沖物质是柠檬酸或其盐,或磷酸或其盐。4.根据权利要求1至3中任一项的方法,其特征在于所述方法是层析法或分批法。5.根据权利要求1至4中任一项的方法,其特征在于步骤c)中的盐选自氯化钠、硫酸钠、氯化钾、硫酸钾、柠檬酸盐、磷酸盐以及这些成分的混合物。6.根据权利要求1至5中任一项的方法,其特征在于免疫球蛋白M疫球蛋白G类或E类的成员。7.根据权利要求1至6中任一项的方法,其特征在于回收步骤c)中的溶液具有pH3.0至pH7.0的pH值。8.用于确定在单步骤纯化法中从离子交换层析材料洗脱多肽的盐浓度的方法,其包括以下两个步骤a)步骤l包括下列亚步骤al)提供包含多肽、緩沖物质和任选的盐的溶液;a2)在多肽借以与离子交换材料结合的条件下,使包含所述多肽的溶液的笫1等分试样与所述离子交换材料接触;a3)通过使用包含緩冲物质和盐的溶液从离子交换材料回收多肽,其中所述盐的浓度线性增加;a4)确定当多肽的第l级分开始从离子交换柱上洗脱时盐的起始浓度;b)步骤2包括下列亚步骤bl)在多肽借以与离子交换材料结合的条件下,使包含所述多肽的溶液的第2等分试样与所述离子交换材料接触;b2)通过使用三步洗脱方法从离子交换材料回收多肽,其中i)将第1洗脱步骤的盐浓度计算为下列的总和步骤a4)中确定的起始盐浓度与所述盐分子式中所示的非氢单价阳离子总数的乘积,以及緩沖盐的浓度与所述緩沖盐分子式中所示的非氢单价阳离子总数的乘积;ii)第2洗脱步骤的盐浓度是第1洗脱步骤的盐浓度与1.25和1.35之间的因子的乘积;iii)第3洗脱步骤的盐浓度是第1洗脱步骤的盐浓度与1.50和1.70之间的因子的乘积;其中如下确定步骤ii)和iii)的因子当10mM和40mM之间的起始浓度时,因子分别为1.35和1.70,当40mM和70mM之间的起始浓度时,因子分别为1.30和1.60,以及当超过70mM的起始浓度时,因子分别为1.25和1.50;b3)确定多肽从离子交换柱洗脱时处于步骤b2)的三步骤洗脱法中的哪个亚步骤,从而确定单步骤纯化法中用于从离子交换层析材料洗脱多肽的盐浓度。9.根据权利要求8的方法,其特征在于离子交换层析材料是弱离子交换层析材料。10.根据权利要求8或9的方法,其特征在于多肽是免疫球蛋白。全文摘要本发明描述了通过离子交换层析纯化免疫球蛋白的方法。该层析法使用弱离子交换树脂和单步骤洗脱法纯化免疫球蛋白。本发明另外描述了用于确定免疫球蛋白从离子交换树脂单步骤洗脱的盐浓度的方法。文档编号C07K16/00GK101180317SQ200680017966公开日2008年5月14日申请日期2006年5月23日优先权日2005年5月25日发明者B·科尔布,M·西博尔德,R·法尔肯施泰因申请人:弗·哈夫曼-拉罗切有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1