从丙烯装置增加乙烯和丙烯产量的方法与流程

文档序号:12070207阅读:387来源:国知局
从丙烯装置增加乙烯和丙烯产量的方法与流程

专用丙烯装置是众所周知的,例如UOP Oleflex和Lummus Catofin方法。使用常规分离装置的典型的专用丙烯装置的产物回收段包括互连的顺序单元操作,如下:a)急冷塔;b)压缩机;c)脱乙烷塔;d)C3分离器;和e)脱丙烷塔。此类装置倾向于具有高达2%的产物,两个和三个碳原子的烃(乙烷、乙烯、丙烷和丙烯)损失到较低价值的燃料气流中。由于这个典型的装置每年运行能力为550千吨(kta),因此两个和三个碳原子烃的损失接近10kta。按照目前此类烃的价格,燃料气的损失每年超过1000万美元。

通常从C3+材料实施C1和C2至单独流的分离。如Ethylene,H.Zimmerman等人在Ullman's Encyclopedia of Industrial Chemistry,Online ISBN:9783527306732中概述的,在烯烃装置的烃分馏段中有低温脱甲烷塔和脱乙烷塔和脱丙烷塔系统的普遍使用。对于脱甲烷塔,进料温度可以变化,但通常为约-100℃,压力为400-500psia。塔顶残余产物含有氢气、CO、甲烷和少量的C2。

脱乙烷塔在本领域中也是已知的。在前端脱甲烷塔分馏列中,脱甲烷塔通常后接脱乙烷塔。脱乙烷塔将具有用于回流的浓缩C2流。例如,美国专利5421167公开了一种增强的烯烃回收方法,其中注入液烃流以改进对丙烯制冷条件的冷凝。美国专利5152148公开了一种丙烷去除方法,其中脱丙烷塔底部用于回流脱乙烷塔以提高丙烷回收率。美国专利申请公开20020198430公开了一种用于纯化乙烯的方法,其提供提高的回收率,但也使用脱甲烷塔和脱乙烷塔。PCT公开WO2008005518公开了一种丙烷回收方法,其中将高压进料气体冷却并膨胀以将进料气体冷凝成富含C2+的液体,其用于脱乙烷塔回流。

存在几种用于分离烃的吸收方法。例如,美国专利5414168描述了回收纯化氢气的方法;美国专利申请公开20020174679公开了一种乙烯装置制冷系统;美国专利6712880描述了一种利用高压吸收塔的低温方法。

还有几种从液化天然气(LNG)中分离气体的方法,特别是用于从天然气中分离天然气液体(NGL,C2和更高级组分)。例如,美国专利6604380和美国专利8434325描述了用于LNG加工的方法,并教导从LNG流中回收NGL。美国专利申请公开20060042312描述了一种通过使用热交换器,分馏塔从LNG提取C2+用于从LNG中提取乙烷和更重质烃的方法,并且专注于减少压缩需求的那些加工步骤。美国专利申请公开20080000265公开了一种通过分离进料并允许一些进料和一些进入分馏器的加热部分从LNG回收NGL的方法。美国专利申请公开20080083246教导了使用涡轮压缩机/膨胀机的热集成方法,其使用气体调节方法从LNG回收C2+。

为了回收NGL,典型的气体装置将包括脱甲烷塔和脱乙烷塔。这将使气体分馏成残余气流,富含C2的流和富含C3的流(脱乙烷塔的底部)。美国专利7051553教导了用于NGL回收的一般两柱法。两柱NGL回收装置包括吸收器和蒸馏塔,其中吸收器接收两个冷却回流流,其中一个回流流包含NGL的蒸汽部分,并且其中其他回流流包含由蒸馏塔的塔顶提供的贫回流。这些类型的配置用于升级现有的NGL装置,并且通常表现出至少99%的C3回收率和高C2(90%)回收率。其他实例包括US5566554、US4714487、US4456461、US4270940、US4454460、WO2009140070、WO2009103715、WO2008005518、WO2006123240、AU2002338248、WO2006031362/AU2005285436、WO2006049515和CA2593886。

还已知使用涡轮膨胀机并且示出使用涡轮膨胀机作为低温系统的一部分以从燃料气中单独回收C2和C3。通常情况下,分离依赖于脱甲烷塔,如在例如如下中所公开的:WO2012087740、US20110005273、US5771712、US5890378、US5953935、US6311516、US4869740、US4895584、和WO2013056267、WO2012177749、WO2012087740、WO2004065868、AU2004319953、WO2005114076/AU2004319953、AU2005241455、WO2006036441、WO2006039172、WO2007008254、CA1069817、CA2511403、CA2549942、CA2662803、CA2667429、GB1475475、GB2102931、GB2324536、US42722969、US20130074542和WO1998050742。

存在若干改进的制冷方法,其不同于前述公开内容,因为它们不使用浓缩的C2流来精馏即将到来的蒸汽以允许分离成燃料气和C2的蒸汽。此类方法包括在CA2793469、US3568460、US5361589和US20060021377中公开的那些。以相同的方式不同在于强调提取和尾气处理的其他实例包括US4556404、AU2005276970、US20120151962和US20060021914。还有其他需要化学反应的方法,包括例如,那些在EP825245、US39229924、US3929925、US4182925、US20040176646和US20050107650中描述的。

US 5,551,972(Wood等人)公开了一种用于分离进料气流的吸收方法,所述进料气流具有范围为挥发性(轻)组分、中等挥发性组分和最不易挥发(重)组分的挥发性谱的组分。所述方法包括三个顺序步骤。步骤一使进料气流与内部产生的液体贫溶剂流在吸收器中接触,以产生包含在进料流中主要由轻组分组成的轻质产物气流和在进料流中发现的含有大部分中等和重组分的富溶剂流。在所述步骤中可以使用吸收塔,其中进料气体在塔中向上流动并与沿塔向下流动的吸收溶剂逆流接触。步骤二在减压下在闪蒸区中闪蒸富溶剂流,以产生主要由中等组分和贫溶剂流组成的中间产物气流。在所述步骤二中可以使用串联连接的一个或多个闪蒸罐并且在没有加入外部加热的情况下在减压下操作。步骤三将贫溶剂流从闪蒸区输送到吸收器。贫溶剂流主要由进料流的重组分组成。

US5551972教导了一种用于从天然气流分离氮和/或从炼油厂和/或石化气流回收氢气的吸收方法。这教导了使用内部产生的溶剂。US5551972教导了通过闪蒸来自吸收器底部流的轻组分产生用于吸收的溶剂,并由进料流中的重组分组成。所述方法将进料流中较重的进料组分返回到脱乙烷塔,并通过部分冷凝填充精馏器的塔顶从进料流中较轻组分产生用于回流的大部分C2流。所述大部分C2流是中等流至C1-和C3+流,并不是较重的组分。此外,US5551972的方法通过从底部产物闪蒸产生内部溶剂。上述发明冷却和部分冷凝精馏器的塔顶(轻馏分),以产生大部分C2流作为精馏器的回流流。

US 5,771,712(Campbell等人)教导了从烃气流中回收丙烷、丙烯和较重烃组分的方法。所述方法开始于冷却和/或膨胀烃气流以使其部分冷凝,然后分离部分冷凝的流以提供第一蒸汽流。所述方法继续通过将第一蒸汽流引入接触装置以形成第三蒸汽流和含三个碳原子(C3)的液流。接下来,含C3的流通过蒸馏塔,以从所述流中分离含有大部分含C3流的C3组分和较重烃组分的第二蒸汽流。第二蒸汽流与第三蒸汽流进入热交换关系,以冷却第二蒸汽流并至少部分地冷凝它并形成冷凝流。至少一部分冷凝流传到并通过接触设备,以使第一蒸汽流与进入蒸馏塔作为其顶部进料的冷凝流的其余部分紧密接触。

图1复制来自Cambell等人的图4(US 5771712)。在图1所示的过程中,进料气体在80℉和580psia的压力下作为流31进入。进料流31在交换器10中通过在-88℉下与冷残余气体(流34a),在-92℉下与分离器液体(流33a),和在-107℉下与分离器/吸收器液体(流35a)进行热交换而被冷却。冷却的流31a在-78℉和570psia下进入分离器11,其中蒸汽(流32)与冷凝的液体(流33)分离。

来自分离器11的蒸汽(流32)进入做功膨胀机13,在所述做功膨胀机13中,从高压进料的所述部分提取机械能。机器13基本上等熵地将蒸汽从约570psia的压力膨胀到约396psia的压力(分离器/吸收器15的操作压力),其中做功膨胀将膨胀流32a冷却到约-107℃的温度。膨胀和部分冷凝的流32a进入分离器/吸收器15的下段。膨胀的流的液体部分与从吸收段向下落下的液体混合,并且合并的液体流35在-108℉在分离器/吸收器15的底部离开。膨胀流的蒸汽部分通过吸收段向上升起并与向下落下的冷却液接触以冷凝和吸收丙烷和较重组分。

来自分离器/吸收器15的底部的合并的液体流35通过泵16被送到热交换器10,在那里它(流35a)被加热,因为它提供了如前所述的进入进料气体的冷却。将合并的液体流加热至-46℉,在其作为中间塔进料供给脱乙烷塔17之前,部分蒸发流35b。通过膨胀阀12分离器液体(流33)闪蒸膨胀至脱乙烷塔17的稍高于411psia操作压力,在如前所述的对进入的进料气体提供冷却前将流33冷却至-92℉(流33a)。现在为70℉的流33b然后在较低中间塔进料点处进入脱乙烷塔17。在脱乙烷塔中,流35b和33b汽提出其甲烷和C2组分。所得液体产物流37在198℉离开脱乙烷塔的底部,并在流入存储之前在热交换器19中冷却至110℉(流37a)。

脱乙烷塔17中的操作压力保持略高于分离器/吸收器15的操作压力。这允许脱乙烷塔塔顶蒸汽(流36)加压流过热交换器20,并从那里进入分离器/吸收器15的上段。在热交换器20中,-25℉的脱乙烷塔塔顶馏出物与来自分离器/吸收器15的塔顶馏出物(流34)进行热交换,将流冷却至-112℉(流36a)并部分冷凝它。然后将部分冷凝的流供应到分离器/吸收塔15中的分离器段,其中冷凝的液体与未冷凝的蒸汽分离。未冷凝的蒸汽与从下吸收段上升的蒸汽结合以形成离开分离器/吸收器15的上部区域的冷蒸馏流34。冷凝的液体被分成两部分。一部分,流40,被引送入分离器/吸收器15的下吸收段作为冷却液与通过吸收段向上升起的蒸汽接触。另一部分,流39,通过泵21作为回流供给脱乙烷塔17,回流流39a在-112℉下流向脱乙烷塔17的顶部进料点。

在-113℉离开分离器/吸收器15顶部的蒸馏流是冷残余气流34。残余气流在热交换器20中与脱乙烷塔塔顶流36逆流通过,并当它提供脱乙烷塔塔顶流的冷却和部分冷凝时被加热至-88℉(流34a)。当残余气体在热交换器10中与进入的进料气体逆流通过时被进一步加热至75℉(流34b)。然后将残余气体在两个阶段中再压缩。第一阶段是由膨胀机13驱动的压缩机14。第二阶段是由补充动力源驱动的压缩机22,其将残余气体(流34d)压缩到销售管线压力。在排放冷却器23中冷却后,残余气体产物(流34e)在110℉和613psia下流到销售气体管线。

US5771712教导了一种用于从进料烃气体回收C3+组分并产生冷却的含C3的液体流的方法。US5771712教导了进料入口气体,仅两种产物,仅残余气体从脱乙烷塔的塔顶产生。US5771712教导了冷却和部分冷凝入口气体并将部分冷凝的流进料到吸收塔,其中蒸汽向上通过塔接触冷的下降液体。然而,US5771712教导了使用相同的液体组合物(从相同的流中提取)用于脱乙烷塔顶部的回流,作为在吸收塔中使用的冷却液。

US 5,890,378(Rambo等人)涉及从烃气流回收乙烷、乙烯、丙烷、丙烯和较重烃组分的方法。所述方法通过将烃气流分成第一流和第二流开始,后者被冷却并膨胀到较低的压力并供应到接触装置。将第一流冷却至其基本上全部冷凝,膨胀至较低压力,然后用于冷却来自蒸馏塔的较热的蒸馏流,以至少部分冷凝蒸馏流。至少一部分部分冷凝的蒸馏流被引导到接触设备以紧密接触膨胀的第二流,并产生从接触装置分离的蒸汽和液体的组合,其中液体被供应到蒸馏塔。

US5890378教导了从烃气流中回收C2和较重烃到单一流中的方法。所述参考文献仅教导了从入口气流产生两个产物流,而不是本发明中的三个。所述专利教导了塔顶脱乙烷塔流的冷却和部分冷凝,但是将所述部分冷凝的脱乙烷塔塔顶导向吸收塔并加热来自吸收器的塔顶蒸汽。所述参考文献教导了部分冷凝脱乙烷塔塔顶和将部分冷凝的液体送至吸收器的上段。

US 6,560,989(Roberts等人)涉及从含有氢气和一种或多种烃的进料气体中回收氢气和一种或多种具有一个或多个碳原子的烃的方法,所述方法包括冷却和部分冷凝原料气体以提供部分冷凝的进料;分离部分冷凝的进料以提供富含一种或多种烃的第一液体流和富含氢气的第一蒸汽流;进一步冷却和部分冷凝第一蒸汽流以提供中间两相流;并分离所述中间两相流以产生进一步富含氢气的流和贫氢的残余烃流。一些或全部冷却通过与在闭环气体膨胀器制冷循环中产生的冷气体制冷剂的间接热交换提供。

本文的图2复制来自Roberts等人的图1。预处理的进料气体通常在100-1000psia的压力和环境温度下在管线101中提供,并且含有氢气,一种或多种选自甲烷、乙烷、乙烯、丙烷、丙烯和可选的一氧化碳、氮气和/或C4+烃的轻质烃。在上游预处理步骤(未示出)中预处理进料气体以除去在下游处理中可能冻析的水和其他组分。进料气体在进料冷却器或第一热交换区103中通过与若干冷工艺流(下文描述)的间接热交换而被冷却和部分冷凝,以在管线105中产生部分冷凝的进料。部分冷凝的进料在汽提塔进料罐107中分离以提供管线109中富含烃的第一液体流和管线111中富含氢气的第一蒸汽流。

第一液体流可以通过阀113降低压力并引入可选的汽提塔115中,其中轻质烃、残余氢气和其他轻质气体被汽提并在塔顶管线117中取出。较重烃馏分作为液体从汽提塔的底部取出,并含有C2+产物组分如乙烯和/或丙烯。一部分汽提塔塔底物流在热交换器121中蒸发并作为滚沸或汽提蒸汽返回塔中。汽提塔通常在50-400psia下在-200℉至+50℉的温度范围内操作。

管线111中富含氢的第一蒸汽流在氢回收热交换器或第二热交换区域123中通过与冷工艺流(随后定义)的间接热交换而被冷却和部分冷凝,以在管线125中产生通常为-200℉至-300℉的部分冷凝的流。将部分冷凝的流在氢回收罐127中分离以在管线129中产生氢产物流和在管线131中的贫氢残余烃流。将管线129中的氢产物流在第二热交换区123中通过间接热交换加热,以为进入管线111的流提供一部分冷却,然后在第一热交换区103中通过间接热交换进一步加热,以为进入管线101中的进料气体提供一部分冷却。管线130中的最终氢气产物通常为环境温度和管线101中进料气体压力以下15至30psi。如果需要,通常含有80至97摩尔百分比氢气的氢气产物流可以进一步通过变压吸附或膜方法纯化。

可以通过阀133将管线131中的贫氢残余烃流减压,并且在第二热交换区123中通过间接热交换被加热,以为进入管线111中的流提供另外部分的冷却。管线135中加热的流可以与管线117中的汽提气流结合,在这种情况下,管线137中结合的流在第一热交换区103中通过间接热交换进一步被加热,以为进入管线101的进料气体提供一部分冷却。加热的残余氢气-烃流通过管线138取出并可用作燃料。

所述实施例的制冷的主要部分由闭环气体膨胀器制冷系统提供。制冷剂气体例如氮气在管线139中从第一热交换区域103取出,并在制冷剂压缩机141中压缩到600至1500psia。可以使用其它制冷剂,诸如例如甲烷、氮气和甲烷的混合物,或空气。压缩的制冷剂气体在第一热交换区103的通道144中冷却,以提供冷却的压缩制冷剂气体,其被分成在管线145中取出的第一制冷剂气流和在热交换器通道147中的第二制冷剂气流。第二制冷剂气流在热交换器通道147中进一步冷却,以在管线149中提供冷却的制冷剂气体。

管线145中的第一制冷剂气流在加热膨胀器150中作功膨胀,以在管线151中提供冷却的做功膨胀的制冷剂气流。管线149中进一步冷却的制冷剂气体在冷膨胀器153中作功膨胀以在管线155中提供冷却的减压制冷剂气流。或者,代替做功膨胀,管线149中的气体可以减压并通过焦耳-汤姆逊膨胀穿过节流阀(未示出)冷却。管线155中冷却的减压制冷剂气流在第二热交换区123中被加热,以提供进入管线111的流的至少一部分的冷却,从而在管线157中提供加热的减压制冷剂气流。管线157中加热的减压制冷剂气流和管线151中加热的做功膨胀的制冷剂气流可以合并,在这种情况下,管线159中合并的流在第一热交换区103中通过间接热交换加热,以提供用于通过管线101进入的进料气体以及用于流过通道144和147的制冷剂的一部分的冷却。这提供了管线139中加热的减压制冷剂气流,其是上述的制冷剂气体。

在汽提塔115中,管线109中的第一液体流被分离以产生在管线117中轻的塔顶气流和在管线119中富含C2+或C3+的烃产物流,如果需要,其可以在另外的塔中进一步分离和纯化。来自汽提塔的管线117中的轻塔顶气流可以单独回收,或者与来自氢气回收热交换器123的管线135中的贫氢残余烃流合并,并在进料冷却器103中再加热,以作为管线138中的燃料流回收。可选地,可以使用回流脱甲烷塔或脱乙烷塔代替汽提塔115以增加所需烃产物的回收。或者,管线109中的第一液体进料流或者作为液体或蒸汽产物可以直接从进料罐107回收而不进行汽提或蒸馏,如果需要其在进料冷却器103中可以再被加热,以恢复制冷。

可以使用多个部分冷凝阶段以向塔提供多个进料流或产生单独的烃产物。例如,富含C3的烃产物可以从较热的部分冷凝阶段产生,而富含C2的烃可以从较冷的部分冷凝阶段产生。可以加入汽提塔或回流蒸馏塔以从一种或两种烃产物中除去较轻的杂质。

或者,如果进料气体贫含C2和较重烃,或者如果不需要C2+烃产物,则仅回收甲烷和升级的富含甲烷燃料气。参考图1,升级的富含甲烷燃料气产物可以是管线131中的贫氢烃流,或者如果使用汽提塔115则为管线117中的汽提气流,或者如在管线137中的两者的结合。如果使用汽提塔,管线119中的底部液体流可以在进料冷却器103中蒸发以在其中提供制冷。

US6560989教导了从含有氢气、甲烷、C2、C3和可选的一氧化碳、氮气和C4+烃的烃进料气体中回收氢气和一种或多种烃流的方法。所述参考文献教导了将进料气体部分冷凝成第一残余蒸汽和第一残余液体,分离液体,并将其进料到汽提塔的顶部。US6560989教导了从汽提塔的塔顶气体到产物燃料气流的方向,并且没有教导冷却和部分冷凝所述流以从如本发明中其自身的部分冷凝产生液体回流。所述参考文献还教导了将第一残余蒸汽引导至进一步冷却和部分冷凝,然后将其传递至随后的氢气回收罐,产生第二残余液体和第二残余蒸汽。将来自所述步骤的两种产物(燃料气和氢气流)引导至产物回收,并且所述液体不用作回流至精馏塔。

如本文所用,术语“C1组分”是指甲烷以及较轻气体如氢气和氮气。

如本文所用,术语“C2组分”是指乙烷和乙烯。

如本文所用,术语“C3组分”是指丙烷和丙烯。

在一些方面,本发明是从专用丙烯装置回收C2和C3组分的方法,所述方法包含:(a)将脱乙烷塔塔顶轻质组分和裂化气体蒸汽冷却到至少80wt%的蒸汽被冷凝的温度以形成第一部分冷凝物以及第一残余蒸汽;(b)将第一部分冷凝物送到精馏器的底部部分;(c)使第一残余蒸汽向上通过精馏器的填料同时使第一残余蒸汽与包含75至95wt%C2组分,5至25wt%C1组分和0至5wt%C3组分的逆流流接触,由此产生包含20至45wt%C1组分,40至60wt%C2组分和0至5wt%C3组分的精馏器塔顶流和精馏器液体底部流;(d)将精馏器液体底部流送至脱乙烷塔;(e)在一个或多个热交换器阶段中部分冷凝精馏器塔顶流以冷却精馏器塔顶流,从而产生第二部分冷凝物,具有包含小于5wt%C2组分的第二残余蒸汽和包含75至95wt%C2组分的第一残余液体;(f)将合并的第二残余蒸汽和第一残余液体送到分离罐,以将第二残余蒸汽与第一残余液体分离;(g)可选地,使用第二残余蒸汽作为燃料气和/或作为在一个或多个热交换器阶段中的冷却液体;(h)将第二残余液体的第一部分送到精馏器中填料的顶部部分,以用作逆流流;和(i)将第二残余液体的第二部分送到产物回收系统。

在专用丙烯装置的一个实施例中,脱乙烷塔塔顶蒸汽的温度为30至50℃。为了冷凝至少80重量%(wt%)的此类脱乙烷塔顶轻质蒸汽和裂化气体蒸汽,在第一步骤中将蒸汽冷却至-40至-60℃。在另一方面,将脱乙烷塔塔顶蒸汽冷却至-48℃。脱乙烷塔塔顶轻质蒸汽和裂化气体蒸汽优选通过将其传送通过三个热交换级而冷却。

在一个方面,所述方法的第一步骤包括将合并的脱乙烷塔塔顶轻质蒸汽和裂化气体蒸汽冷却到至少80重量%(wt%)的脱乙烷塔塔顶轻质蒸汽和裂化气体蒸汽被冷凝的温度以形成部分冷凝物以及第一残余蒸汽。本文包括和公开了至少80wt%的所有单个值和子范围。例如,被冷凝的脱乙烷塔塔顶轻质蒸汽和裂化气体蒸汽的部分可以是至少80wt%,或在替代方案中,至少84wt%,或在替代方案中,至少88重量%,或在替代方案中,至少90wt%,或在替代方案中,至少92wt%,或在替代方案中,至少94wt%,或在替代方案中,至少96wt%。

在一个方面,所述方法的第二步骤是将部分冷凝物送至精馏器的底部部分。在所公开的方法中有用的精馏器是填充床精馏器。填充床精馏器是本领域已知的,并且可以使用任何此类填充床精馏器。精馏器可以用任何典型的填充塔材料填充,例如环,鞍形或规整填料。或者,精馏器可以是具有泡罩、筛或阀塔盘的塔盘型塔。

在一个方面,所述方法的第三步骤是使第一残余蒸汽向上通过精馏器的填料,同时使第一残余蒸汽与逆流流接触,所述逆流流包含75至95wt%C2组分、5至25wt%C1组分和0至5wt%C3组分。本文公开并包括逆流流中75至95wt%C2组分的所有单个值和子范围。例如,逆流流可以包含75至95wt%C2组分,或在替代方案中,75至90wt%C2组分,或在替代方案中,80至95wt%C2组分。本文公开并包括了逆流流中5至25wt%C1组分的所有单个值和子范围。例如,C1组分的量可以为5至25wt%,或在替代方案中,5至20wt%,或在替代方案中,10至25wt%。本文公开并包括逆流流中0至5wt%C3组分的所有单个值和子范围。例如,逆流流中C3组分的量可以为0至5wt%,或在替代方案中,0至3wt%。

当使第一残余蒸汽向上通过精馏器的填料时,同时使第一残余蒸汽与逆流流接触,产生精馏器塔顶流和精馏器液体底部流。精馏器塔顶流包含20至45wt%C1组分,40至60wt%C2组分和0至5wt%C3组分。本文包括并公开了20至45wt%C1组分的所有单个值和子范围。例如,C1组分在精馏器塔顶流中的量可以为20至45wt%,或在替代方案中,25至45wt%,或在替代方案中,30至45wt%。本文包括并公开了40至60wt%C2组分的所有单个值和子范围。例如,C2组分的量可以为40至60wt%,或在替代方案中,45至60wt%,或在替代方案中,50至60wt%。

很容易理解,第二和第三步骤通常在专用丙烯装置中同时进行。然而,如果第二和第三步骤没有同时完成,那么它们完成的顺序不是所公开方法的组成方面。也就是说,第二步骤可以在第三步骤之前操作,或者反之亦然。

在一个方面,所述方法的第四步骤是将精馏器液体底部流送至脱乙烷塔。在一个特定方面,精馏器液体底部流在脱乙烷塔中用作回流流。

在一个方面,所述方法的第五步骤是在一个或多个热交换器阶段中部分冷凝精馏器塔顶流以冷却精馏器塔顶流,从而产生具有第二残余蒸汽和第一残余液体的部分冷凝物,第二残余蒸汽包含小于5wt%C2组分,第一残余蒸汽包含75至95%C2组分。本文包括并公开了来自第二残余蒸汽中的小于5wt%C2组分的所有单个值和子范围。例如,第二残余蒸汽中C2组分的上限可以为5wt%,或在替代方案中为4wt%,或在替代方案中为3wt%,或在替代方案中为2wt%,或在替代方案中为1wt%。本文中第一残余液体中的75至95%C2组分的所有单个值和子范围。例如,第一残余液体中C2组分的量可以为75至95wt%,或者在替代方案中为80至95wt%。

在一个方面,一个或多个热交换器阶段将精馏器塔顶流冷却至小于或等于-140℃的温度。本文包括并公开了小于或等于-140℃的所有单个值和子范围。例如,可将精馏器塔顶流冷却至小于或等于-140℃的温度,或在替代方案中,小于或等于-150℃的温度,或在替代方案中,小于或等于-160℃的温度。

很容易理解,第四和第五步骤通常在专用丙烯装置中同时进行。然而,如果第四和第五步骤没有完整完成,那么它们完成的顺序不是所公开方法的一个组成方面。也就是说,第四步骤可以在第五步骤之前操作,或者反之亦然。

在一个方面,所述方法的第六步骤是将结合的第二残余蒸汽和第一残余液体送到分离罐,以将第二残余蒸汽与第一残余液体分离。在特定方面,分离之后的第二残余蒸汽在一个或多个热交换器阶段中用作燃料气和/或冷却液体。

在一个方面,所述方法的第七步骤是将第一残余液体的第一部分送到填充床精馏器中填料的顶部部分以用作逆流流。

在一个方面,所述方法的第八步骤是将第二残余液体的第二部分送到产物回收系统。在一个特定方面,将第二残余液体的第二部分送入专用乙烯装置的产物回收系统中。在一个方面,专用乙烯装置可以位于专用丙烯生产系统附近。

在一个方面,第二残余蒸汽包含至少95wt%C1组分。本文包括并公开了至少95wt%C1组分的所有单个值和子范围。例如,第二残余蒸汽中C1组分的量可以为至少95wt%,或在替代方案中,至少97wt%,或在替代方案中,至少99wt%。

在一个方面,第二残余蒸汽首先在一个或多个热交换器阶段中用作冷却流体,并且被加热至-50至-90℃的温度,然后随后膨胀并冷却至-110℃至-180℃,然后在一个或多个热交换器阶段中再次用作冷却液。膨胀和冷却的方法是已知的,例如通过使用涡轮膨胀器或Joule-Thompson阀。本文包括并公开了作为第二残余蒸汽被加热的温度的-50至-90℃的所有单个值和子范围。例如,第二残余蒸汽被加热的温度可以是从-90℃、-80℃、-70℃或-60℃的下限到-85℃、-75℃、-65℃、-55℃或-50℃的上限。例如,第二残余蒸汽被加热的温度可以为-50至-90℃,或在替代方案中为-50至-75℃,或在替代方案中为-75至-90℃或在替代方案中为-60至-80℃,或在替代方案中为-65至-85℃。本文包括并公开了作为第二残余蒸汽随后被冷却的温度-110至-180℃的所有单个值和子范围。例如,第二残余蒸汽随后被冷却的温度可以是从-180℃、-170℃、-160℃、-150℃、-140℃、-130℃或-120℃的下限到-110℃、-120、-130、-140、-150、-160、-170或-175℃的上限。例如,第二残余蒸汽随后被冷却的温度可以为-110至-180℃,或在替代方案中为-110至-150℃,或在替代方案中为-150至-180℃,或在替代方案中为-130至-170℃,或在替代方案中为-140至-170℃。

图3是说明如本文一般公开的从专用丙烯装置回收C2和C3组分的方法的第一实施例的示意图。如图3中所示,脱乙烷塔塔顶馏出物和裂化气体蒸汽流300作为蒸汽进料到分离罐305中。虽然显示为单一流,但是脱乙烷塔塔顶馏出物和干燥的裂化气体可以联合或分开进料。来自分离罐305的底部流320被送回脱乙烷塔(未示出)。然后将汽提的流325送至热交换器330的一个或多个阶段,它们冷却汽提的流。冷却的流335主要是冷凝液体(第一部分冷凝物),但也含有少量蒸汽馏分(第一残余蒸汽,通常小于或等于6wt%)。为液体/蒸汽流的冷却的流335被送至填充床精馏器350的底部。蒸汽馏分向上通过填充床精馏器350并被精馏,其中大部分C3被除去至底部液体流355。液体流355被泵送回脱乙烷塔(未示出)作为回流。

当第一残余蒸汽向上通过精馏器350时,其在约-145℃下通过C2的液体流360的逆流流接触。C2的液体流360将上升的第一残余蒸汽精馏,将较重组分除去到底部液体流355中,并因此将轻质组分集中在蒸汽流中。这用于产生精馏器塔顶流365。

然后将精馏器塔顶流365送至热交换器330的一个或多个阶段,在其中将其冷却并部分冷凝至约39%的蒸汽馏分375(形成第二部分冷凝物)。然后将第二部分冷凝物和蒸汽流375送到第二分离罐380。来自第二分离罐380的液体底部流385的大约一半360被送到精馏器350的顶部,另一半405当它被送到热交换器330的一个或多个阶段时被加热。在一个或多个热交换器阶段中加热之后,流405被送到C2的回收系统。

来自第二分离罐380的塔顶蒸汽415含有99%C1和较轻的组分并且首先被送到热交换器330的一个或多个阶段,在其中它被加热到约-70℃。在热交换器330的一个或多个阶段中加热之后,塔顶蒸汽415在涡轮膨胀机/压缩机390中从约400psia膨胀至约60psia并冷却至约-150℃。然后将来自涡轮压缩机/膨胀器390的所得冷的流425送到热交换器330的一个或多个阶段,在其中将其加热至约40℃,然后用作燃料气。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1