水溶性膦衍生物的制作方法

文档序号:4922459阅读:354来源:国知局
专利名称:水溶性膦衍生物的制作方法
技术领域
本发明涉及新的水溶性外消旋或光学活性的下式化合物
其中R1、R2、R3和R4为相互独立的低级烷基或低级烷氧基;
m和n为0,1或2;
X为H、碱金属、等量的碱土金属或铵离子;
前提是R3和R4不在3或3’位。
本发明还涉及式Ⅰ和Ⅱ化合物、特别是其光学活性形式(即(R)和(S)构型)的化合物的制备。本发明还涉及式Ⅰ或Ⅱ化合物的络合物,特别是其光学活性构型(R)和(S)构型)和Ⅷ族过渡金属构成的络合物,过渡金属主要指钌、铑、钯、铱,本发明还涉及此络合物在诸如不对称氢化、对映选择性异构化等非对称反应中用作均相催化剂的使用。
仅次于催化剂的活性和选择性,从产物中分离催化剂和回收催化剂在均相催化工艺的工业应用中是很重要的。尽管有时催化剂的分离容易实现,如挥发性产物可从催化剂蒸出,但对于结晶产物可能更困难,因为共结晶或包含物可导致过多金属残留在产物中。通常催化剂回收和循环难以进行,但在需相当多催化剂的催化反应中能起重要作用。
有两种主要途径-(各具特色)-可解决这个问题。一种是通过将催化剂或催化剂前体附着在惰性载体上而将均相催化剂非均一化。然而,经常由于金属浸于溶液中而导致非均相催化剂的活性下降。另一种是以水溶性配位体与过渡金属的络合物作为催化剂。这种络合物可用于各种条件下,如在水溶性溶剂体系中,在水和不溶性有机相组成的两相体系中或在经水提取除去催化剂的单一有机相中。最近已在含催化剂的水相循环中将有助溶剂或无其溶剂的两相体系引入工艺实践中。例如,通过烯烃羰基化而进行的醛的制备可选用水溶性膦的水溶性铑络合物来进行,如三(间一磺化苯基)膦的钠盐。使用水溶性配位物和催化剂,不仅解决了催化剂-产物的分离;而且通过用水作良性溶剂而对此工艺的成本和生态产生积极影响。
所述式Ⅰ和Ⅱ化合物的水溶性取决于在连到磷原子上的苯基对位上的四个一SO3X基。现已发现在对位-SO3X取代基很少或甚至没有会对衍生金属络合物的配合物的苯基空间排列产生立体影响。另外还发现所形成的式Ⅰ和Ⅱ四磺酸盐配位体对过渡金属具有类似于相应的中性无磺酸盐的二膦衍生物对过渡金属的配位性质。因此,从式Ⅰ和Ⅱ四磺酸盐配位体衍生的络合物在非对称反应中表现出高活性和高对映选择性。这与已知的含有在苯基间位连接磷原子的-SO3X取代基的平性水溶性二膦配位体不同。
“低级烷基”一词在本发明中指C1-4的直链烷基,即甲基、乙基、丙基或丁基。
“低级烷氧基”一词指其中的烷基为上述定义的基团,优选甲氧基或乙氧基。
优选X为碱金属的式Ⅰ和Ⅱ化合物,特别是那些X为Na的化合物。
优选式Ⅰ化合物,其中m和n为0,R1和R2相同且为甲基或甲氧基。特别优选式Ⅰ化合物,其中m和n为0,R1和R2为甲氧基。
根据本发明,优选下述反应路线1所得的式Ⅰ化合物

R1、R2、R3、R4、X、m和n的定义如上所述;X1为H,优选Br或I;R5为-SO3X的保护基。适于在制备本发明所述化合物方法中采用的(格氏)和还原条件的适宜保护基为1-吲哚基、1-吡咯基和类似基团。
在第一步中,在格氏条件下,将双苯基-2,2’-二基)双(膦酰二氯)(Ⅲa)的外消旋或光学活性衍生物与至少4当量的在对位含保护基的-SO3X的苯基一格氏试剂(Ⅴ)反应。苯基一格氏试剂(Ⅴ)的简便易行的制备方法为在诸如己烷等的非极性溶剂中,将溶于四氢呋喃的式Ⅳ化合物与略为过量的丁基锂反应,在-78℃再加入MgBr2·EtO2。
进而将得到的双(氧化膦(Ⅵ)还原为相应的双膦(Ⅶ)。在后面的反应中用已知方法将其裂解以将磺酸盐的保护基除去。可按已知方法进行双(氧化膦)(Ⅵ)还原。如,在芳香烃中,如沸腾二甲苯或乙腈,最好在辅助碱存在下,如三丁胺或三乙胺,用硅烷,如三氯硅烷,进行反应。如有必要,可在高压釜中加压进行还原。
式Ⅲa的起始化合物的制备如EP-A-530 335中所述。
可从下式化合物
按类似方法制备式Ⅱ化合物。
本发明所述式Ⅰ和Ⅱ化合物可与Ⅷ族过渡金属形成络合物,过渡金属主要指钌、铑或铱。这些络合物可在非对称催化反应中用作催化剂,特别是对含碳碳、碳氧或碳氮双键的前手性化合物的非对称氢化,如,这些化合物含下列>C=C<,>C=O,>C=N-,>C=C-N<.
基团之一。上述氢化优选钌、铑和铱络合物。这些催化剂,即从Ⅷ族金属和式Ⅰ和Ⅱ化合物得到的络合物,为新型且为本发明的目标。
用上述络合物进行的非对称氢化的实例为下列基质的氢化烯丙基醇,如香叶醇(Ⅷ),烷酰氨基丙烯酸或其盐,如α-乙酰氨基肉桂酸或其盐(Ⅸ),β-酮酸和其盐或酯,如乙酰乙酸,乙酰乙酸甲酯或乙酰乙酸锂(Ⅹ),α-酮酸及其盐,如丙酮酸钠(Ⅺ)或α,β-不饱和酸及其盐,如化合物Ⅻ和ⅩⅢ。

可在下列溶剂体系下进行氢化水溶剂体系,含水相和不溶性有机相的两相体系或通过水萃取连续除去催化剂的单一有机体系。
这种氢化反应优选式Ⅰ化合物与钌或铑构成的络合物,在式Ⅰ化合物中,R1和R2相似且为甲氧基,m和n为0。
在上述化合物的不对称氢化、特别是这些化合物的盐的不对称氢化中,这些络合物表现出优异的催化性能,这些进行不对称氢化的化合物为α-乙酰氨基肉桂酸(Ⅸb)的钠盐,β-酮酸的锂盐,如乙酰乙酸的锂盐(Ⅹb),α-酮酸的盐,如丙酮酸钠(Ⅺb)或α,β-不饱合酸的钠盐,如化合物Ⅻb和ⅩⅢb。
现已证实此催化剂可从产物混合物中有效地分离出来。这种分离通过从产物、从产物的有机溶液进行水萃取或通过离子交换树脂吸附而实现。通过这些工艺可除去所用数量的95%以上的金属。
在这些氢化反应中,从式Ⅰ配位体衍生的Ru和Rh催化剂表现出与从非磺酸盐配位体衍生的相应催化剂相同的对映选择性和相似的活性。从另一方面讲,首先为用从磺化二膦配位体衍生的Ru或Rh催化剂可进行高效水相非对称氢化。这也证实了在P-苯基的对位引入-SO3X基以在催化步骤中排除对非对称诱导的空间效应的创新概念的可行性。在这些反应中可实现高转化率和高化学及光学产率。通常光学诱导非常高,对映体过量(e.e.)通常在90%以上。
可用已知方法,在适宜惰性有机或水性溶剂中将式Ⅰ或Ⅱ化合物与可产生Ⅷ族金属的化合物反应;以制备上述络合物。可产生铑的适宜化合物可为,如,与乙烯,丙烯及类似物,与二烯,如(Z,Z)-1,5-环辛二烯,1,5-己二烯二环[2,2,1〕庚-2,5-二烯或能与铑形成易溶的络合物的其他二烯构成的有机铑络合物。优选的能产生铑的化合物为,如二-μ-氯-双[η4-Z,Z)-1,5-环辛二烯〕二铑(Ⅰ),二-μ-氯-双[η4-降冰片二烯〕二铑(Ⅰ),二-μ-三氟乙酰氧(acetato)-双[η4-(Z,Z)-1,5-环辛二烯〕-二铑(Ⅰ),双[η4-(Z,Z)-1,5-环辛二烯〕铑(Ⅰ)四氟硼酸盐或双[η4-(Z,Z)-环辛二烯〕铑(Ⅰ)过氯酸盐。可将二-μ-氯-双[η4-(Z,Z)-1,5-环辛二烯〕二铱(Ⅰ)作为能产生铱的化合物。
可用下式表示上述钌络合物其中Z为H或A-COO基,A为低级烷基、芳基、卤代低级烷基或卤代芳基,L为或Ⅰ或Ⅱ的外消旋或光学活性二膦配位体。
通常可用已知方法制备钌络合物。还可通过以下方法方便地制备钌络合物将下式络合物其中Z’为H或A’-COO基,A’为低级烷基或卤代低级烷基,L’为中性配位体,r为1,2或3,P为1或2,q为0或1,与式Ⅰ或Ⅱ外消旋或光学活性二膦配位体反应或通过将下式钌络合物其中L为式Ⅰ或Ⅱ外消旋或光学活性二膦配位体,与能产生有上述定义的阴离子Z的盐反应而制备。
在本发明中,“中性配位体”一词指可交换配位体,如二烯烃,如,降冰片二烯,(Z,Z)-1,5-环辛二烯等,或腈,如乙腈,苄腈等。其中r为2或3,配位体之间可相同或不同。
或ⅩⅤ的钌络合物为已知物质或类似于可用与制备已知物质类似的方法方便制备的已知物质,如按Albevs,M.O.ctal J.Ozgan-omet.Chem.272,C62-C66(1984)所述方法制备。
可按已知方法,将式ⅩⅤ钌络合物与式Ⅰ或Ⅱ外消旋或光学活性二膦配位体进行反应,此反应可在惰性溶剂中方便地进行。这种溶剂的实例为水,低级醇,如甲醇,乙醇等,卤代烃如二氯甲烷、氯仿及类似物,或这些溶剂的混合物。此反应的反应温度在0℃-100℃,优选约15℃-60℃,但要严格地排除氧。
可按已知方法,将式ⅩⅥ钌络合物(由式ⅩⅤ络合物制得)与含阴离子Z的盐反应。在本发明中,“能产生阴离子Z的盐”指,如,铵盐,碱金属盐或其他适宜金属盐。为改善这些盐的溶解性,有时还加入冠醚或类似物。
下列实例用于说明本发明但并不加以任何限制。
在实例中,下列缩写有如下定义h小时
m.p.熔点THF四氢呋喃EtoAc乙酸乙酯C浓度ee对映体过量GC气相色谱cod1,5-环辛二烯nbd降冰片二烯全部实验需在不含氧的氩气环境中进行。溶剂需在使用前干燥并在氩气中蒸馏。用Schlenk工艺制备金属二膦络合物。
在250MHZ(Bzukez Ae 250Z)和270MHz(Brnkez HX 270)记录1H-NMR谱,用TMS为内标,以PPm(δ)表示化学位移。除非特殊情况,溶剂一般选用CDCl3。缩写有以下定义,m为多重峰,s为单峰,sbr为单峰谱带,mbr为多重峰谱带。
可按Tetrahedron Asymmetzy 1991,2,51所述方法合成起始化合物[Ru(OCOCF3)2(cod)〕2。吲哚为工业纯,[Rh(nbd)Cl〕2和其他化学品市场有售且不必进一步纯化即可使用。
可按标准工业制备[Rh(cod)2〕BF4和[Rh(nbd)2〕BF4。可按EP-A-530335中所述工艺合成[(R)-和(S)-6,6’-二甲氧基二苯基-2,2’-二基〕双(膦酰二氯)。
实例1合成(S)-6,6’-二甲氧基-二苯基-2,2’-双(4,4’-膦二基二苯磺酸)钠盐(1∶4)(=(S)-MeOBIPHEP-TS-Na)1.合成对-溴苯基吲哚-1-基砜向1300ml溶有80.0g(683mmol)吲哚和23g(67.7mmol)硫酸氢四丁基铵的甲苯溶液中加入640ml50%的NaOH。在室温剧烈搅拌两相5分钟。逐滴加入255.6g(mmol)对溴苯磺酰氯溶液并在室温下搅拌1.5小时。两相分层后,用水洗涤有机相,干燥,过滤,浓缩至500ml,过滤(700g硅胶,甲苯)得到约300g结晶和油状物。将其溶于约250ml CH2Cl2和1升己烷。蒸出部分溶剂,通过过滤得到结晶,在真空中干燥后得到171g对-溴-苯基-吲哚-1-基砜的白色晶体,m.p.105.9-106.3°,从母液中再分出24.8g对-溴苯基吲哚-1-基砜。
2.合成(S)-6,6’-二甲氧基-P2,P2,P21,P2’-四-[4-(吲哚-1-基磺酰基苯基〕-二苯基-2,2’-双膦-P2,P2’-氧化物将1升溶有84g(250mmol)对-溴苯基吲哚-1-基砜的THF(从Na/二苯甲酮蒸馏而得)溶液冷却至-78℃以使砜部分结晶。加入200ml溶有1.42M丁基锂的己烷溶液,控制加入的速度以使温度不超过-68℃。继续搅拌反应物20分钟,立即加入84g(302mmol)新制固态MgBr2·Et2o。将反应混合物加热至室温并继续搅拌30分钟,将此紫色溶液冷却至-78℃,立即加入13.5g(30.1mmol)固态[(s)-6,6′-二甲氧基二苯基-2,2’-二基〕双(膦酰二氯)。在-78℃搅拌反应物10分钟后加热至室温,再在室温搅拌2.5h。将反应混合物冷却至0℃,用饱合NH4Cl溶液处理,用饱合Na-Cl溶液洗涤,干燥并蒸发后得到66g黄色固体。色谱层析(850g硅胶,己烷/EtOAcl∶1→EtOAc)后蒸发,减压干燥底物后得到28g黄色粉状的(S)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-吲哚-1-基磺酰基)-苯基]-双苯基-2,2’-二膦-P2,P2’-氧化物,m.p.202.1-202.8℃,[α]D20=-37.8(c=1.0;CHCl3)。
3.合成(s)-6,6′-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基-磺酰基)-苯基]-二苯基-2,2’-乙膦向550ml溶有27.0g(20.3mmol)(S)-6,6’-二甲氧基P2,P2,P2’,P2’-四-[4-吲哚-1-基-磺酰基)-苯基〕-二苯基-2,2’-二膦-P2,P2’-氧化物的二甲苯溶液中加入206ml(865mmol)三丁胺和82.6ml(817mmol)三氯硅烷。回流此乳状液7小时。将反应物冷却至室温后,加入425ml30%NaOH溶液且控制速度以使温度低于22℃。在室温搅拌反应混合物30分钟。然后加入200ml二甲苯,分层后用二甲苯萃取水相。用饱合NaCl溶液洗涤合并的有机相,干燥,过滤并浓缩至约500ml。减压蒸馏过量的试剂,在前述条件下进一步干燥底物。将黄色残余物(23g)溶于EtOH/CH2Cl22∶1(900ml),将溶液蒸发浓缩至约400ml并在4℃下放置过夜。过滤所得到的结晶,用冷EtOH洗涤,减压干燥3小时后得到22.56g白色结晶(S)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦,m.p.178.0-179.5。[α]D20=-28.0(c=1.0,CHCl3)4.合成(S)-MeOBIPHEP-TS-Na向450ml含22.5g(17.3mmol)(S)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦的THF/MeOH1∶1的搅拌着的悬浮液中加入42.4ml(212.5mmol)5N NaOH。将反应混合物回流5小时。将反应冷却至室温后,用25% 2N HCl调至PH7.0。然后将溶剂蒸发并减压干燥残余物1小时。在用甲苯萃取以除去游离吲哚后,减压干燥残余物2小时,得到白色粉状的粗(S)-6,6’-二甲氧基-二苯基-2,2’-双(4,4’-膦二基二苯磺酸)钠盐(1∶4)。用ca.1100ml Mitsubishi gel CHP 20P(75-150μ)对此化合物色谱层析,用脱氧水作洗脱液。蒸出NaCl游离组分后,减压干燥残余物2小时,得到14.3g黄色结晶(S)-6,6’-二甲氧基-二苯基-2,2’-双(4,4’-膦二基二苯磺酸)钠盐[α]D20=+65.1(c=1.0,MeOH)。
实例2合成(R)-6,6’-二甲氧基-二苯基-2,2’-双(4,4’-膦二基二苯磺酸)钠盐(1∶4)(=R)-MeOBIPHEP-TS-Na)1.合成(R)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦-P2,P2’一氧化物类似于实例1,2所述实验,用5.9g(13.1mmol)(R)-二(膦酰二氯),可得到12.3g(71%)白色结晶(R)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦-P2,P2’-氧化物。M.P.202.0-202.9℃。
2.合成二膦((R)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦类似于实例1,3所述实验,还原0.82g(0.62mmol)二(氧化膦可得到0.56g(70%)白色结晶(R)-6,6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦,M.P.176.0-176.8℃。[α]D20=+278(C=1.0,CHCl3)。
3.合成(R)-MeOBIPHEP-TS-Na类似于实例1,4所述实验,用3.38g(2.6mmol)(R)-6.6’-二甲氧基-P2,P2,P2’,P2’-四-[4-(吲哚-1-基磺酰基)-苯基]-二苯基-2,2’-二膦可得到黄色结晶的2.39g(65%)((R)-MeOBIPHEP-TS-Na)。[α]D20=-64.0(c=1.0,MeOH)。
实例3合成((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2将20ml溶有1.783g(1.8mmol)(s)-MeOBIPHEP-TS-Na(由实例1,4制备)。MeOH溶液加到10ml溶有0.783g(0.90mmol)[Ru(OCOCF3)2(cod)]2MeOH溶液中,在70℃搅拌20小时。将得到的红色溶液蒸发干燥用CH2Cl2/MeOH(9∶1)、CH2Cl2、戊烷洗涤残余物,减压干燥可得到几乎定量收率的橙黄粉状((S)-MeOB-IPHEP-TS-Na)Ru(OCOCF3)2。1H-NMR(CO3OO)7.87-7.8(m,4H);7.68-7.58(m,4H);7.52-7.47(m,4H);7.3-7.22(m,4H);7.05-6.98(m,4H);6.61-6.55(m,4H);3.44(S,2OCH3);3.34(S,Ca.1.5mol当量MeOH)。
实例41.合成[((S)-MeOBIPHEP-TS-Na]Rh(cod)BF4将15ml溶有495mg(0.5mmol)(S)-MeOBIPHEP-TS-Na(由实例1,4制备)的MeOH溶液加到10ml溶有203mg(0.5mmol)Rh(cod)BF4的红色MeOH溶液中,在室温下搅拌4小时,将得到的橙色溶液蒸发干燥,用THF、Et2O、戊烷洗涤残余物,在50℃减压干燥,得到几乎定量收率的((s)-MeOBIPHEP-TS-Na)Rh(cod)BF4橙色粉末。
.[α]20D=-13.4(c=1.0,MeOH).1H-NMR(D2O)7.95-7.6(m,16H);7.5-7.4(m,2H);7.25(t,J=8.2H);6.62(d,J=8,2H);4.92(mbr.,2 olefin.H);4.55(mbr.,2 olefin.H);3.4(s,2OCH3);3.34(s,ca.1.3mol equiv.MeOH);2.69-2.48(m,2H);2.48-2.3(m,2H);2.25-2.1(m,4H).
2.合成[((S)-MeOBIPHEP-TS-Na)Rh(nbd)]BF4在类似实验中,经过室温下反应22小时,由Rh(nbd)2BF4可得到几乎定量收率橙色粉状[α]20D=+34.2(c=0.5,MeOH).1H-NMR(D2O)8.0-7.63(m,16H);7.4-7.2(m,4H);6.62(d,J=8,2H);5.1-4.95(m,4 olefin.H);4.02(sbr.,2 methine H);3.39(s,2OCH3);3.34(s,ca.0.7 mol equiv.MeOH);1.6(sbr.,-CH2-).
3.合成((S)-MeOBIPHEP-TS-Na)Rh(nbd)Cl在类似实验中,经过室温下反应18小时,可由[Rh(nbd)Cl〕2得到几乎定量收率的橙色粉状的((S)-MeOBIPHEP-TS-Na)Rh(nbd)Cl[α]20D=+19.0(c=0.6,MeOH).1H-NMR(D2O)7.95-7.65(m,ca.16H);7.35-7.15(m,4H);6.62(dbr.,J=8,2H);5.1-4.95(m,4 olefin.H);4.02(sbr.,2 methine H);3.39(s,2OCH3);3.34(s,ca.1.2 mol equiv.MeOH);1.58(sbr.,-CH2-).
实施例5基质Ⅷ、Ⅸ、Ⅹ或Ⅺ的氢化(表1和表2)全部实验在装于摇动支架氢化器中的Ca.30℃或50℃的用隔片塞好的50ml玻璃烧瓶中进行。向含有催化剂(20-80mg)的MeOH或H2O(20ml)溶液中加入基质固体或基质溶液。通过等摩尔的酸和相应碱反应,可制备羧酸的钠盐或铵盐。初始压力调至10巴H2,摇动反应烧瓶;不定时用H2加压。然后蒸发反应溶液。对残余物或催化剂游离反应产物进行光学纯度和/或ee.测定(可通过溶剂/H2O萃取,色谱层析或蒸馏脱去催化剂)。用1H-NMR测定转化率(参阅表1和表2)实例6催化剂萃取在30℃,经18h、分5批且每批20ml将100ml溶有10.17g(65-93mmol)香叶醇(Ⅷ)和130mg(0.099mmol)((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2的MeOH溶液氢化。合并反应液并蒸发干燥。向残余物(黄色油状和固态)加入100ml甲苯和100ml H2O,在室温剧烈搅拌此混合物。两相分层后,用甲苯萃取水相,然后再用H2O萃取合并有机相,蒸发干燥,得到10.32g黄色油状物。得此残余物含17ppmRu,即为所用催化剂所含钌量的1.8%(参见表1,第6行)在类似实验中,在约30℃,在106mg(0.081mmol)((S)-Me-ONIPHEP-TS-Na)Ru(OCOCF3)2的甲醇溶液存在下,经22小时将4.0g(25.9mmol)香叶醇(Ⅷ)氢化。用35g AmlezliteTMA26(-N(CH3)3+Cl-)(用MeOH洗脱)将得到的溶液色谱层析,蒸发干燥后得到4.2g黄色油状物。测得此残余物含55ppm Ru,即为所用催化剂所含钌量的2.8%(参见表1,第5行)。
表1以((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2作催化剂的香叶醇(Ⅷ)的非对称氢化。


实例7香叶醇Ⅷ的氢化在置于手套箱(O2含量<1ppm)中的185ml加压釜中,加入8.8g香叶醇Ⅷ[(E)-3,7-二甲基-2,6-辛二烯-1-醇],75.2mg((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2,31ml乙酸乙酯和8ml水。在20℃、60巴且剧烈搅拌下进行氢化。68小时后转化率达96%。分离有机相并在45℃/17mbar下蒸发。残余物由92%(R)-香芳醇(A)和4%副产物B组成。在60℃/0.2mbaz下将澄清残余液蒸馏纯化。得到7.7g无色油状的(R)-香芳醇(A)[(R)-3,7-二甲基-6-辛烯-1-醇];e.e.97%.
实例83,4,6,11-四氢-6,11-二氧-哒嗪并[1,2-a]-2,3-二氮杂萘基-1-羧酸(“脱氧邻苯二甲酸”)(Ⅻ)的氢化。
1.三乙基铵盐Ⅻa的氢化。
在手套箱(氩气环境,O2含量<1ppm)中,向5ml量瓶中加入5.2mg(0.0039mmol)((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2并用5ml脱气水加到刻度线。在室温用磁力搅拌棒搅拌此悬浮液15分钟。得到一澄清黄色溶液。在手套箱中,向500ml带搅拌的不锈钢加压釜中加入10.1g(39.1mmol)脱氢邻苯二甲酸、145ml脱气水和3.96g(39.1mmol)脱气三乙胺。向此悬浮液加入5ml上述催化剂溶液并将加压釜封口,用6ml氩气加压并以手套箱中取出。将此加压釜与通H2的氢化装置相连。加压釜中的氩气被40bar的H2所替代,在60℃/40bar搅拌下进行氢化。反应21小时(转化率>99GG area%)后,将加压釜放空,将126.6g黄色澄清反应混合物(即为30.2mmol)(-)-1,2,3,4,6,11-六氢-6,11-二氧-哒嗪并[1,2-b]-2,3-二氮杂萘-1-羧酸)转移至500ml四颈圆底并带有温度计、加料漏斗和马达驱动桨式搅拌器的烧瓶中。在5℃,逐滴加入35ml 1N盐酸水溶液以酸化此搅拌着的溶液。滴加过程中有沉淀形成。在5-7℃搅拌悬浮液2小时。过滤得到结晶,用水洗涤(5×40ml),在60℃/20mbar干燥18h和在60℃/0.05mbar干燥16小时。得到7.85g灰白色结晶(-)-1,2,3,4,6,11-六氢-6,11-二氧-哒嗪并[1,2-b]-2,3-二氮杂萘基-1-羧酸;e.e>99%(在手性α-AGP.柱(α-酸糖蛋白)上进行HPL(测定);纯度98.0GC-area%2.钠盐Ⅻb的氢化。
在手套箱(氩气环境,含O2量<1ppm)中,向5ml量瓶中加入25.8mg(0.0196mmol)((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2并用5ml脱气水加到刻度线。在室温下,用磁力搅拌棒搅拌悬浮液15分钟。得到黄色澄清溶液。在250ml圆底烧瓶中,将10.1g(39.1mmol)脱氢邻苯二甲酸悬浮于60ml脱气水。在1-3℃,向此悬浮液滴加37.2ml脱水1N氢氧化钠水溶液。将抽空烧瓶转移至手套箱中,将悬浮液抽空排气并冲氩气(8次)。在手套箱内,将悬浮液转移至500ml加搅拌的不锈钢加压釜中,加入5ml上述催化剂溶液和48ml脱气水。然后将加压釜封口,用6bar氩气加压并从手套箱取出。将加压釜与通H2的氢气装置相连。用40bar H2替代加压釜中的氩气,通过在60℃/40bar搅拌下进行氢化。反应21小时后(转化率>99 GC-area%),将加压釜放气,将116.3g黄色反应混合物(相应为28.1mmol(-)-1,2,3,4,6,11-六氢-6,11-二氧哒嗪并[1,2-b]-2,3-二氮杂萘基-1-羧酸)转移至500ml四颈圆底并带温度计、加料漏斗和马达驱动桨式搅拌器的烧瓶中。在2℃,滴加5ml25%盐酸水溶液酸化搅拌着的溶液。在滴加过程中有沉淀生成。在3-5℃搅拌此悬浮液2小时。过滤得到结晶,用水洗涤,在60℃/20mbar下干燥4小时,在60℃/0.05mbar干燥18小时。得到7.3g浅白色结晶(-)-1,2,3,4,6,11-六氢-6,11-二氧哒嗪并[1,2-b]-2,3-二氮杂萘基-1-羧酸,e.e>99%;纯度98.7 GC-area%实例9
3-甲基-2-(对-氟苯基)巴豆酸(ⅩⅢ)的氢化1.三乙基铵盐ⅩⅢa的氢化。
在手套箱中(氩气环境,含O2量<1ppm),向10ml量瓶中加入16.9mg(0.013mmol)((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2并用10ml脱气水加到刻度线。在室温用磁力搅拌棒搅拌此悬浮液15分钟。得到黄色澄清溶液。在手套箱中,向30ml配有磁力搅拌棒不锈钢加压釜中加入0.5g(2.57mmol)3-甲基-2-(对-氟苯基)巴豆酸、7.5ml脱气水和0.26g(2.57mmol)脱气三乙胺。向此悬浮液加入2.0ml上述催化剂溶液,然后将加压釜封口,用6bar氩气加压并从手套箱中取出。将加压釜与通H2的氢化装置相连。用60bar H2替代加压釜中的氩气,通过在20℃/60bar搅拌而进行氢化。反应21小时后,将加压釜放气。将浅黄色反应混合物转移至50ml分液漏斗,在20-25℃,通过加2.7ml 1N盐酸水溶液酸化并用醚萃取。用饱合NaCl水溶液洗涤合并的醚萃取液,用Na2SO4干燥,旋转蒸发浓缩干燥。在160℃/0.1mbar蒸馏红色残余物,得到0.48g无色油状(R)-2-(4-氟苯基)-3-甲基丁酸,其在室温放置可固化;ee84%(在性过甲基化-β-糊精柱上进行GC测定);纯度>99 GC-area。
2.钠盐的氢化在手套箱中(氩气环境,含O2量<1ppm),向10ml量瓶中加入16.9mg(0.013mmol)((S)-MeOBIPHEP-TS-Na)Ru(OCOCF3)2并用10mk脱气水加到刻度线。在室温,用磁力搅拌棒搅拌悬浮液15分钟。得到黄色澄清溶液。在手套箱中,向配有磁力搅拌棒的30ml不锈钢加压釜中加入0.5g(2.57mmol)3-甲基-2-(对-氟苯基)巴豆酸,4.93ml脱气水和2.57ml(2.57mmol)脱气1N NaOH水溶液。向悬浮液中加入2.0ml上述催化剂溶液,然后将加压釜封口,用6bar氩气加压并从手套箱取出。将加压釜与通H2的氢化装置相连。用60bar H2替换加压釜中的氩气,在20℃/60bar搅拌下进行氢化。反应21h后,将加压釜放气。将浅黄色反应混合物转移至50ml分液漏斗,在20℃-25℃加2.7ml 1N盐酸水溶液酸化并用醚萃取。用饱合NaCl水溶液洗涤合并的醚萃取液,用Na2SO4干燥,旋转蒸发浓缩干燥。在160℃/0.1mbar蒸馏红色残余物,可得到0.47g无色油状的(R)-2-(4-氟苯基)-3-甲基丁酸,其可在室温放置后固化;ee80%;纯度>99 GC-area%。
权利要求
1.具有下式的水溶性外消旋或光学活性的化合物 其中,R1,R2,R3和R4相互独立且为低级烷基或低级烷氧基;m和n为0,1或2;X为H、碱金属、等量的碱土金属或铵离子;前提是R3和R4不在3或3’位。
2.权利要求1所述式Ⅰ化合物,其中m和n为0。
3.权利要求1和2所述式Ⅰ化合物,其中R1和R2相同且为甲基或甲氧基。
4.权利要求1-3所述的任一式Ⅰ化合物,其中R1和R2为甲氧基。
5.权利要求1的化合物(R,S)-,(R)或(S)-6,6’-二甲氧基-二苯基-2,2’-双(4,4’-膦二基二苯磺酸)Na盐(1∶4)。
6.权利要求1所述式Ⅰ或Ⅱ化合物与Ⅷ族金属组成的络合物。
7.权利要求6所述络合物,其中Ⅷ族金属为钌、铑、钯、铱。
8.权利要求1-5所述任一式Ⅰ化合物与钌或铑组成的络合物。
9.权利要求1所述式Ⅰ和Ⅱ化合物的制备方法,其特征在于将下式外消旋或光学活性化合物 其中R1、R2、R3、R4、m和n如权利要求1所述,与至少4当量的下式化合物在格氏条件下反应 其中X1为溴或碘,R5为保护基团,如1-吲哚基或吡咯基,得到随后被还原和去保护的双膦氧化物(phosphinoxid)。
10.权利要求9所述方法,其中保护基团R5为1-吲哚基。
11.权利要求1所述水溶性外消旋或光活性式Ⅰ或Ⅱ化合物通过与Ⅷ族金属结合成络合物以作为非对称催化反应的催化剂的应用。
12.权利要求1-5所述水溶性光活性式Ⅰ化合物通过与钌、铑或铱结合成络合物用作为α,β-不饱合醇的非对称氢化的催化剂。
13.权利要求1-5所述水溶性光活性式Ⅰ化合物通过与钌、铑或铱结合成络合物用作为β-酮酸及其盐或酯的不对称氢化的催化剂。
14.权利要求1-5所述水溶性光活性式Ⅰ化合物通过与钌、铑或铱结合成络合物用作为α,β-不饱合酸及其盐的不对称氢化的催化剂。
全文摘要
本发明涉及下式新的水溶性外消旋或光学活性化合物,式中各基团定义详见说明书。本发明还涉及制备这些化合物,这些化合物与VIII族金属形成的络合物的方法,及这些络合物用作不对称氢化催化剂及在前手性烯丙系统中的对映选择性氢取代中用作催化剂。
文档编号B01J31/22GK1112563SQ9510192
公开日1995年11月29日 申请日期1995年2月10日 优先权日1994年2月12日
发明者M·拉朗德, R·史密德 申请人:弗·哈夫曼-拉罗切有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1