一种加氢工艺组合方法

文档序号:5107162阅读:195来源:国知局
专利名称:一种加氢工艺组合方法
技术领域
本发明涉及一种加氢工艺组合方法,特别是蜡油加氢处理与汽油加氢精制以及柴油加氢精制的加氢工艺组合方法。
背景技术
随着世界经济的持续发展和环境保护法规的日益严格,需要生产大量轻质清洁燃料,然而当前世界范围内的原油性质逐渐变重、变劣,为了提高汽油、柴油的产量,大部分重质化原油需要进行延迟焦化以及催化裂化等二次加工方法,二次加工汽油、柴油中含有大量的硫、氮、烯烃、芳烃等杂质,不能直接作为调和组分,需要一般加氢精制后才可作为调和组分使用。这些都要求对现有的炼油技术进行完善和改进,以最低的成本生产出符合要求的产品。FCC原料经预处理后可以避免催化裂化汽油加氢精制过程中辛烷值损失,并且还有以下优点可以降低FCC催化剂的更换频率;降低FCC焦炭产率;改善FCC产品分布、提高目的产品产率、降低非目的产品产率;直接改善FCC产品质量,降低产品硫含量;降低FCC 再生器S0x、N0x的排放量等,因此FCC原料预处理工艺在现代炼油厂中得到广泛的应用。现有的催化裂化原料预处理技术主要有US3983(^9和US6793804公开了加氢处理工艺和催化剂,CN1313379公开了一种劣质催化裂化原料的加氢处理方法,CN1646665公开了烃类原料的加氢处理。延迟焦化是普遍采用的渣油轻质化手段,焦化过程是以渣油为原料在高温下进行深度热裂化,制取馏分油和石油焦的一种二次加工过程,其中大部分采用延迟焦化过程,其优点是可加工各种劣质渣油,过程简单,投资和操作费用低,其缺点是焦化汽油和焦化柴油中不饱和烃含量高,而且含硫、氮等非烃类化合物的含量也高,给进一步加工处理带来了较大的困难。在这样的背景下,有关汽油、柴油等馏分油的加工技术,特别是二次加工的汽油、 柴油馏分的加工技术越来越受到重视。二次加工的汽油和柴油馏分原料一般采用分别进行加氢或混合进行加氢的处理方式,每种方式均有其自身的特点和不足。CN02109671. 6公开了一种焦化全馏分油加氢精制方法,在中等压力条件下,焦化全馏分油与加氢精制催化剂接触,反应产物经高分分离出气液两相,气相产物作为循环氢循环至焦化全馏分油加氢精制反应器;液相产物进入分馏塔分离出汽油、柴油和蜡油。该工艺技术存在着反应床层温升大的缺点,反应床层间需要冷氢降温。CN200610045708. 4公开了一种由焦化全馏分油生产优质柴油的方法,将焦化全馏分油分离为焦化轻馏分油和焦化重馏分油,其中轻质馏分油中含有部分轻柴油馏分,重馏分油为干点较高的重柴油馏分。焦化重馏分油进行加氢改质,加氢改质产物与焦化轻馏分油混合进行加氢精制处理。该方法可以最大量地获得高质量的清洁柴油,同时可以获得高质量的石脑油,但该方法没有充分利用焦化轻馏分油加氢时起始温度低、温升高的特点,焦化重馏分油进行加氢改质后再进行加氢精制处理的必要性并不明显。现有技术中蜡油加氢处理和汽、柴油加氢精制工艺过程均为单独操作,尽管能满足目的要求,但是由于几套加工装置完全独立,各自有独立的设备和管线,势必导致总投资费用高,操作费用高等不足。

发明内容
针对现有技术中的不足,本发明提供一种针对蜡油加氢处理和汽油、柴油加氢精制的组合工艺。该方法能够合理利用蜡油加氢处理产生气体所带的热量以及焦化汽油的反应热,并可以在最大限度减少建设投资的基础上生产出合格的汽油、柴油产品以及优质的催化裂化原料油。本发明提供的加氢工艺组合方法包括如下步骤(1)蜡油原料与氢气混合通过第一加氢反应区,加氢处理反应流出物进入热高压分离器中分离,得到气相和液相,液相为优质的催化裂化原料;(2)步骤(1)得到的气相与焦化汽油原料混合,在汽油加氢精制条件下通过第二加氢反应区;(3)步骤( 所得反应流出物与柴油原料混合,在柴油加氢精制条件下通过第三加氢反应区;(4)步骤C3)所得反应流出物进入气液分离器进行分离,得到气体和液体,气体经过处理脱除和NH3后用作循环氢使用,液体经分馏后到汽油和柴油产品。其中,各分反应区催化剂的装填体积比需要根据加工原料的性质、所选择的加氢精制催化剂及产品性质的要求来具体选择。根据本发明的加氢工艺组合方法,步骤(1)所述的蜡油原料一般包括馏程为 350 620°C的重质馏分,如可以是石油加工过程中得到的各种减压瓦斯油(VGO)、脱浙青油(DA0)、焦化瓦斯油(CG0)、重循环油(HCO)中的一种或几种,也可以是来自煤焦油、煤液化油等。第一加氢反应区中使用的催化剂为常规加氢处理催化剂,可以是各商业催化剂, 如抚顺石油化工研究院(FRIPP)研制生产的3拟6、3936、CH-20、3996、FF-14、FF-16、FF-18、 FF-沈等加氢处理催化剂,法国石油公司(IFP)的HR-416、HR-448等催化剂,丹麦托普索公司(Topsor)的 TK-525、TK-557 催化剂,荷兰阿克佐(AKZO)的 KF-752、KF-840、KF-901、 KF-907等。体相催化剂如抚顺石油化工研究院(FRIPP)研制生产的FH-FS等。上述加氢处理催化剂也可以按本领域知识进行制备,普通加氢处理催化剂(负载型催化剂,活性金属含量相对较低,一般以氧化物计为20% 45% ) 一般先制备催化剂载体,然后用浸渍法负载活性金属组分;体相催化剂(活性金属含量高,一般以氧化物计为50% 85% ) —般采用共沉淀法制备。步骤(1)所述的加氢处理操作条件为反应压力3. 0 16. OMPa,优选为6. OMI3a 12. OMPa ;平均反应温度为260°C 465°C,优选为280°C 4!35°C ;体积空速0. 1 8. Oh"1, 优选为0. 3 5. OtT1 ;氢油体积比200 1 2500 1,优选为300 1 2000 1。步骤( 所述的焦化汽油原料一般为延迟焦化工艺得到的汽油馏分,其干点一般不大于180°C。在第二加氢反应区主要发生烯烃饱和反应和少量的加氢脱硫反应。使用的加氢精制催化剂,可以是常规的汽油加氢精制催化剂,也可以按照本领域的常识进行制备。所述的加氢精制催化剂一般以VIB族和/或第VIII族金属为活性组分,以氧化铝或含硅氧化铝为载体,第VIB族金属一般为Mo和/或W,第VIII族金属一般为Co和/或Ni。以催化剂的重量为基准,第VIB族金属含量以氧化物计为8wt% ^wt %,第VIII族金属含量以氧化物计为2wt% 15wt%,总加氢活性金属以氧化物计为10% 20%。步骤⑵所述的汽油加氢精制操作条件如下反应温度150°C 350°C,优选 200 °C 300 °C,反应压力3. OMPa 12. OMPa,优选4. OMPa 10. OMPa,液时体积空速 1. OtT1 10. 01Γ1,优选 2. OtT1 6. OtT1,氢油体积比 100 600,优选 200 400。本发明中所述的柴油馏分油原料可以为直馏柴油、焦化柴油、催化裂化柴油中的一种或几种,其95%点的馏出温度一般为300 375°C。第三加氢反应区使用的加氢精制催化剂,可以采用常规的柴油加氢精制催化剂, 也可以按照本领域的常识自行制备。所述催化剂一般以VIB族和/或第VIII族金属为活性组分,以氧化铝或含硅氧化铝为载体,第VIB族金属一般为Mo和/或W,第VIII族金属一般为Co和/或Ni。以催化剂的重量为基准,第VIB族金属含量以氧化物计为8wt% ^wt %,第VIII族金属含量以氧化物计为2wt% 15wt%,总加氢活性金属以氧化物计为 IOwt % 20wt%。步骤(3)所述的柴油加氢精制操作条件如下反应温度280°C 420°C,优选 320 °C 360 °C,反应压力3. OMPa 12. OMPa,优选4. OMPa 10. OMPa,液时体积空速 1. OtT1 6. 01Γ1,优选 1. 51Γ1 4. OtT1,氢油体积比 200 1000,优选 400 800。根据本发明的加氢工艺组合方法,其中第一反应区、第二反应区和第三反应区的操作压力一般依次相差0. 01 3MPa,优选相差0. 05MPa 2MPa。步骤中所述的高压分离器的操作压力与第三加氢反应区的系统压力相同,温度一般为180 400°C,优选200 350°C。步骤(1)中,第一加氢反应区的流出物在进入热高分前不需换热,所述热高分的操作温度一般为240 300°C。与现有技术相比,本发明的加氢工艺组合方法具有以下优点;蜡油加氢处理的温度一般较高(约330 390°C ),加氢物流不需换热进入热高分进行分离后,所得高分气具有较高温度。本发明利用该高分气直接与焦化汽油馏分混合取热,一方面能够提升进入焦化汽油加氢反应区的物料的温度,满足反应需求;另一方面可以省掉焦化汽油的加热炉,尤其重要的是避免了焦化汽油在加热炉进行加热时产生的炉管结焦以及因此带来的停工问题。再者,本发明利用焦化汽油馏分中烯烃及二烯烃含量较高, 在反应过程中会产生较高的反应热的客观事实,充分利用该反应热与柴油馏分直接混合取热,使得柴油馏分进入反应器之前不需加热或只需少量加热,即可满足柴油加氢精制的反应温度的要求。同时,由于柴油馏分吸收了汽油馏分加氢的反应热,与传统的焦化汽油加氢相比解决了反应结焦问题,延长了催化剂的使用寿命。本发明方法工艺灵活,可以根据炼油厂生产需要调节蜡油、焦化汽油及柴油馏分的加工比例。通过优化工艺流程和操作条件,使不同劣质原料在最适宜条件下改善产品质量,获得理想的综合加工效果。与不同原料分别加工时比较,本发明方法在工艺流程上还具有节省设备、工艺流程短、设备投资低、操作费用低等优点。本发明方法的蜡油加氢处理与汽、柴油加氢精制采用并联流程,可以共用一套循环氢系统,设备投资低,降低操作能耗。


图1是本发明的一种实施方式流程示意图。
具体实施例方式下面结合附图对本发明的工艺流程进行详细描述。如图1所示,蜡油原料1与氢气2混合进入第一反应区3,得到硫、氮等杂质含量低的加氢处理物流4。加氢处理物流4在热高压分离器5中进行分离,得到的加氢蜡油6直接出装置,分离得到的气相(包括氢气和轻质馏分油)7与焦化汽油原料8混合后,进入第二反应区9,在汽油加氢精制催化剂存在下进行加氢反应,反应流出物10与柴油原料11混合后进入第三反应区12,在柴油加氢精制催化剂存在下进行加氢反应,然后第三反应区流出物13进入高压分离器14中分离,所得富氢气体15进入脱硫化氢塔16中进行处理,脱除硫化氢后的循环气17经过循环压缩机18增压后循环使用。所得液体19进入分馏塔20,得到气体产品21,汽油22和柴油产品23。下面通过实施例,进一步说明本发明方案和效果。使用原料油的主要性质列于表1,催化剂的主要性质列于表2,加氢处理操作条件列于表3,加氢处理结果列于表4。表1原料油性质
权利要求
1.一种加氢工艺组合方法,包括以下步骤(1)蜡油原料与氢气混合通过第一加氢反应区,加氢处理反应流出物进入热高压分离器中分离,得到气相和液相,液相为优质的催化裂化原料;(2)步骤(1)得到的气相与焦化汽油原料混合,在汽油加氢精制条件下通过第二加氢反应区;(3)步骤( 所得反应流出物与柴油原料混合,在柴油加氢精制条件下通过第三加氢反应区;(4)步骤C3)所得反应流出物进入气液分离器进行分离,得到气体和液体,气体经过处理脱除和NH3后用作循环氢使用,液体经分馏后到汽油和柴油产品。
2.按照权利要求1所述的方法,其特征在于,所述的蜡油原料选自减压瓦斯油、脱浙青油、焦化瓦斯油、重循环油、煤焦油和煤液化油。
3.按照权利要求1所述的方法,其特征在于,步骤(1)所述加氢处理的操作条件为反应压力3. 0 16. OMPa,平均反应温度为260°C 465°C,体积空速0. 1 8. Oh—1,氢油体积比 200 1 2500 1。
4.按照权利要求1所述的方法,其特征在于,第二加氢反应区和第三反应区使用的加氢精制催化剂以VIB族和/或第VIII族金属为活性组分,以氧化铝或含硅氧化铝为载体, 以催化剂的重量为基准,第VIB族金属含量以氧化物计为8wt % ^wt%,第VIII族金属含量以氧化物计为 15wt%,总加氢活性金属以氧化物计为10% 20%。
5.按照权利要求4所述的方法,其特征在于,所述的第VIB族金属为Mo和/或W,第 VIII族金属为Co和/或Ni。
6.按照权利要求1所述的方法,其特征在于,步骤(2)所述的汽油加氢精制操作条件如下反应温度150 350 ,反应压力3. OMPa 12. OMPa,液时体积空速1. OtT1 10. Oh"1, 氢油体积比100 600。
7.按照权利要求1所述的方法,其特征在于,所述的柴油原料为直馏柴油、焦化柴油和催化裂化柴油中的一种或几种,其95%点的馏出温度为240 375°C。
8.按照权利要求1所述的方法,其特征在于,步骤(3)所述的柴油加氢精制操作条件如下反应温度280420°C,反应压力3. OMPa 12. OMPa,液时体积空速1. OtT1 6. Oh"1, 氢油体积比200 1000。
9.按照权利要求1所述的方法,其特征在于,步骤(1)中,第一加氢反应区的流出物在进入热高分前不需换热,所述热高分的操作温度为240 300°C。
全文摘要
本发明公开了一种加氢工艺组合方法。该方法包括,蜡油原料与氢气混合后通过第一加氢反应区,加氢反应流出物进入热高分中分离;所得气相与焦化汽油混合,在汽油加氢精制条件下通过第二加氢反应区;反应流出物直接与柴油原料混合,在柴油加氢精制条件下通过第三加氢反应区,所得反应流出物进行分离和分馏得到轻质产品。本发明利用蜡油加氢的高分气直接与焦化汽油馏分混合取热,一方面能够提升进入焦化汽油加氢反应区的物料的温度,满足反应需求;另一方面可以取消焦化汽油加热炉,从而避免焦化汽油在加热炉加热时产生的炉管结焦以及因此带来的停工问题。
文档编号C10G67/02GK102465030SQ20101053955
公开日2012年5月23日 申请日期2010年11月5日 优先权日2010年11月5日
发明者刘涛, 彭冲, 王仲义, 白振民, 黄新露 申请人:中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1