含氧化铝掺杂剂的陶瓷耐磨材料的制作方法

文档序号:5212805阅读:169来源:国知局
专利名称:含氧化铝掺杂剂的陶瓷耐磨材料的制作方法
技术领域
本发明涉及用于高温应用的陶瓷间隙控制(耐磨的(abradable))材料,而且尤其涉及一种掺杂氧化铝的陶瓷耐磨材料,与其他可商购的陶瓷耐磨材料相比,通过添加氧化铝为该耐磨材料在抗侵蚀(erosion)方面带来显著提高。
背景技术
燃气轮机通常有多种应用,包括航空器引擎和运行温度可能在1000-1200摄氏度和更高范围内的多种其他工业应用。燃气轮机是一种内燃机,一般由空气压缩机、燃烧室和由燃烧的膨胀制品转动的涡轮叶轮构成。它主要通过内燃将流体燃料的化学能转化为机械能。燃气轮机的运行效率随着运行温度的升高而增加,这样能将部件置于增强的压力下,同时使这些部件经受热膨胀。
为了最大化涡轮发动机的运行效率,比较理想的是将涡轮叶片尖端与外罩或外壳间的间隙最小化。为了提供理想的运行速率,过大的间隙会导致很低的燃料效率,而过小的间隙又有涡轮叶片尖端与外罩接触而导致部件损坏的危险。为了解决这个问题,常规的燃气轮机包括一种应用于外罩和/或密封表面的耐磨涂层或密封。这些耐磨涂层或密封可受到旋转的涡轮叶片的切削但不损坏涡轮叶片。此外,耐磨涂层或密封必须对由在涡轮中的固体小颗粒和高气体流速造成的侵蚀保持抗蚀性。侵蚀(erosion)指小颗粒流造成的磨损(wear),类似于磨料磨损(abrasive wear)。
耐磨涂层或密封也必须具有良好的耐磨性、抗碎裂性、低透气性、平滑的表面、良好的老化性能和长期的抗氧化性。
常规燃气轮机可利用多孔陶瓷耐磨材料,如氧化钇稳定的氧化锆(YSZ)(8wt%Y2O3,余量ZrO2)。尽管这种YSZ材料适合用作耐磨材料,但它们相对易碎且容易受侵蚀磨损效应的影响。因此,对于具有可接受的耐磨性能和抗侵蚀性的优良的耐磨材料来说,有一种持续的需求以使得容许间隙(tolerance)能被进一步优化来实现效率和性能的提高。

发明内容
因此,本发明涉及一种陶瓷耐磨材料,用于控制适合工业和/或航空应用的燃气轮机内涡轮叶片尖端与外壳或外罩间的间隙。本发明的陶瓷耐磨材料是一种软性耐磨材料,用于提供更强的抗侵蚀性,同时增强涡轮叶片尖端切入耐磨材料而不致叶片受损的能力。这些特性考虑到了(allow for)燃气轮机内可产生优良效率和性能的最佳容许间隙。
本发明提供一种陶瓷耐磨材料,其包含一种掺杂氧化铝(Al2O3)的氧化钇稳定的氧化锆(YSZ)。在本发明的一个实施方案中,将约0.5到1重量%的氧化铝加入标准氧化钇稳定的氧化锆(如,约8重量%Y2O3,余量ZrO2)。本发明的耐磨材料组合物与常规YSZ耐磨材料相比,表现出抗固体颗粒及高气体流速的侵蚀性的4到5倍的提高。
本发明的实施方案中,也提供掺杂氧化铝的氧化钇稳定的氧化锆组合物用于密封燃气轮机的部件的应用。这包括应用该耐磨材料作为涡轮叶片与容纳燃气轮机的外罩或外壳之间的密封。
因此,本发明提供一种陶瓷耐磨材料,具有优良的抗侵蚀性、耐磨性、抗碎裂性、低透气性、平滑的表面、良好的老化性能和长期的抗氧化性。


所包括的附图提供对本发明进一步的理解,并被引入且构成本说明书的一部分。附图举例说明本发明的实施方案并与本说明书一起用于解释本发明的原理。图中 图1举例说明使用本发明耐磨材料的燃气轮机一部分的横断面视图; 图2显示表面应用了保护性立方氮化硼侵蚀涂层的叶片尖端表面; 图3举例说明用于测试本发明实施方案中的陶瓷耐磨材料的测试设备; 图4举例说明一种用于评估陶瓷耐磨材料对立方氮化硼的耐磨性能的一般试验矩阵(matrix)或“磨损图”; 图5举例说明本发明一个实施方案中掺杂氧化铝的陶瓷耐磨材料组合物与常规材料的对比; 图6提供所选耐磨密封材料的叶片磨损和抗侵蚀性的对比图;以及 图7提供根据本发明一个实施方案形成用于耐磨涂层的粉末的方法之流程图。
具体实施例方式将详细参考本发明的优选实施方案,附图举例说明了其中的例子。
图1举例说明燃气轮机一部分的横断面视图。图1显示固定于叶根130和盘140的叶片120。驱动盘140以便把旋转运动传给叶片120。叶片120也有一个可由磨蚀材料(abrasive material),例如嵌入一种抗蠕变合金基体的立方氮化硼(cBN)制成的磨蚀尖端170。图1也显示起到覆盖或容纳全部燃气轮机作用的外罩部分110或外壳。耐磨密封(材料)150配备于叶片120的磨蚀尖端170和外罩部分110之间。本发明的耐磨密封(材料)150含有掺杂0.5到1重量%氧化铝的氧化钇稳定的氧化锆。用于本发明实施方案中的氧化钇稳定的氧化锆一般可在约6-9重量%Y2O3,余量为ZrO2的范围内。下面的测试结果和说明指的是使用具有约8重量%Y2O3和余量为ZrO2的氧化钇稳定的氧化锆的实施方案。
运行中,旋转动作由盘140传给叶片120。叶片在高温环境以非常高的旋转速率运行。为了将效率和性能最大化,叶片120与外罩部分110之间的容许间隙非常小而且精确。叶片120的旋转导致磨蚀尖端170与耐磨密封150反复接触。磨蚀尖端170能切入到防止叶片120或外罩部分110损坏的耐磨密封150中。本发明的耐磨密封150也对可能由固体小颗粒和高气体流速导致的侵蚀具有抵抗性。
图2显示表面应用常规保护性立方氮化硼磨蚀涂层25的常规叶片尖端35的表面。磨蚀涂层25材料可以是,例如一种可商购的cBN材料。如图2所示的叶片尖端35和磨蚀涂层25已经进行过抗本发明实施方案的氧化铝掺杂的陶瓷耐磨材料的侵入(incursion)试验。叶片尖端35和磨蚀涂层25显示因与由本发明实施方案中的陶瓷耐磨材料制成的外壳涂层接触而无损坏。
图3举例说明用于测定本发明实施方案中陶瓷耐磨材料的测试台300。一般来讲,测试台300包括转子310、活动样本台320和加热设备330。如图3中所示,转子盘310被绝缘外罩315所覆盖,这考虑到加热设备330的火焰燃烧产生的热气的再循环。所提供的叶片或刀片318在每个旋转周期内保持在绝缘的热环境中。陶瓷耐磨材料360可被加热到1200摄氏度,在尖端速率达到410m/s时测试抗叶片318的侵入,侵入速率范围在2到2000微米每秒之间。测试台模拟燃气轮机的条件而且可分析耐磨材料360上的磨损。
图4举例说明一般的试验矩阵或“磨损图”,用于根据本发明在不同叶片尖端速率和侵入速率,耐磨材料的侵入测试。磨损图所列举的测试条件给出了一般在航空或电力轮机中通常可能遇到的标准叶片尖端入条件的概观。
图5提供本发明实施方案的耐磨材料(图5中名为“掺杂Al2O3”的材料)与常规陶瓷耐磨材料(可商购的来自Sulzer Metco公司的SM 2460和XPT 395)的对比说明。如前所述,本发明的耐磨材料提供优良的抗侵蚀性,这一点结合图6进行了进一步讨论。
图6提供对使用常规陶瓷耐磨材料(SM 2460和XPT 395)和本发明实施方案中的材料(特指图中“掺杂Al2O3”的材料)的外壳密封的测试中的叶片磨损度和抗侵蚀性能的对比图。根据上述关于图3概括的程序测试每种材料的外壳涂层,并如图6所示绘图。一般来说,这些数据显示,利用标准侵蚀测试,使用本发明实施方案的材料使涂层对固体颗粒的抗侵蚀性提高4至5倍之多,不会损害耐磨性。每种涂层的耐磨性由侵入测试后受到的叶片磨损量表示。根据叶片尖端在测试中经受的总侵入距离的百分比来测量叶片磨损。对于图6所示的三种耐磨涂层,叶片磨损百分数或略呈正性,即材料已经从叶片尖端被磨掉,或呈负性,即材料已在切削过程中被从陶瓷耐磨材料转移至叶片尖端,因此让叶片得到“增长”。在抗侵蚀性方面,大于1.0sec/mil的GE侵蚀值表示一台发动机有可接受的抗侵蚀性能。标准耐磨材料XPT 395和SM2460分别具有1.2和0.7sec/mil的GE侵蚀值。掺杂氧化铝的耐磨材料因6.3sec/mil的GE侵蚀值而具有高得多的抗侵蚀性能,结合其相当的耐磨性,可得到一种比两种标准耐磨材料性能更好的产品。
一般来说,可以许多常规形式提供本发明实施方案中的材料,如部分稳定的粉末形式,如单独成分烧结的聚结粉末,如部分稳定粉末的浆料,或者如化学溶液。参照图7,提供形成用于耐磨涂层的粉末的方法700。一般来说,可以通过常规喷雾干燥工艺制造本发明的耐磨材料组合物,其中步骤705中,按照前述重量百分比混合氧化钇、氧化锆和氧化铝。步骤710中,可将这些材料与粘合剂、水及消泡剂一同混入混合槽。可将产生的混合物泵入混合槽并通过喷嘴以产生液滴。步骤715中,将微滴喷入高温环境蒸馏出水分,剩下微粒聚结形成本发明的前体喷雾干燥粉末。步骤720中,耐磨材料粉末可接着经历进一步球化(spherodizing,HOSP)工艺,其中将上述颗粒通过一个重型等离子区供给,该等离子区可将该材料熔合以生产空心陶瓷球形颗粒,这种颗粒是一种粉末前体成分的固溶体。
耐磨材料应用前,在步骤725中可筛选经过HOSP的颗粒并将其与孔隙生成相(如,聚酯)混合在一起,然后利用等离子热喷涂工艺将其沉淀于外壳密封部分。可以利用热喷涂方法,在与相关美国专利申请No.6,887,530和5,530,050所述的组合物类似的组合物中应用所得的耐磨材料。例如在一个实施方案中,混合粉末可含有掺杂氧化铝的氧化钇稳定的氧化锆组分和涂有陶瓷的塑料组分。涂有陶瓷的塑料组分通过下列方法制成用塑芯颗粒摩擦碾磨陶瓷微细颗粒,使陶瓷细微颗粒在不使用粘合剂的情况下粘合于塑芯表面。另一个实施方案中,掺杂氧化铝的氧化钇稳定的氧化锆组分可与固体润滑剂和用于形成三相耐磨密封的基体成形金属合金相结合。有些可商购的陶瓷耐磨材料也利用了六方晶体氮化硼“错位剂(dislocator)”相的用途,在叶片尖端侵入涂层微观结构,如,XPT 395过程中有助于清除颗粒。相似的技术也可用于本发明的一些方面。
虽然本发明的典型实施方案在此已经说明和描述,但对于本领域技术人员来说,显然这样的实施方案仅仅是以举例的方式提供的。只要未偏离本申请人在此公开的本发明范围,大量非实质性变化、改动和取代对本领域技术人员来说将很明显。因此,本发明只受被允许的权利要求书的精神和范围的限制。
权利要求
1.一种耐磨陶瓷密封材料,其含有掺杂氧化铝(Al2O3)的氧化钇(Y2O3)稳定的氧化锆(ZrO2)。
2.权利要求1的材料,其中该材料包含约0.5到1重量%的氧化铝。
3.权利要求2的材料,其中该材料包含约6-9重量%的氧化钇;和余量为氧化锆,附带的组分和杂质。
4.权利要求2的材料,其中该材料包含约8重量%的氧化钇;和余量为氧化锆,附带的组分和杂质。
5.权利要求2的陶瓷材料,其中可以部分稳定的粉末形式,如单独成分的聚结粉末,如部分稳定粉末的浆料,或者如化学溶液提供该材料。
6.一种燃气轮机系统,包括至少一个涡轮叶片;固定于该至少一个涡轮叶片顶面上的磨蚀尖端;容纳至少一个涡轮叶片的外壳;以及沉淀于该至少一个涡轮叶片和该外壳间的耐磨密封,其中该耐磨密封包含掺杂0.5到1重量%氧化铝的氧化钇稳定的氧化锆。
7.权利要求6的燃气轮机系统,其中所述氧化钇稳定氧化锆包含约6-9重量%的氧化钇;和余量为氧化锆,附带的组分和杂质。
8.权利要求6的燃气轮机系统,其中所述氧化钇稳定的氧化锆包含约8重量%的氧化钇;和余量为氧化锆,附带的组分和杂质。
9.一种形成用于耐磨涂层的粉末的方法,包括提供一种掺杂0.5到1重量%氧化铝的氧化钇稳定的氧化锆材料;将该材料与粘合剂、水和消泡剂混合形成一种混合物;和在足够高的温度中喷涂上述混合物的液滴,以便蒸馏出水分并形成微粒。
10.权利要求9的方法,还包括将上述颗粒经过等离子球化工艺以生产空心陶瓷球形颗粒的步骤。
11.权利要求10的方法,还包括将上述颗粒与孔隙生成相混合的步骤。
12.在外壳上应用耐磨密封的方法,包括将孔隙生成材料与陶瓷球形颗粒混合,该陶瓷球形颗粒为一种掺杂0.5到1重量%氧化铝的氧化钇稳定的氧化锆的固溶体;利用等离子热喷涂方法将混合后的材料施加于外壳密封部分上。
全文摘要
本发明提供一种耐磨陶瓷密封材料,其含有掺杂氧化铝(Al
文档编号F01D11/08GK1880276SQ20061009962
公开日2006年12月20日 申请日期2006年6月15日 优先权日2005年6月16日
发明者A·尼科尔, S·威尔逊 申请人:苏舍美特科(美国)公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1