一种光电化学电池的光电极的制备方法

文档序号:9805100阅读:604来源:国知局
一种光电化学电池的光电极的制备方法
【技术领域】
[0001 ]本发明涉及一种光电化学电极的制备方法,尤其涉及将一种纳米材料催化剂负载到另一种纳米材料复合制备光电化学电池光电极的方法。
【背景技术】
[0002]随着社会的不断发展,人民生活水平的日益提高,带来的是能源的大量消耗和环境的严重恶化。其中能源危机问题越来越严重,世界各国为了解决这个问题都在大力发展新型可利用清洁能源。太阳能是迄今最大的清洁能源,太阳每秒向地球表面发射12000TW的能量,每年照射到地球上的太阳能是每年能消耗能源总量的10000倍。因此,有效的利用太阳能是解决当今社会能源危机的最佳途径。
[0003]在当今,太阳能电池正在以每年35%的增长速度迅速发展着,在这样喜人的情势下,相信只要能够利用好太阳能,在不久的将来能源问题会被成功解决。然而太阳能电池有一个很大问题就是它只在白天产生电力,因此,太阳能电池的大规模应用仍需要一个有效的能量储存方式,其中有效可行的方式之一就是以化学能载体储存。氢气就是未来能源载体的有利竞争者,氢气可以由水分解产生,并且燃烧后的产物是水,不会产生任何污染。因此,利用太阳能分解水生产氢气是将太阳能存储的最佳方式之一。目前,通过利用半导体材料的光催化作用,将半导体制成光化学电池的光电极,为利用太阳光来分解水产生氢气提供了新的途径。
[0004]能够有效的使光分解水生产氢气的光电材料应具备以下优点:1、强力有效的光吸收性;2、在有无光照时都能保持稳定的化学性;3、合适的导带价带边缘位置,有利于水的氧化还原;4、半导体中的有效载流子传输;5、氧化还原反应中的整体电压变换较低;6、低成本。但是现有的半导体材料难以同时满足上述全部优点,因而在满足部分优点后改善剩下的方面对于提高光解水的效率显得尤为重要。
[0005]现有技术中,主要致力于提高光吸收和有效载流子传输的研究,通常利用的手段有:1、掺杂不同的粒子来改变半导体的带隙;2、设计合适的纳米结构来缩短扩散长度,从而降低电子空穴对的复合,如一维结构;3、在半导体表面引入合适的共催化剂来促进电子(空穴)与电解液的反应;4、构建异质结来抑制电子空穴对的复合,加速载流子的分离。当然,除了以上提到的手段之外,还有许多其他的手段可以用来提高光分解水效率。
[0006]然而,不管通过何种手段,光电极的比表面积有限,陷光性较弱,限制了与电解液的接触面积,因而光解水效率较低。

【发明内容】

[0007]为解决上述技术问题,本发明的目的是提供一种制备过程简单、能够有效提高光分解水效率、通过将半导体材料复合共催化剂制备光电化学电池的光电极的方法。
[0008]为达到上述目的,本发明提供一种光电化学电池的光电极的制备方法,包括步骤:
[0009](I)合成二氧化钛纳米棒阵列;
[0010](2)制备以镍钴氢氧化物为共催化剂的溶液;
[0011](3)将所述步骤(2)中的溶液转移到封端瓶中,将所述步骤(I)中的二氧化钛纳米棒面朝下倾斜放置于封端瓶中,然后将封端瓶置于80°C的水中,在该温度下反应2小时50分钟,反应结束后,取出二氧化钛纳米棒并用去离子水清洗干净,然后在空气中60°C烘干,得到二氧化钛/镍钴氢氧化物复合电极样品。
[0012]进一步的,所述步骤(3)中的镍钴氢氧化物在二氧化钛纳米棒上的沉积量通过改变水浴反应时间进行调控。
[0013]进一步的,所述步骤(I)中通过以下步骤合成二氧化钛纳米棒阵列:
[0014](1.1)将导电基底分别在丙酮,酒精和去离子水中均超声清洗20分钟;
[0015](1.2)将ImL钛酸四丁酯,0.269g无水柠檬酸加入30mL去离子水和30mL盐酸的混合溶剂中持续搅拌至均匀混合;
[0016](1.3)使用移液枪量取1mL所述步骤(1.2)中的溶液转移到体积为20mL的以聚四氟乙烯为内衬的不锈钢高压釜中,将清洗好的导电基底的导电面朝下倾斜放置于高压釜内衬中,将高压釜密封后置于烘箱中,20分钟升温到150°C,并在该温度下保持6小时,待反应结束后自然冷却到室温,从高压釜中取出样品,并用去离子水和酒精进行清洗,将清洗后的样品在空气中60 °C烘干2小时;
[0017](1.4)将烘干的样品放入退火炉中在500°C下煅烧2小时,升温速率为两度每分钟,自然降温后得到二氧化钛纳米棒阵列样品。
[0018]进一步的,所述步骤(2)中将0.29Ig六水合硝酸镍、0.582g六水合硝酸钴、1.5g尿素加入50mL的去离子水中搅拌均匀,得到镍钴氢氧化物溶液。
[0019]进一步的,所述导电基底为氟掺杂氧化锡导电玻璃。
[0020]进一步的,所述步骤(1.2)中盐酸的质量比为36-38%。
[0021]借由上述方案,本发明至少具有以下优点:利用二氧化钛纳米棒阵列与镍钴氢氧化物纳米薄片复合得到光电化学电极,形成的分支结构可以有效的增大电极的比表面积,有利于增强陷光性,并与电解液充分接触;同时共催化剂的引入可以有效的促进空穴与电解液发生反应。本发明制备的光电极相较于传统的单一电极,大大提高了光分解水的效率,在1.8V的电压下光电流提高到之前的3.2-14.2倍,因此本发明的方法是提高光分解水效率的切实可行的手段。
[0022]通过本发明的方法制备的半导体光电极能够促进空穴与电解液中反应物反应,有利于提高电子空穴对分离;同时由于陷光性的提高,也大大提高了对光的利用效率。与传统单一半导体电极相比,本发明通过复合方法制备的光电极还克服了单一半导体电极载流子迀移率低等缺点,有效的提高了光解水效率,且本发明的方法制备过程比较简单,原材料充足、价格低,有利于大规模生产,具有巨大的潜在应用价值。
[0023]上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
【附图说明】
[0024]图1为本发明所制备的光电极材料结构的SEM(扫描电子显微镜)图;
[0025]图2为本发明不同电极在不同电压下的光分解水的特性曲线图。
【具体实施方式】
[0026]下面结合附图和实施例,对本发明的【具体实施方式】作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
[0027]本发明提供了一种光电化学电池的光电极的制备方法,该光电极是通过将半导体材料复合共催化剂的方法制备得到的。具体方法是先通过水热法在FTO导电玻璃上合成二氧化钛纳米棒阵列,经过退火过程提高样品的结晶度;然后通过水浴的方法在二氧化钛纳米棒上负载镍钴氢氧化物共催化剂;清洗烘干后得到需要的电极材料。在本发明中,将制备的电极材料制作成电极作为光电化学电池的工作电极,铂电极作为对电极,电解液为IM的氢氧化钾(KOH)水溶液,即可组装成光电化学电池。
[0028]实施案例一:将FTO(氟掺杂氧化锡)导电玻璃按照丙酮,酒精和去离子水的顺序各超声清洗20分钟;取ImL钛酸四丁酯,0.269g无水梓檬酸加入30mL去离子水和30mL盐酸(质量比为36-38% )的混合溶剂中持续搅拌至均匀混合;使用移液枪量取1mL刚配制的溶液转移到体积为20mL的以聚四氟乙烯为内衬的不锈钢高压釜中,把清洗好的FTO导电玻璃导电面朝下倾斜放置于高压釜内衬中,然后将高压釜密封后置于烘箱中,20分钟升温到150°C,并在该温度下保持6小时,待反应结束后自然冷却到室温后,从高压釜中取出样品,并
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1