电极用糊剂组合物、太阳能电池元件以及太阳能电池的制作方法

文档序号:7253328阅读:145来源:国知局
电极用糊剂组合物、太阳能电池元件以及太阳能电池的制作方法
【专利摘要】本发明提供一种电极用糊剂组合物,其包含含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子、玻璃粒子、溶剂和树脂。
【专利说明】电极用糊剂组合物、太阳能电池元件以及太阳能电池
【技术领域】
[0001]本发明涉及电极用糊剂组合物、太阳能电池元件以及太阳能电池。
【背景技术】
[0002]通常,在硅系太阳能电池的受光面及背面形成有电极。为了将通过光的入射而在太阳能电池内转换而成的电能高效地输出至外部,需要使上述电极的体积电阻率充分低、以及与硅基板形成良好的欧姆接触。尤其对受光面的电极而言,为了将太阳光的入射量损失抑制至最低限度,而存在减小电极宽度、且提高电极的纵横比的倾向。
[0003]用于太阳能电池的受光面的电极通常以如下方式形成。即,在P型硅基板的受光面侧形成纹理(凹凸),接着使磷等在高温下进行热扩散而形成η型硅层,再通过丝网印刷等在该η型硅层上赋予导电性组合物,然后在大气中以800°C?900°C对其进行烧成,由此形成受光面电极。形成该受光面电极的导电性组合物中包含导电性金属粉末、玻璃粒子及各种添加剂等。
[0004]作为上述导电性金属粉末,通常使用银粉末。作为其原因,可列举:银粒子的体积电阻率低至1.6Χ10_6Ω.cm;在上述烧成条件下银粒子自还原并发生烧结;可与硅基板形成良好的欧姆接触;以及焊料材料对于包含银粒子的电极的润湿性优异,在利用玻璃基板等密封太阳能电池元件的所谓模块化中,可适宜地粘接将太阳能电池元件间电连接的极耳线(tabline)等布线材料。
[0005]如上述所示,含有银粒子的导电性组合物作为太阳能电池的电极表现出优异的特性。另一方面,由于银为贵金属且原料金属本身的价格高,因此期望提出一种代替含有银的导电性组合物的导电性组合物,另外,就资源的问题而言,也期望提出一种代替含有银的导电性组合物的导电性组合物。作为有希望代替银的材料,可列举应用于半导体布线材料的铜。铜不仅资源丰富,而且原料金属成本低廉至银的约百分之一。但是,铜是在大气中在200°C以上的高温下容易被氧化的材料,难以通过上述工序来形成电极。
[0006]为了解决铜存在的上述课题,报道了利用各种方法对铜赋予耐氧化性、并且即使进行高温烧成也难以被氧化的铜粒子(参照日本特开2005-314755号公报及日本特开
2004-217952 号公报)。

【发明内容】

[0007]发明所要解决的课题
[0008]但是,即使是上述文献中记载的铜粒子,其具有的耐氧化性至多达到300°C为止,在800°C?900°C的高温下大多会被氧化,因此作为太阳能电池用电极尚未达到实用水平。此外,还存在如下课题:为了赋予耐氧化性而应用的添加剂等阻碍烧成中的铜粒子的烧结,结果无法获得如银那样的低体积电阻率的电极。
[0009]另外,作为抑制铜的氧化的其它方法,可列举在氮气等环境下对将铜用于导电性金属粉末的导电性组合物进行烧成这一特殊的工序。[0010]但是,在使用上述方法时,为了完全地抑制铜粒子的氧化而需要利用上述环境气体进行完全密封的环境,在工序成本方面不适合太阳能电池元件的批量生产。
[0011]作为用来将铜应用于太阳能电池电极的另一个课题,可列举与硅基板的欧姆接触性。即,即使在高温烧成中能够不使包含铜的电极氧化而形成该电极,有时也会因金属铜与硅基板直接接触而产生铜与硅的相互扩散、并在电极与硅基板的界面形成包含铜和硅的反应物相(Cu3Si)。
[0012]该Cu3Si的形成会自硅基板的界面开始延及至数μ m为止,有时会在硅基板侧产生龟裂。另外,还存在如下的情况:贯穿事先形成于硅基板上的η型硅层,使太阳能电池所具有的半导体性能(pn结特性)劣化。另外,还存在如下的可能性:所形成的Cu3Si抬高包含铜的电极等,而阻碍电极与硅基板的密接性,导致电极的机械强度降低。
[0013]本发明是鉴于上述课题而完成的发明,其目的在于提供电极用糊剂组合物、以及具有使用该电极用糊剂组合物而形成的电极的太阳能电池元件及太阳能电池,上述电极用糊剂组合物是如下的组合物:可形成电阻率低的电极,进而可形成具有与硅基板的良好欧姆接触的含有铜的电极。
[0014]用于解决上述课题的手段
[0015]本发明人等为了解决上述课题而进行了深入研究,结果完成了本发明。即,本发明包括以下方案。
[0016]< I >一种电极用糊剂组合物,其包含含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子、玻璃粒子、溶剂和树脂。
[0017]< 2 >根据< I >所述的电极用糊剂组合物,其中,上述含有磷的铜合金粒子的磷含有率为6质量%以上且8质量%以下。
[0018]< 3 >根据< I >或< 2 >所述的电极用糊剂组合物,其中,上述含有锡的粒子是选自锡粒子及锡含有率为I质量%以上的锡合金粒子中的至少一种。
[0019]< 4 >根据< I >?< 3 >中任一项所述的电极用糊剂组合物,其中,上述含有镍的粒子是选自镍粒子及镍含有率为I质量%以上的镍合金粒子中的至少一种。
[0020]< 5 >根据< I >?< 4 >中任一项所述的电极用糊剂组合物,其中,上述玻璃粒子的玻璃软化点为650°C以下,上述玻璃粒子的结晶化起始温度超过650°C。
[0021]< 6 >根据< I >?< 5 >中任一项所述的电极用糊剂组合物,其中,将上述含有磷的铜合金粒子、上述含有锡的粒子及上述含有镍的粒子的总含有率设为100质量%时,上述含有锡的粒子的含有率为5质量%以上且70质量%以下。
[0022]< 7 >根据< I >?< 6 >中任一项所述的电极用糊剂组合物,其中,将上述含有磷的铜合金粒子、上述含有锡的粒子及上述含有镍的粒子的总含有率设为100质量%时,上述含有镍的粒子的含有率为10质量%以上且60质量%以下。
[0023]< 8 >根据< I >?< 7 >中任一项所述的电极用糊剂组合物,其中,上述含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子的总含有率为70质量%以上且94质量%以下,上述玻璃粒子的含有率为0.1质量%以上且10质量%以下,上述溶剂及上述树脂的总含有率为3质量%以上且29.9质量%以下。
[0024]< 9 >根据< I >?< 8 >中任一项所述的电极用糊剂组合物,其还含有银粒子。
[0025]< 10 >根据< 9 >所述的电极用糊剂组合物,其中,将上述含有磷的铜合金粒子、上述含有锡的粒子、上述含有镍的粒子及上述银粒子的总含有率设为100质量%时,上述银粒子的含有率为0.1质量%以上且10质量%以下。
[0026]< 11 >根据< 9 >或< 10 >所述的电极用糊剂组合物,其中,上述含有磷的铜合金粒子、含有锡的粒子、上述含有镍的粒子及银粒子的总含有率为70质量%以上且94质量%以下,上述玻璃粒子的含有率为0.1质量%以上且10质量%以下,上述溶剂及上述树脂的总含有率为3质量%以上且29.9质量%以下。
[0027]〈 12 >一种太阳能电池兀件,其具备具有pn结的娃基板和被赋予到上述娃基板上的电极,上述电极是< I >?< 11 >中任一项所述的电极用糊剂组合物的烧成物。
[0028]< 13 >根据< 12 >所述的太阳能电池元件,其中,上述电极包含Cu-Sn-Ni合金相及Sn-P-O玻璃相。
[0029]< 14 >根据< 13 >所述的太阳能电池元件,其中,上述Sn-P-O玻璃相配置在上述Cu-Sn-Ni合金相与上述娃基板之间。
[0030]< 15 >一种太阳能电池,其具有< 12 >?< 14 >中任一项所述的太阳能电池元件和配置在上述太阳能电池元件的电极上的布线材料。
[0031]发明效果
[0032]根据本发明,可以提供电极用糊剂组合物、以及具有使用该电极用糊剂组合物而形成的电极的太阳能电池元件及太阳能电池,上述电极用糊剂组合物是如下的组合物:可形成电阻率低的电极,进而可形成具有与硅基板的良好欧姆接触的含有铜的电极。
【专利附图】

【附图说明】
[0033]图1是表示本发明的硅系太阳能电池元件的一例的示意剖面图。
[0034]图2是表示本发明的硅系太阳能电池元件的受光面的一例的示意俯视图。
[0035]图3是表示本发明的硅系太阳能电池元件的背面的一例的示意俯视图。
[0036]图4是表示本发明的背面接触型太阳能电池元件的背面侧电极结构的一例的示意俯视图。
[0037]图5是表示本发明的背面接触型太阳能电池元件的AA剖面构成的一例的示意立体图。
[0038]图6是表示本发明的背面接触型太阳能电池元件的AA剖面构成的一例的示意立体图。
[0039]图7是表示本发明的背面接触型太阳能电池元件的AA剖面构成的一例的示意立体图。
【具体实施方式】
[0040]在本说明书中,“工序”这一用语不仅是指独立的工序,即使在无法与其它工序明确地加以区分的情况下,只要能够实现该工序的预期目的,则也包含于本用语中。另外,在本说明书中,使用“?”所示的数值范围表示分别包括“?”前后所记载的数值作为最小值及最大值的范围。进而,在本说明书中,当提及组合物中的各成分的量时,在组合物中存在多种属于各成分的物质的情况下,只要事先无特别说明,则表示组合物中存在的该多种物质的总量。[0041]<电极用糊剂组合物>
[0042]本发明的电极用糊剂组合物包含至少一种含有磷的铜合金粒子、至少一种含有锡的粒子、至少一种含有镍的粒子、至少一种玻璃粒子、至少一种溶剂和至少一种树脂。通过该构成,使在大气中烧成时的铜的氧化得到抑制,可形成电阻率低的电极。进而,使铜与硅基板的反应物相的形成得到抑制,所形成的电极与硅基板可形成良好的欧姆接触。其理由例如可以考虑如下。
[0043]首先,在对上述电极用糊剂组合物进行烧成处理时,通过上述含有磷的铜合金粒子与含有锡的粒子的反应,从而形成Cu-Sn合金相及Sn-P-O玻璃相。通过Cu-Sn合金相的形成,从而可以形成低体积电阻率的电极。在此,由于Cu-Sn合金相从500°C左右这样的较低温度生成,因此可以期待能够实现电极的低温烧成、能够削减工艺成本的效果。此外,上述电极用糊剂组合物进一步包含含有镍的粒子。由此认为Cu-Sn合金相与含有镍的粒子进一步发生反应而形成Cu-Sn-Ni合金相。由于即使在800°C这样的较高温度下也能够形成该Cu-Sn-Ni合金相,因此认为即使在更高温的烧成工序中也能够在确保耐氧化性的状态下形成低体积电阻率的电极。即,通过使用上述电极用糊剂组合物,从而能够应对电极的低温烧成到高温烧成的各种条件。因此,上述电极用糊剂组合物能够广泛地用作后述的各种结构的太阳能电池的电极材料。
[0044]对于上述Cu-Sn-Ni合金相而言,Cu-Sn-Ni合金相彼此、或Cu-Sn-Ni合金相与根据烧成条件而进一步形成的Cu-Sn合金相一起在电极内形成致密的块体,并作为导电层发挥功能,由此形成电阻率低的电极。另外,认为:即使Cu-Sn合金相与Cu-Sn-Ni合金相在电极内混存,也不会使功能(例如低体积电阻率)降低。此外,在此所说的“致密的块体”是指:块状的Cu-Sn合金相及Cu-Sn-Ni合金相相互紧密地接触,形成三维连接而成的结构。
[0045]此外,当使用上述电极用糊剂组合物在包含硅的基板(以下,也简称为“硅基板”)上形成电极时,可形成对于硅基板的密接性高的电极,进而可实现电极与硅基板的良好的欧姆接触。
[0046]其理由例如可以考虑如下。含有磷的铜合金粒子、含有锡的粒子和含有镍的粒子在烧成工序中相互进行反应,从而形成包含Cu-Sn-Ni合金相、Sn-P-O玻璃相和根据烧成条件而形成的Cu-Sn合金相的电极。由于上述Cu-Sn-Ni合金相及根据烧成条件而形成的Cu-Sn合金相为致密的块体,因此该Sn-P-O玻璃相形成在Cu-Sn-Ni合金相与硅基板之间、或者Cu-Sn-Ni合金相及Cu-Sn合金相与娃基板之间。由此可以认为Cu-Sn合金相及Cu-Sn-Ni合金相对硅基板的密接性提高。此外可认为:由于Sn-P-O玻璃相作为用于防止铜和硅的相互扩散的阻隔层而发挥功能,因此可实现经烧成而形成的电极与硅基板的良好的欧姆接触。即认为:可抑制在包含铜的电极与硅直接接触而进行加热时所形成的反应物相(Cu3Si)的形成,在不使半导体性能(例如pn结特性)劣化的情况下保持与硅基板的密接性,并且表现出良好的欧姆接触。
[0047]S卩,通过在上述电极用糊剂组合物中将含有锡的粒子和含有镍的粒子与含有磷的铜合金粒子组合,首先,利用含有磷的铜合金粒子中的磷原子对于铜氧化物的还原性而形成耐氧化性优异、体积电阻率低的电极;其次,通过含有磷的铜合金粒子与含有锡的粒子及含有镍的粒子的反应,从而在确保体积电阻率低的状态下形成包含Cu-Sn-Ni合金相及根据烧成条件而形成的Cu-Sn合金相的导电层和Sn-P-O玻璃相。而且可认为:例如由于Sn-P-O玻璃相作为用于防止铜和硅的相互扩散的阻隔层而发挥功能,因此在一系列的烧成工序中可以同时实现抑制在电极与硅基板之间形成反应物相、形成与铜电极的良好欧姆接触这两种特征性机制。
[0048]这样的效果只要在使用本发明的电极用糊剂组合物而在包含硅的基板上形成电极的情况下通常都会得到体现,包含硅的基板的种类并无特别限制。作为包含硅的基板,可列举:太阳能电池形成用的硅基板、在除太阳能电池以外的半导体设备的制造中使用的硅
基板等。
[0049](含有磷的铜合金粒子)
[0050]上述电极糊剂组合物包含至少一种含有磷的铜合金粒子。作为含磷的铜合金,已知有被称为磷铜钎料(磷浓度:7质量%左右以下)的钎焊材料。磷铜钎料也可用作铜与铜的接合剂,通过将含有磷的铜合金粒子用于本发明的电极用糊剂组合物中,从而可利用磷对于铜氧化物的还原性而形成耐氧化性优异、体积电阻率低的电极。进而,可获得以下效果:能够实现电极的低温烧成、能够削减工艺成本。
[0051]作为本发明中的含有磷的铜合金中所含有的磷的含有率,从耐氧化性和低体积电阻率的观点出发,磷的含有率优选为6质量%以上且8质量%以下,更优选6.3质量%以上且7.8质量%以下,进一步优选6.5质量%以上且7.5质量%以下。通过使含有磷的铜合金中所含有的磷的含有率为8质量%以下,从而可实现更低的电阻率,并且使含有磷的铜合金粒子的生产率优异。此外,通过使磷的含有率为6质量%以上,从而可实现更优异的耐氧化性。
[0052]上述含有磷的铜合金粒子中的磷的含有率可以使用高频感应耦合等离子体发射光谱分析(ICP-AES)装置来进行测定。
[0053]上述含有磷的铜合金粒子为含有铜和磷的合金,也可以进一步含有其它原子。作为其它原子,可列举:Ag、Mn、Sb、S1、K、Na、L1、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、T1、Co、N1、Au 等。
[0054]此外,关于上述含有磷的铜合金粒子中所含有的其它原子的含有率,例如在上述含有磷的铜合金粒子中可以设为3质量%以下,从耐氧化性和低体积电阻率的观点出发,优选为I质量%以下。
[0055]此外,本发明中,上述含有磷的铜合金粒子可以单独使用I种或者组合物使用两种以上。
[0056]上述含有磷的铜合金粒子的平均粒径并无特别限制,作为累计的重量为50%时的平均粒径(以下,有时简称为“D50%”),优选为0.4μπι?10 μ m,更优选为Ιμπι?7μπι。通过使该平均粒径为0.4 μ m以上,从而使耐氧化性更有效地提高。此外,通过使该平均粒径为IOym以下,从而使含有磷的铜合金粒子之间、或者含有磷的铜合金粒子与后述的含有锡的粒子及含有镍的粒子之间的接触面积变大,使所形成的电极的体积电阻率更有效地降低。另外,含有磷的铜合金粒子的平均粒径通过Microtrac粒度分布测定装置(日机装公司制造,MT3300型)来测定。
[0057]作为上述含有磷的铜合金粒子的形状,并无特别限制,可以为大致球状、扁平状、块状、板状、鳞片状等中的任一种,从耐氧化性和低体积电阻率的观点出发,优选为大致球状、扁平状或板状。[0058]电极用糊剂组合物中的含有磷的铜合金粒子的含有率并无特别限制。从低体积电阻率的观点出发,优选在电极用糊剂组合物中为15质量%以上且75质量%以下,更优选为18质量%以上且70质量%以下,进一步优选为20质量%以上且65质量%以下。
[0059]电极用糊剂组合物中的含有磷的铜合金粒子的含有率可以使用高频感应耦合等离子体发射光谱分析(ICP-AES)装置或高频感应耦合等离子体质谱分析(ICP-MS)装置来测定。另外,在使用这些装置对含有磷的铜合金粒子的含有率进行测定时,在从电极用糊剂组合物去除溶剂后的状态下进行测定。
[0060]含有磷的铜合金可利用通常所使用的方法来制造。此外,含有磷的铜合金粒子可使用按照成为所需的磷含有率的方式制备而成的含有磷的铜合金,并利用制备金属粉末的通常的方法来制备,例如可利用水雾化法并按照通常的方法来制造。另外,水雾化法的详细情况可参照金属便览(丸善(株)出版事业部)等的记载。
[0061]具体而言,使含有磷的铜合金溶解,通过喷嘴喷雾将其粉末化后,对所获得的粉末进行干燥、分级,由此可制造所需的含有磷的铜合金粒子。另外,可通过适当选择分级条件来制造具有所需平均粒径的含有磷的铜合金粒子。
[0062](含有锡的粒子)
[0063]上述电极用糊剂组合物包含至少一种含有锡的粒子。通过包含含有锡的粒子,从而在后述的烧成工序中可形成体积电阻率低的电极。
[0064]作为上述含有锡的粒子,只要是含有锡的粒子,则并无特别限制。其中,优选为选自锡粒子及锡合金粒子中的至少一种,更优选为选自锡粒子及锡含有率为I质量%以上的锡合金粒子中的至少一种。
[0065]锡粒子中的锡的纯度并无特别限制。例如锡粒子的纯度可以设定为95质量%以上,优选为97质量%以上,更优选为99质量%以上。
[0066]此外,锡合金粒子只要是含有锡的合金粒子,则合金的种类并无特别的限制。其中,从锡合金粒子的熔点、以及与含有磷的铜合金粒子及含有镍的粒子的反应性的观点出发,优选锡的含有率为I质量%以上的锡合金粒子,更优选锡的含有率为3质量%以上的锡合金粒子,进一步优选锡的含有率为5质量%以上的锡合金粒子,特别优选锡的含有率为10质量%以上的锡合金粒子。
[0067]含有锡的粒子中的锡的含有率可以使用荧光X射线分析(XRF)装置(例如堀场制作所(株)制造的MESA-500W型)来测定。
[0068]作为锡合金粒子,可列举Sn-Ag系合金、Sn-Cu系合金、Sn-Ag-Cu系合金、Sn-Ag-Sb系合金、Sn-Ag-Sb-Zn 系合金、Sn-Ag-Cu-Zn 系合金、Sn-Ag-Cu-Sb 系合金、Sn-Ag-Bi 系合金、Sn-Bi系合金、Sn-Ag-Cu-Bi系合金、Sn-Ag-1n-Bi系合金、Sn-Sb系合金、Sn-B1-Cu系合金、Sn-B1-Cu-Zn系合金、Sn-B1-Zn系合金、Sn-B1-Sb-Zn系合金、Sn-Zn系合金、Sn-1n系合金、Sn-Zn-1n系合金、Sn-Pb系合金等。
[0069]上述锡合金粒子中,尤其是Sn-3.5Ag、Sn_0.7Cu、Sn_3.2Ag-0.5Cu、Sn_4Ag-0.5Cu、Sn-2.5Ag-0.8Cu-0.5Sb、Sn_2Ag-7.5B1、Sn_3Ag_5B1、Sn_58B1、Sn-3.5Ag-3In_0.5B1、Sn-3B1-8Zn、Sn-9Zn、Sn-52In、Sn-40Pb等锡合金粒子具有与Sn所具有的熔点(232°C )相同或比其低的熔点。因此,从可通过在烧成的初始阶段熔融而覆盖含有磷的铜合金粒子的表面、并与含有磷的铜合金粒子均匀地反应的方面考虑,可以适宜使用这些锡合金粒子。另夕卜,当锡合金粒子的表述为例如Sn-AX-BY-CZ时,表示在锡合金粒子中包含A质量%的元素X、B质量%的元素Y、C质量%的元素Z。
[0070]在本发明中,这些含有锡的粒子可单独使用I种,也可组合使用两种以上。
[0071]上述含有锡的粒子也可进一步包含不可避免地混入的其它原子。作为不可避免地混入的其它原子,例如可列举:Ag、Mn、Sb、S1、K、Na、L1、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、T1、Co、N1、Au 等。
[0072]关于上述含有锡的粒子中所含有的其它原子的含有率,例如在上述含有锡的粒子中可以设为3质量%以下,从熔点及与含有磷的铜合金粒子的反应性的观点出发,优选为I质量%以下。
[0073]作为上述含有锡的粒子的平均粒径,并无特别限制,以D50%计,优选为0.5 μ m?20 μ m,更优选为I μ m?15 μ m,进一步优选为5 μ m?15 μ m。通过使该平均粒径为0.5 μ m以上,从而使含有锡的粒子本身的耐氧化性提高。此外,通过使该平均粒径为20μπι以下,从而使与电极中的含有磷的铜合金粒子及含有镍的粒子的接触面积变大,使烧成中的反应更有效地进行。
[0074]此外,作为上述含有锡的粒子的形状,并无特别限制,可以是大致球状、扁平状、块状、板状、鳞片状等中的任一种,从耐氧化性和低体积电阻率的观点出发,优选为大致球状、扁平状或板状。
[0075]此外,上述电极用糊剂组合物中的含有锡的粒子的含有率并无特别限制。其中,将上述含有磷的铜合金粒子与上述含有锡的粒子及上述含有镍的粒子的总含有率设为100质量%时,含有锡的粒子的含有率优选为5质量%以上且70质量%以下,更优选为7质量%以上且65质量%以下,进一步优选为9质量%以上且60质量%以下,特别优选为9质量%以上且45质量%以下。
[0076]通过使含有锡的粒子的含有率为5质量%以上,从而可使与含有磷的铜合金粒子及含有镍的粒子的反应更均匀地发生。此外,通过使含有锡的粒子为70质量%以下,从而可形成充足体积的Cu-Sn合金相及Cu-Sn-Ni合金相,使电极的体积电阻率进一步降低。
[0077]电极用糊剂组合物中的含有锡的粒子的含有率可以使用高频感应耦合等离子体发射光谱分析(ICP-AES)装置或高频感应耦合等离子体质谱分析(ICP-MS)装置来测定。另夕卜,在使用这些装置对含有锡的粒子的含有率进行测定时,在从电极用糊剂组合物去除溶剂后的状态下进行测定。
[0078](含有镍的粒子)
[0079]本发明的电极用糊剂组合物包含至少一种含有镍的粒子。由于除含有磷的铜合金粒子及含有锡的粒子外还包含含有镍的粒子,因而在烧成工序中可以体现出在更高温度下的耐氧化性。
[0080]作为上述含有镍的粒子,只要是含有镍的粒子,则并无特别限制。其中,优选为选自镍粒子及镍合金粒子中的至少一种,更优选为选自镍粒子及镍含有率为I质量%以上的镍合金粒子中的至少一种。
[0081]镍粒子中的镍的纯度并无特别限制。例如镍粒子的纯度可以设定为95质量%以上,优选为97质量%以上,更优选为99质量%以上。
[0082]此外,镍合金粒子只要是含有镍的合金粒子,则合金的种类并无限制。其中,从镍合金粒子的熔点、以及与含有磷的铜合金粒子、含有锡的粒子及Cu-Sn合金相的反应性的观点出发,优选镍的含有率为I质量%以上的镍合金粒子,更优选镍的含有率为3质量%以上的镍合金粒子,进一步优选镍的含有率为5质量%以上的镍合金粒子,特别优选镍的含有率为10质量%以上的镍合金粒子。
[0083]含有镍的粒子中的镍的含有率可以使用荧光X射线分析(XRF)装置(例如堀场制作所(株)制造的MESA-500W型)来测定。
[0084]作为镍合金粒子,可列举N1-Fe系合金、N1-Cu系合金、N1-Cu-Zn系合金、N1-Cr系合金、N1-Cr-Ag系合金等。尤其是N1-58Fe、Ni_75Cu、N1-6Cu-20Zn等镍合金粒子能够与含有磷的铜合金粒子及含有锡的粒子均匀地发生反应,在这一点上可以适宜使用这些镍合金粒子。另外,当镍合金粒子的表述为例如N1-AX-BY-CZ时,表示在镍合金粒子中包含A质量%的元素X、B质量%的元素Y和C质量%的元素Z。
[0085]本发明中,这些含有镍的粒子可以单独使用一种或组合使用两种以上。
[0086]上述含有镍的粒子也可以进一步包含不可避免地混入的其它原子。作为不可避免地混入的其它原子,可列举 Ag、Mn、Sb、S1、K、Na、L1、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、T1、Co、Sn、Au 等。
[0087]关于上述含有镍的粒子中所含有的其它原子的含有率,例如在上述含有镍的粒子中可以设为3质量%以下,从熔点及与含有磷的铜合金粒子及含有锡的粒子的反应性的观点出发,优选为I质量%以下。
[0088]作为上述含有镍的粒子的平均粒径,并无特别限制,以D50%计,优选为0.5 μ m?20 μ m,更优选为I μ m?15 μ m,进一步优选为5 μ m?15 μ m。通过使该平均粒径为0.5 μ m以上,从而使含有镍的粒子本身的耐氧化性提高。此外,通过使该平均粒径为20μπι以下,从而使与电极中的含有磷的铜合金粒子及含有锡的粒子的接触面积变大,使与含有磷的铜合金粒子及含有锡的粒子的反应更有效地进行。
[0089]作为上述含有镍的粒子的形状,并无特别限制,可以是大致球状、扁平状、块状、板状、鳞片状等中的任一种,从耐氧化性和低体积电阻率的观点出发,优选为大致球状、扁平状或板状。
[0090]此外,上述电极用糊剂组合物中的含有镍的粒子的含有率并无特别限制。其中,将上述含有磷的铜合金粒子与上述含有锡的粒子及含有镍的粒子的总含有率设为100质量%时,含有镍的粒子的含有率优选为10质量%以上且60质量%以下,更优选为12质量%以上且55质量%以下,进一步优选为15质量%以上且50质量%以下,特别优选为15质量%以上且35质量%以下。
[0091]通过使含有镍的粒子的含有率为10质量%以上,从而可以使Cu-Sn-Ni合金相的形成更均匀地发生。此外,通过使含有镍的粒子为70质量%以下,从而可以形成充足体积的Cu-Sn-Ni合金相,使电极的体积电阻率进一步降低。
[0092]电极用糊剂组合物中的含有镍的粒子的含有率可以使用高频感应耦合等离子体发射光谱分析(ICP-AES)装置或高频感应耦合等离子体质谱分析(ICP-MS)装置来测定。另夕卜,在使用这些装置对含有镍的粒子的含有率进行测定时,在从电极用糊剂组合物去除溶剂后的状态下进行测定。
[0093]上述电极用糊剂组合物中的含有锡的粒子与含有镍的粒子的含有比并无特别限制。从与硅基板的密接性的观点出发,含有镍的粒子相对于含有锡的粒子的质量比(含有镍的粒子/含有锡的粒子)优选为0.3?4.0、更优选为0.4?3.0。
[0094]此外,上述电极用糊剂组合物中的含有磷的铜合金粒子与含有锡的粒子及含有镍的粒子的含有比并无特别限制。从在高温烧成条件下形成的电极的低体积电阻率和与硅基板的密接性的观点出发,含有锡的粒子和含有镍的粒子的总量相对于含有磷的铜合金粒子的质量比((含有镍的粒子+含有锡的粒子)/含有磷的铜合金粒子)优选为0.4?1.8、更优选为0.6?1.4。
[0095]进而,上述电极用糊剂组合物中的含有锡的粒子的平均粒径(D50% )与含有镍的粒子的平均粒径(D50% )之比并无特别限制。从所形成的Sn-P-O玻璃相的均匀性和与硅基板的密接性的观点出发,含有镍的粒子的平均粒径(D50% )相对于含有锡的粒子的平均粒径(D50% )的比(含有镍的粒子/含有锡的粒子)优选为0.05?20、更优选为0.5?10。
[0096]此外,上述电极用糊剂组合物中的含有磷的铜合金的平均粒径(D50% )与含有锡的粒子的平均粒径(D50% )之比并无特别限制。从在高温烧成条件下形成的电极的低体积电阻率和与硅基板的密接性的观点出发,含有锡的粒子的平均粒径(D50% )相对于含有磷的铜合金粒子的平均粒径(D50% )的比(含有锡的粒子/含有磷的铜合金粒子)优选为
0.03?30、更优选为0.1?10。
[0097]此外,上述电极用糊剂组合物中的含有磷的铜合金的平均粒径(D50% )与含有镍的粒子的平均粒径(D50% )之比并无特别限制。从在高温烧成条件下形成的电极的低体积电阻率的观点出发,含有镍的粒子的平均粒径(D50% )相对于含有磷的铜合金粒子的平均粒径(D50% )的比(含有镍的粒子/含有磷的铜合金粒子)优选为0.02?20、更优选为0.1 ?10。
[0098](玻璃粒子)
[0099]上述电极用糊剂组合物包含至少一种玻璃粒子。由于电极用糊剂组合物包含玻璃粒子,因而在烧成时电极部与基板的密接性提高。此外,尤其在太阳能电池受光面侧的电极的形成中,在烧成时通过所谓的烧通(fire through)来去除作为抗反射膜的氮化娃膜,形成电极与硅基板的欧姆接触。
[0100]从与硅基板的密接性和使电极的体积电阻率降低的观点出发,上述玻璃粒子优选玻璃软化点为650°c以下、结晶化起始温度超过650°C的包含玻璃的玻璃粒子。另外,上述玻璃软化点利用热机械分析装置(TMA)(例如岛津制作所(株)制造的TMA-60型)并按照通常的方法来测定。此外,上述结晶化起始温度利用差示热-热重量分析装置(TG-DTA)(例如岛津制作所(株)制造的DTG-60H型)并按照通常的方法来测定。
[0101]具体而言,例如可以在利用TMA测得的热膨胀曲线中求出不同的2个切点的切线的交点,将与该交点对应的温度设为玻璃软化点。此外,可以从基于TG-DTA的分析曲线确认放热峰,求出开始放热前、和从放热开始后至放热峰之间的2个切点的切线的交点,将与该交点对应的温度设定为结晶化起始温度。
[0102]在将上述电极用糊剂组合物用作太阳能电池受光面侧的电极时,上述玻璃粒子只要是如下的玻璃粒子,则可无特别限制地使用该【技术领域】中通常使用的玻璃粒子,所述玻璃粒子在电极形成温度下软化或熔融,将所接触的氮化硅膜氧化,并混入经氧化后的二氧化硅,由此可去除抗反射膜。
[0103]为了能够高效地混入二氧化硅,通常使电极用糊剂组合物中所含有的玻璃粒子包含含有铅的玻璃。作为这样的含有铅的玻璃,例如可列举日本专利第03050064号公报等中所记载的玻璃,在本发明中也可适宜使用这些玻璃。
[0104]此外,在本发明中,若考虑对于环境的影响,则优选使用实质上不含铅的无铅玻璃。作为无铅玻璃,例如可列举日本特开2006-313744号公报的段落号0024?0025中所记载的无铅玻璃以及日本特开2009-188281号公报等中所记载的无铅玻璃,还优选从这些无铅玻璃中适当选择后应用于本发明。
[0105]此外,在将上述电极用糊剂组合物用作除太阳能电池受光面侧的电极以外的例如背面提取电极、背面接触型太阳能电池元件中的通孔电极及背面电极时,可以使用不包含像上述铅那样的在烧通中所需成分的玻璃粒子。
[0106]作为构成上述电极用糊剂组合物中所使用的玻璃粒子的玻璃成分,可列举:二氧化硅(SiO2)、氧化磷(P2O5)、氧化铝(Al2O3)、氧化硼(B2O3)、氧化钒(V2O5)、氧化钾(K2O)、氧化秘(Bi2O3)、氧化钠(Na2O)、氧化锂(Li2O)、氧化钡(BaO)、氧化银(SrO)、氧化韩(CaO)、氧化镁(MgO)、氧化铍(BeO)、氧化锌(ZnO)、氧化铅(PbO)、氧化镉(CdO)、氧化锡(SnO)、氧化错(ZrO2)、氧化鹤(WO3)、氧化钥(MoO3)、氧化镧(La2O3)、氧化银(Nb2O5)、氧化钽(Ta2O5)、氧化钇(Y2O3)、氧化钛(TiO2)、氧化锗(GeO2)、氧化締(TeO2)、氧化镥(Lu2O3)、氧化铺(Sb2O3)、氧化铜(CuO)、氧化铁(FeO)、氧化银(Ag2O)及氧化猛(MnO)。
[0107]其中,优选使用含有选自Si02、P205、A1203、B203、V205、Bi203、ZnO 及 PbO 中的至少一
种玻璃成分的玻璃粒子,更优选使用含有选自Si02、A1203、B2O3> Bi2O3及PbO中的至少一种玻璃成分的玻璃粒子。这样的玻璃粒子的软化点更有效地降低。进而,由于与含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及根据需要而含有的银粒子的润湿性提高,因此可推进在烧成过程中的各粒子间的烧结,可以形成体积电阻率更低的电极。
[0108]另一方面,从低接触电阻率的观点出发,优选为包含五氧化二磷的玻璃粒子(磷酸玻璃、P2O5系玻璃粒子),更优选除含有五氧化二磷以外还包含五氧化二钒的玻璃粒子(P2O5-V2O5系玻璃粒子)。通过进一步包含五氧化二f凡,从而使耐氧化性进一步提高、电极的电阻率进一步降低。可认为其原因在于:通过进一步包含例如五氧化二钒而使玻璃的软化点降低。在使用五氧化二磷-五氧化二钒系玻璃粒子(P2O5-V2O5系玻璃粒子)时,作为五氧化二钒的含有率,优选在玻璃的总质量中为I质量%以上,更优选I质量%?70质量%。
[0109]作为本发明中的玻璃粒子的平均粒径,并无特别限制,累计的重量为50%时的平均粒径(D50% )优选为0.5μπι以上且10 μ m以下,更优选为0.8 μ m以上且8 μ m以下。通过使该平均粒径为0.5μπι以上,从而使制作电极用糊剂组合物时的操作性提高。此外,通过使该平均粒径为IOym以下,从而使玻璃粒子均匀地分散在电极用糊剂组合物中,在烧成工序中可以有效地发生烧通,进而使与硅基板的密接性也提高。
[0110]此外,作为上述玻璃粒子的形状,并无特别限制,可以是大致球状、扁平状、块状、板状及鳞片状等中的任一种,从耐氧化性和低体积电阻率的观点出发,优选为大致球状、扁平状或板状。
[0111]作为上述玻璃粒子的含有率,优选在电极用糊剂组合物的总质量中为0.1质量%?10质量%,更优选为0.5质量%?8质量进一步优选为I质量%?8质量%。通过以该范围的含有率包含玻璃粒子,从而可更有效地实现耐氧化性、电极的低体积电阻率及低接触电阻率,并且可促进上述含有磷的铜合金粒子、上述含有锡的粒子及含有镍的粒子间的反应。
[0112]电极用糊剂组合物中的玻璃粒子的含有率可以使用高频感应耦合等离子体发射光谱分析(ICP-AES)装置或高频感应耦合等离子体质谱分析(ICP-MS)装置来测定。另外,在使用这些装置对玻璃粒子的含有率进行测定时,在从电极用糊剂组合物去除溶剂后的状态下进行测定。
[0113]此外,电极用糊剂组合物中,玻璃粒子的含量相对于含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及根据需要含有的银粒子的总含量的比优选为0.01?0.15、更优选为0.03?0.12。通过以该范围的含有率包含玻璃粒子,从而可更有效地实现耐氧化性、电极的低体积电阻率及低接触电阻率,并且可促进上述含有磷的铜合金粒子、上述含有锡的粒子及含有镍的粒子间的反应。
[0114]进而,电极用糊剂组合物中,玻璃粒子的平均粒径(D50% )相对于含有磷的铜合金粒子的平均粒径(D50% )的比优选为0.05?100、更优选为0.1?20。通过包含该范围的玻璃粒子,从而可更有效地实现耐氧化性、电极的低体积电阻率及低接触电阻率,并且可促进上述含有磷的铜合金粒子、上述含有锡的粒子及含有镍的粒子间的反应。
[0115](溶剂及树脂)
[0116]本发明的电极用糊剂组合物包含至少I种溶剂和至少I种树脂。由此,可将上电极用糊剂组合物的液体物性(例如粘度、表面张力等)调整成对应于赋予在硅基板等上时的赋予方法所需要的液体物性。
[0117]作为上述溶剂,并无特别限制。作为溶剂,可列举:己烷、环己烷、甲苯等烃系溶剂;二氯乙烯、二氯乙烷、二氯苯等卤代烃系溶剂;四氢呋喃、呋喃、四氢吡喃、吡喃、二噁烷、1,3-二氧杂环戊烷、三噁烷(trioxane)等环状醚系溶剂;N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等酰胺系溶剂;二甲基亚砜、二乙基亚砜等亚砜系溶剂;丙酮、甲乙酮、二乙基酮、环己酮等酮系溶剂;乙醇、2-丙醇、1-丁醇、二丙酮醇等醇系化合物;2,2,4_三甲基-1,3-戊二醇单乙酸酯、2,2,4-三甲基-1,3-戊二醇单丙酸酯、2,2,4-三甲基-1,3-戊二醇单丁酸酯、2,2,4_三甲基-1,3-戊二醇单异丁酸酯、2,2,4_三乙基-1,3-戊二醇单乙酸酯、乙二醇单丁醚乙酸酯、二乙二醇单丁醚乙酸酯等多元醇的酯系溶剂;丁基溶纤剂、二乙二醇单丁醚、二乙二醇二乙醚等多元醇的醚系溶剂;α -萜品醇等萜品醇;α -萜品烯等萜品烯;α -菔烯、β_菔烯等菔烯;月桂烯、别罗勒烯、柠檬烯、双戊烯、香芹酮、罗勒烯、水芹烯等萜系溶剂;以及他它们的混合物。
[0118]作为上述溶剂,从将电极用糊剂组合物形成在硅基板上时的涂布性、印刷性的观点出发,优选为选自多元醇的酯系溶剂、萜系溶剂及多元醇的醚系溶剂中的至少I种,更优选为选自多元醇的酯系溶剂及萜系溶剂中的至少I种。本发明中,上述溶剂可以单独使用一种或组合使用两种以上。
[0119]此外,作为上述树脂,只要是可通过烧成处理而热分解的树脂,则可无特别限制地使用该【技术领域】中通常所使用的树脂,可以是天然高分子化合物,也可以是合成高分子化合物。作为树脂,具体而言,可列举:甲基纤维素、乙基纤维素、羧甲基纤维素、硝基纤维素等纤维素系树脂;聚乙烯醇类;聚乙烯吡咯烷酮类;丙烯酸类树脂;乙酸乙烯酯-丙烯酸酯共聚物;聚乙烯缩丁醛等缩丁醛树脂;苯酚改性醇酸树脂、蓖麻油脂肪酸改性醇酸树脂等醇酸树脂;环氧树脂;酚醛树脂;松香酯树脂等。
[0120]作为本发明中的上述树脂,从烧成时的消失性的观点出发,优选为选自纤维素系树脂及丙烯酸类树脂中的至少I种。在本发明中,上述树脂可单独使用I种或组合使用两种以上。
[0121]此外,本发明中的上述树脂的重均分子量并无特别限制。其中,重均分子量优选为5000以上且500000以下,更优选为10000以上且300000以下。若上述树脂的重均分子量为5000以上,则可抑制电极用糊剂组合物的粘度增加。可认为其原因在于:例如吸附于含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子时的立体排斥作用不足,粒子会彼此凝聚。另一方面,若树脂的重均分子量为500000以下,则在溶剂中树脂彼此凝聚的情况得到抑制,并且可抑制电极用糊剂组合物的粘度增加。
[0122]此外,除上述以外,若树脂的重均分子量为500000以下,则树脂的燃烧温度变高的情况得到抑制,对电极用糊剂组合物进行烧成时树脂未被完全燃烧而作为异物残存的情况得到抑制,能够以更低的体积电阻率形成电极。
[0123]在本发明的电极用糊剂组合物中,上述溶剂和上述树脂的含有率可根据所需的液体物性以及所使用的溶剂及树脂的种类来适当选择。例如,在电极用糊剂组合物的总质量中,溶剂和树脂的总含有率优选为3质量%以上且29.9质量%以下,更优选5质量%以上且25质量%以下,进一步优选7质量%以上且20质量%以下。
[0124]通过使溶剂和树脂的总含有率为上述范围内,从而将电极用糊剂组合物赋予在硅基板上时的赋予适应性变得良好,可更容易地形成具有所需宽度及高度的电极。
[0125]进而,在本发明的电极用糊剂组合物中,从耐氧化性和电极的低体积电阻率的观点出发,优选使含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子的总含有率为70质量%以上且94质量%以下,玻璃粒子的含有率为0.1质量%以上且10质量%以下,溶剂及树脂的总含有率为3质量%以上且29.9质量%以下;更优选使含有磷的铜合金粒子、含有锡的粒子及镍粒子的总含有率为74质量%以上且88质量%以下,玻璃粒子的含有率为0.5质量%以上且8质量%以下,溶剂及树脂的总含有率为7质量%以上且20质量%以下;进一步优选使含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子的总含有率为74质量%以上且88质量%以下,玻璃粒子的含有率为I质量%以上且8质量%以下,溶剂及树脂的总含有率为7质量%以上且20质量%以下。
[0126](银粒子)
[0127]上述电极用糊剂组合物优选进一步包含银粒子。通过包含银粒子,从而使耐氧化性进一步提高,使所形成的电极的体积电阻率进一步降低。此外,Ag粒子析出至由上述含有磷的铜合金粒子与上述含有锡的粒子的反应而生成的Sn-P-O系玻璃相中,由此使电极层中的Cu-Sn-Ni合金相及Cu-Sn合金相与硅基板间的欧姆接触性进一步提高。进而,也可获得使制成太阳能电池模块时的焊料连接性提高这样的效果。
[0128]构成上述银粒子的银也可包含不可避免地混入的其它原子。作为不可避免地混入的其它原子,可列举:Sb、S1、K、Na、L1、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、T1、Co、N1、Au 等。
[0129]关于上述银粒子中所含有的其它原子的含有率,例如在银粒子中可以设为3质量%以下,从熔点及电极的低体积电阻率的观点出发,优选为I质量%以下。
[0130]作为本发明中的银粒子的平均粒径,并无特别限制,累计的重量为50%时的平均粒径(D50% )优选为0.4μπι以上且IOym以下,更优选为Iym以上且7 ym以下。通过使该平均粒径为0.4μ m以上,从而使耐氧化性更有效地提高。此外,通过使该平均粒径为IOym以下,从而使电极中的银粒子与含有磷的铜合金粒子、含有锡的粒子及镍粒子的接触面积变大,使电阻率更有效地降低。
[0131]作为上述银粒子的形状,并无特别限制,可以是大致球状、扁平状、块状、板状及鳞片状等中的任一种,从耐氧化性和低电阻率的观点出发,优选为大致球状、扁平状或板状。
[0132]在上述电极用糊剂组合物包含银粒子时,作为银粒子的含有率,优选使将上述含有磷的铜合金粒子、上述含有锡的粒子、上述镍粒子及上述银粒子的总含有率设定为100质量%时的银粒子的含有率为0.1质量%以上且10质量%以下,更优选为0.5质量%以上且8质量%以下。
[0133]电极用糊剂组合物中的银粒子的含有率可以使用荧光X射线分析(XRF)装置(例如堀场制作所(株)制造的MESA-500W型)来测定。
[0134]此外,本发明的电极用糊剂组合物中,从耐氧化性、电极的低体积电阻率化、对于硅基板的涂布性的观点出发,电极用糊剂组合物优选使含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及银粒子的总含有率为70质量%以上且94质量%以下,更优选为74质量%以上且88质量%以下。通过使含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及银粒子的总含有率为70质量%以上,从而可容易地达成赋予电极用糊剂组合物时所适宜的粘度。此外,通过使含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及银粒子的总含有率为94质量%以下,从而可更有效地抑制赋予电极用糊剂组合物时的飞白的产生。
[0135]进而,在本发明的电极用糊剂组合物进一步包含银粒子时,从耐氧化性和电极的低体积电阻率的观点出发,优选使含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及银粒子的总含有率为70质量%以上且94质量%以下,玻璃粒子的含有率为0.1质量%以上且10质量%以下,溶剂及树脂的总含有率为3质量%以上且29.9质量%以下;更优选使含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及银粒子的总含有率为74质量%以上且88质量%以下,玻璃粒子的含有率为0.5质量%以上且8质量%以下,溶剂及树脂的总含有率为7质量%以上且20质量%以下;进一步优选使含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子及银粒子的总含有率为74质量%以上且88质量%以下,玻璃粒子的含有率为I质量%以上且8质量%以下,溶剂及树脂的总含有率为7质量%以上且20质量%以下。
[0136](焊剂(flux))
[0137]上述电极用糊剂组合物可进一步包含至少I种焊剂。通过包含焊剂,从而可去除形成在含有磷的铜合金粒子表面的氧化膜,并促进烧成中的含有磷的铜合金粒子的还原反应。此外,也推进在烧成中的含有锡的粒子的熔融,因此推进与含有磷的铜合金粒子的反应,结果使耐氧化性进一步提高,所形成的电极的电阻率进一步降低。进而,还可获得使电极材料与硅基板的密接性提高这样的效果。
[0138]作为焊剂,只要是可去除形成在含有磷的铜合金粒子表面的氧化膜、并且促进含有锡的粒子熔融的焊剂,则并无特别限制。作为焊剂,具体而言,可列举脂肪酸、硼酸化合物、氟化物及硼氟化物等作为优选的焊剂。[0139]作为焊剂,更具体而言,可列举:月桂酸、肉豆蘧酸、棕榈酸、硬脂酸、山梨酸、硬脂炔酸(stearolic acid)、丙酸、氧化硼、硼酸钾、硼酸钠、硼酸锂、硼氟化钾、硼氟化钠、硼氟化锂、酸性氟化钾、酸性氟化钠、酸性氟化锂、氟化钾、氟化钠、氟化锂等。
[0140]其中,从电极材料烧成时的耐热性(焊剂在烧成的低温时不挥发的特性)及补充含有磷的铜合金粒子的耐氧化性的观点出发,可列举硼酸钾及硼氟化钾作为特别优选的焊剂。
[0141]在本发明中,这些焊剂可分别单独使用I种,也可组合使用两种以上。
[0142]在上述电极用糊剂组合物含有焊剂时,作为电极用糊剂组合物中的焊剂的含有率,从使含有磷的铜合金粒子的耐氧化性有效地显现、促进含有锡的粒子熔融的观点以及在电极材料的烧成结束时降低焊剂被去除的部分的空隙率的观点出发,在电极用糊剂组合物的总质量中,该焊剂的含有率优选为0.1质量%?5质量%,更优选为0.3质量%?4质量%,进一步优选为0.5质量%?3.5质量%,特别优选为0.7质量%?3质量%,极其优选为I质量%?2.5质量%。
[0143](其它成分)
[0144]除上述成分以外,本发明的电极用糊剂组合物可根据需要进一步包含该【技术领域】中通常所使用的其它成分。作为其它成分,可列举:增塑剂、分散剂、表面活性剂、无机粘结齐U、金属氧化物、陶瓷、有机金属化合物等。
[0145]作为本发明的电极用糊剂组合物的制造方法,并无特别限制。可利用通常所使用的分散方法或混合方法,将含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子、玻璃粒子、溶剂、树脂及根据需要所包含的银粒子等分散或混合,由此制造本发明的电极用糊剂组合物。分散方法和混合方法并无特别限制,可从通常所使用的分散方法和混合方法中适当选择来应用。
[0146](使用电极用糊剂组合物制造电极的方法)
[0147]作为使用上述电极用糊剂组合物制造电极的方法,可通过将上述电极用糊剂组合物赋予在要形成电极的区域,并在干燥后进行烧成,从而在所需的区域形成电极。通过使用上述电极用糊剂组合物,从而即使在氧的存在下(例如大气中)进行烧成处理,也能够形成体积电阻率低的电极。
[0148]具体而言,例如在使用上述电极用糊剂组合物形成太阳能电池用电极时,将电极用糊剂组合物以成为所需形状的方式赋予在硅基板上,在干燥后进行烧成,由此可将电阻率低的太阳能电池电极形成为所需的形状。另外,通过使用上述电极用糊剂组合物,从而即使在氧的存在下(例如大气中)进行烧成处理,也能够形成体积电阻率低的电极。进而,使形成在硅基板上的电极与硅基板的密接性优异,可实现良好的欧姆接触。
[0149]作为赋予电极用糊剂组合物的方法,例如可列举丝网印刷法、喷墨法、分配器(dispenser)法等,但从生产率的观点出发,优选利用丝网印刷的涂布。
[0150]在利用丝网印刷涂布电极用糊剂组合物时,电极用糊剂组合物优选具有20Pa.s?IOOOPa.s的范围的粘度。另外,电极用糊剂组合物的粘度是在25°C下利用布氏(Brookfield) HBT粘度计来测定的。
[0151]电极用糊剂组合物的赋予量可根据要形成的电极的大小等而适当选择。例如,作为电极用糊剂组合物的赋予量,可以设为2g/m2?10g/m2,优选为4g/m2?8g/m2。[0152]此外,作为使用本发明的电极用糊剂组合物形成电极时的热处理条件(烧成条件),可应用该【技术领域】中通常所使用的热处理条件。通常,热处理温度(烧成温度)为800°C?900°C,但在使用本发明的电极用糊剂组合物时,可以应用于从更低温度下的热处理条件到一般的热处理条件的宽泛的范围。例如可在450°C?900°C的宽泛的热处理温度下形成具有良好特性的电极。
[0153]此外,热处理时间可根据热处理温度等而适当选择,例如可设为I秒?20秒。
[0154]作为热处理装置,只要是可加热至上述温度的装置,即可适宜采用,例如可列举红外线加热炉、隧道式炉等。红外线加热炉因将电能以电磁波的形式直接投入到加热材料中,并将电能转换成热能,故效率高、并且能够进行短时间内的快速加热。进而,由于不存在由燃烧所生成的产物且为非接触加热,因此可抑制所生成的电极的污染。隧道式炉因自动地将试样自入口连续地向出口运送并进行烧成,故可通过炉体的划分(日文:区分K )和运送速度的控制来均匀地进行烧成。从太阳能电池元件的发电性能的观点出发,优选利用隧道式炉来进行热处理。
[0155]<太阳能电池元件及其制造方法>
[0156]本发明的太阳能电池元件至少具备具有pn结的硅基板和被赋予到上述硅基板上的电极,所述电极为上述电极用糊剂组合物的烧成物。由此得到具有良好特性的太阳能电池元件,且该太阳能电池元件的生产率优异。
[0157]另外,在本说明书中,所谓太阳能电池元件是指具有形成有pn结的硅基板及形成在硅基板上的电极的元件。此外,所谓太阳能电池是指在太阳能电池元件的电极上设置有布线材料、并根据需要经由布线材料将多个太阳能电池元件连接而构成的处于被密封树脂等密封后的状态的设备。
[0158]以下,一边参照附图一边说明本发明的太阳能电池元件的具体例,但本发明并不限定于此。将表示具代表性的太阳能电池元件的一例的剖面图、受光面及背面的概况示于图1、图2及图3。
[0159]如图1所示的示意剖面图那样,在半导体基板I的一个面的表面附近形成有η+型扩散层2,在η+型扩散层2上形成有输出提取电极4及抗反射膜3。此外,在另一个面的表面附近形成有P+型扩散层7,在P+型扩散层7上形成有背面输出提取电极6及背面集电用电极5。通常,太阳能电池元件的半导体基板I使用单晶硅或多晶硅等。该半导体基板I中含有硼等,并构成P型半导体。为了抑制太阳光的反射,而在受光面侧利用包含NaOH和IPA(异丙醇)的蚀刻溶液形成凹凸(也称为纹理,未图示)。在该受光面侧掺杂有磷等且以亚微米级的厚度设置有η+型扩散层2,并且在与P型本体部分的边界形成有pn结部。进而,在受光面侧的 n+型扩散层 2 上利用 PECVD (Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)等以90nm左右的膜厚设置有氮化硅等的抗反射膜3。
[0160]接着,对在图2中示出的设置在受光面侧的受光面电极4的概况、及在图3中示出的形成在背面的集电用电极5及输出提取电极6的形成方法的概况进行说明。
[0161]受光面电极4与背面输出提取电极6由上述电极用糊剂组合物形成。此外,背面集电用电极5由包含玻璃粉末的铝电极糊剂组合物形成。作为形成受光面电极4、背面集电用电极5及背面输出提取电极6的第一种方法,可列举如下的方法:利用丝网印刷等将上述糊剂组合物涂布成所需的图案后,进行干燥,然后在大气中以450°C?900°C左右的温度同时进行烧成,从而形成上述电极。在本发明中,通过使用上述电极用糊剂组合物,从而即使在较低的温度下进行烧成,也能够形成电阻率及接触电阻率优异的电极。
[0162]此时,在受光面侧,形成受光面电极4的上述电极用糊剂组合物中所含有的玻璃粒子与抗反射层3发生反应(烧通),从而使受光面电极4与n+型扩散层2电连接(欧姆接触)。
[0163]在本发明中,使用上述电极用糊剂组合物来形成受光面电极4,由此包含铜作为导电性金属,并且抑制铜的氧化,以良好的生产率形成低电阻率的受光面电极4。
[0164]进而,本发明中所形成的电极优选包含Cu-Sn-Ni合金相、以及根据需要而含有的Cu-Sn合金相和Sn-P-O玻璃相来构成,更优选使Sn-P-O玻璃相配置在Cu-Sn合金相或Cu-Sn-Ni合金相与硅基板之间(未图示)。由此,使铜与硅基板的反应得到抑制,能够形成具有低体积电阻率且密接性优异的电极。
[0165]此外,在背面侧,进行烧成时用于形成背面集电用电极5的铝电极糊剂组合物中的铝扩散到半导体基板I的背面,形成P+型扩散层7,由此可在半导体基板I与背面集电用电极5、背面输出提取电极6之间获得欧姆接触。
[0166]作为形成受光面电极4、背面集电用电极5及背面输出提取电极6的第二种方法,可列举如下的方法:首先印刷用于形成背面集电用电极5的铝电极糊剂组合物,干燥后在大气中以750°C?900V左右的温度进行烧成而形成背面集电用电极5,然后将本发明的电极用糊剂组合物印刷在受光面侧及背面侧,干燥后在大气中以450°C?650°C左右的温度进行烧成而形成受光面电极4和背面输出提取电极6。
[0167]该方法在例如以下的情况下有效。即,在对用于形成背面集电用电极5的铝电极糊剂进行烧成时,在650°C以下的烧成温度下,根据铝糊剂的组成而存在因铝粒子的烧结及铝对于半导体基板I的扩散量不足而无法充分地形成P+型扩散层的情况。在该状态下,有时在背面的半导体基板I与背面集电用电极5、背面输出提取电极6之间无法充分地形成欧姆接触,使作为太阳能电池元件的发电性能降低。因此优选:在铝电极糊剂组合物的最佳烧成温度(例如750°C?900°C )下形成背面集电用电极5后,印刷上述电极用糊剂组合物,干燥后在较低温度(450°C?650°C)下进行烧成,从而形成受光面电极4和背面输出提取电极6。
[0168]此外,在图4中示出在作为本发明的其它方案的所谓背面接触型太阳能电池元件中通用的背面侧电极结构的示意俯视图,在图5、图6及图7中分别示出表示作为各个其它方案的背面接触型太阳能电池元件的太阳能电池元件的示意结构的立体图。另外,图5、图6及图7分别为图4中的AA剖面的立体图。
[0169]对于具有图5的立体图所示的结构的太阳能电池元件而言,利用激光钻孔或蚀刻等在半导体基板I上形成有贯穿受光面侧及背面侧这两面的通孔。此外,在受光面侧形成有提高光入射效率的纹理(未图示)。进而,在受光面侧形成有利用η型化扩散处理而成的η+型扩散层2,且在η+型扩散层2上形成有抗反射膜(未图示)。它们可以利用与以往的结晶硅型太阳能电池元件相同的工序来制造。
[0170]接着,利用印刷法或喷墨法将本发明的电极用糊剂组合物填充至先前已经形成的通孔内部,再将同样的本发明的电极用糊剂组合物以栅格(grid)状印刷在受光面侧,形成组合物层,该组合物层用于形成通孔电极9及受光面集电用电极8。[0171]在此,对于用于填充和印刷的糊剂而言,理想的是使用使以粘度为代表的性质在各个工艺中达到最佳的组成的糊剂,但也可利用相同组成的糊剂一并进行填充、印刷。
[0172]另一方面,在背面侧形成用来防止载流子再结合的n+型扩散层2及P+型扩散层7。在此使用硼(B)或铝(Al)作为形成P+型扩散层7的杂质元素。该P+型扩散层7例如可通过在形成上述抗反射膜前的太阳能电池元件制造工序中实施以硼作为扩散源的热扩散处理来形成,或者在使用Al时,也可通过在上述印刷工序中在相反面侧印刷铝糊剂并进行烧成来形成。
[0173]在背面侧,如图4的俯视图所示那样,分别在n+型扩散层2上及p+型扩散层7上以条状印刷本发明的电极用糊剂组合物,由此形成背面电极10及背面电极11。在此,在使用铝糊剂形成P+型扩散层7时,只要仅对η+型扩散层2侧使用上述电极用糊剂组合物来形成背面电极即可。
[0174]之后进行干燥,然后在大气中以450°C?900°C左右的温度进行烧成,从而形成受光面集电用电极8、通孔电极9、以及背面电极10、背面电极11。此外,如上所述,在将铝电极用于一个背面电极时,从铝的烧结性、以及背面电极与P+型扩散层7的欧姆接触性的观点出发,也可先印刷铝糊剂,并进行烧成,由此形成一个背面电极,其后印刷、填充上述电极用糊剂组合物,并进行烧成,由此形成受光面集电用电极8、通孔电极9、以及另一个背面电极。
[0175]此外,对于具有图6的立体图所示结构的太阳能电池元件而言,除不形成受光面集电用电极以外,能够以与具有图5的立体图所示结构的太阳能电池元件相同的方式进行制造。即,在具有图6的立体图所示结构的太阳能电池元件中,本发明的电极用糊剂组合物可用于通孔电极9和背面电极10、背面电极11。
[0176]此外,对于具有图7的立体图所示结构的太阳能电池元件而言,除成为基底的半导体基板使用η型硅基板、且不形成通孔以外,能够以与具有图5的立体图所示结构的太阳能电池元件相同的方式进行制造。即,在具有图7的立体图所示结构的太阳能电池元件中,本发明的电极用糊剂组合物可用于背面电极10、背面电极11。
[0177]另外,上述电极用糊剂组合物并不限定于如上所述的太阳能电池电极的用途,例如也可适宜用于等离子体显示器的电极布线及屏蔽布线、陶瓷电容器、天线电路、各种传感器电路、半导体设备的散热材料等用途。这些之中,尤其可适宜用于将电极形成在包含硅的基板上的情况。
[0178]<太阳能电池>
[0179]本发明的太阳能电池包含至少I种上述太阳能电池元件、且在太阳能电池元件的电极上配置布线材料来构成。太阳能电池还可根据需要经由布线材料将多个太阳能电池元件连接、并利用密封材进行密封来构成。作为上述布线材料及密封材料,并无特别限制,可从本业界通常所使用的布线材料及密封材料中适当选择。
[0180]实施例
[0181]以下,通过实施例来更具体地说明本发明,但本发明并不限定于这些实施例。另夕卜,只要事先无特别说明,则“份”及“%,,为质量基准。
[0182]<实施例1 >
[0183](a)电极用糊剂组合物的制备[0184]按照通常的方法来制备包含7质量%的磷的含有磷的铜合金,使其溶解并利用水雾化法将其粉末化,然后进行干燥、分级。将经分级的粉末混合,进行脱氧及脱水处理,制成包含7质量%的磷的含有磷的铜合金粒子。另外,含有磷的铜合金粒子的平均粒径(D50%)为5.0 μ m,其形状为大致球状。
[0185]含有磷的铜合金粒子的形状通过使用Hitachi High-TechnologiesCorporation.制造的TM-1000型扫描型电子显微镜进行观察来判定。含有磷的铜合金粒子的平均粒径通过使用BECKMAN.COULTER (株)制造的LS13320型激光散射衍射法粒度分布测定装置(测定波长:632nm)来计算。
[0186]制备包含二氧化硅(SiO2) 3份、氧化铅(PbO) 60份、氧化硼(B2O3) 18份、氧化铋(Bi2O3) 5份、氧化铝(Al2O3) 5份、氧化锌(ZnO) 9份的玻璃(以下,有时简称为“G01”)。所得的玻璃GOl的软化点为420°C,结晶化温度超过650°C。
[0187]使用所得的玻璃G01,得到平均粒径(D50% )为2.5μπι的玻璃GOl粒子。此外,其形状为大致球状。
[0188]另外,玻璃粒子形状通过使用Hitachi High-Technologies Corporation.制造的TM-1000型扫描型电子显微镜进行观察来判定。玻璃粒子的平均粒径通过使BECKMAN.COULTER(株)制造的LS13320型激光散射衍射法粒度分布测定装置(测定波长:632nm)来计算。玻璃粒子的软化点通过使用(株)岛津制作所制造的DTG-60H型差示热-热重量同时测定装置并利用差示热(DTA)曲线来求得。
[0189]将上述得到的含有磷的铜合金粒子33.3份、锡粒子(Sn ;平均粒径(D50 % )为
5.0 μ m ;纯度 99.9% ) 22.8 份、镍粒子(Ni ;平均粒径(D50% )为 5.0 μ m ;纯度 99.9%)22.2份、玻璃GOl粒子7.8份、二乙二醇单丁醚(BC) 11.7份、聚丙烯酸乙酯(EPA) 2.2份混合,使用自动乳钵混炼装置进行混合而使其糊剂化,制备成电极用糊剂组合物I。
[0190](b)太阳能电池元件的制作
[0191]准备在受光面上形成有η+型扩散层、纹理及抗反射膜(氮化硅膜)的膜厚为190 μ m的P型半导体基板,并将其切割成125mmX125mm的大小。利用丝网印刷法将上述得到的电极用糊剂组合物I以成为如图2所示的电极图案的方式印刷在该受光面上。电极的图案由150 μ m宽的指线(finger line)和1.5mm宽的母线(bus bar)构成,且以使烧成后的膜厚成为20μ,m的方式适当调整印刷条件(网版的网眼、印刷速度、印刷压力)。将其在加热至150°C的烘箱中放置15分钟,通过蒸发来去除溶剂。
[0192]接着,在与受光面相反侧的面(以下,也称为“背面”)上,与上述同样地利用丝网印刷以成为如图3所示的电极图案的方式印刷电极用糊剂组合物I和铝电极糊剂。
[0193]包含电极用糊剂组合物I的背面输出提取电极的图案以123mmX 5mm构成,且共计印刷了 2处。另外,背面输出提取电极以使烧成后的膜厚成为20 μ m的方式适当调整印刷条件(网版的网眼、印刷速度、印刷压力)。此外,将铝电极糊剂印刷在除背面输出提取电极以外的整个面上来形成背面集电用电极图案。此外,以使烧成后的背面集电用电极的膜厚成为30 μ m的方式适当调整铝电极糊剂的印刷条件。将其在加热至150°C的烘箱中放置15分钟,通过蒸发来去除溶剂。
[0194]接着,利用隧道式炉(Noritake公司制造,I列运送W/B隧道式炉),在大气环境下对其进行烧成最高温度为800°C、保持时间为10秒的加热处理(烧成),制成形成有所需电极的太阳能电池元件I。
[0195]<实施例2>
[0196]将实施例1中的电极形成时的烧成条件从最高温度800°C、保持时间10秒变更为最高温度850°C、保持时间8秒,除此以外,与实施例1同样地制作了太阳能电池元件2。
[0197]<实施例3>
[0198]将实施例1中的含有磷的铜合金粒子的磷含量从7质量%变更为6质量%,除此以外,与实施例1同样地制备电极用糊剂组合物3、并制作了太阳能电池元件3。
[0199]<实施例4>
[0200]将实施例1中的含有磷的铜合金粒子的磷含量从7质量%变更为8质量%,除此以外,与实施例1同样地制备电极用糊剂组合物4、并制作了太阳能电池元件4。
[0201]<实施例5>
[0202]将实施例4中的电极形成时的烧成条件从最高温度800°C、保持时间10秒变更为最高温度850°C、保持时间8秒,除此以外,与实施例1同样地制备电极用糊剂组合物5、并制作了太阳能电池元件5。
[0203]<实施例6>
[0204]将实施例1中的含有磷的铜合金粒子的平均粒径(D50% )从5.0ym变更为
1.5 μ m,除此以外,与实施例1同样地制备电极用糊剂组合物6、并制作了太阳能电池元件6。
[0205]<实施例7 >
[0206]变更实施例1中的含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子的含量,将含有磷的铜合金粒子的含量变成36.5份,将含有锡的粒子的含量变成25.4份,将含有镍的粒子变成16.4份,除此以外,与实施例1同样地制备电极用糊剂组合物7、并制作了太阳能电池元件7。
[0207]<实施例8>
[0208]变更实施例1中的含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子的含量,将含有磷的铜合金粒子的含量变成46.5份,将含有锡的粒子的含量变成9.4份,将含有镍的粒子变成22.4份,除此以外,与实施例1同样地制备电极用糊剂组合物8、并制作了太阳能电池元件8。
[0209]<实施例9>
[0210]代替实施例1中作为含有锡的粒子的锡粒子(Sn)而使用包含Sn-4Ag_0.5Cu(在Sn中包含4质量%的Ag和0.5质量%的Cu的合金)的锡合金粒子,并使其平均粒径(D50%)为8.0 μ m,除此以外,与实施例1同样地制备电极用糊剂组合物9、并制作了太阳能电池元件9。
[0211]< 实施例 10 >
[0212]代替实施例1中作为含有镍的粒子的镍粒子(Ni)而使用包含Ni_60Cu (在Ni中包含60质量%的Cu的合金)的镍合金粒子,并使其平均粒径(D50% )为7.0 μ m,除此以夕卜,与实施例1同样地制备电极用糊剂组合物10、并制作了太阳能电池元件10。
[0213]< 实施例 11 >
[0214]将实施例1中的含有镍的粒子(Ni)的平均粒径(D50%)从5.0ym变更为10.0 μ m,除此以外,与实施例1同样地制备电极用糊剂组合物11、并制作了太阳能电池元件11。
[0215]< 实施例 12 >
[0216]向实施例1的电极用糊剂组合物中添加银粒子(Ag ;平均粒径(D50% ) 3.0 μ m ;纯度99.5% )。具体而言,将各成分的含量变更成含有磷的铜合金粒子为32.3份、锡粒子为21.8份、镍粒子为20.2份、银粒子为4.0份、玻璃GOl粒子为7.8份、二乙二醇单丁醚(BC)为11.7份、聚丙烯酸乙酯(EPA)为2.2份,除此以外,与实施例1同样地制备电极用糊剂组合物12、并制作了太阳能电池元件12。
[0217]< 实施例 13 >
[0218]变更实施例1中的玻璃GOl粒子的含量。具体而言,将各成分的含量变更成含有磷的铜合金粒子为34.3份、锡粒子为23.7份、镍粒子为23.2份、玻璃GOl粒子为4.9份、二乙二醇单丁醚(BC)为11.7份、聚丙烯酸乙酯(EPA)为2.2份,除此以外,与实施例1同样地制备电极用糊剂组合物13、并制作了太阳能电池元件13。
[0219]< 实施例 14>
[0220]将实施例1中的玻璃粒子的组成从玻璃GOl变更为以下所示的玻璃G02,除此以夕卜,与实施例1同样地制备电极用糊剂组合物14、并制作了太阳能电池元件14。
[0221]玻璃G02以包含氧化钒(V2O5) 45份、氧化磷(P2O5) 24.2份、氧化钡(BaO) 20.8份、氧化锑(Sb2O3) 5份、氧化钨(WO3) 5份的方式来制备。此外,该玻璃G02的软化点为492°C,结晶化起始温度超过650°C。
[0222]使用所得的玻璃G02,得到粒径(D50% )为2.5 μ m的玻璃G02粒子。此外,其形状为大致球状。
[0223]< 实施例 15 >
[0224]将实施例1中的溶剂从二乙二醇单丁醚变更为萜品醇(Ter),并且将树脂从聚丙烯酸乙酯变更为乙基纤维素(EC)。具体而言,将各成分的含量变更成含有磷的铜合金粒子为33.3份、锡粒子为22.8份、镍粒子为22.2份、玻璃GOl粒子为7.8份、萜品醇(Ter)为13.5份、乙基纤维素(EC)为0.4份,除此以外,与实施例1同样地制备电极用糊剂组合物
15、并制作了太阳能电池元件15。
[0225]<实施例16?20 >
[0226]如表I所示那样变更实施例1中的含有磷的铜合金粒子的磷含量、平均粒径(D50% )及其含量、含有锡的粒子的组成、平均粒径(D50% )及其含量、含有镍的粒子的组成、平均粒径(D50% )及其含量、银粒子的含量、玻璃粒子的种类及其含量、溶剂的种类及其含量、树脂的种类及其含量,除此以外,与实施例1同样地分别制备成电极用糊剂组合物16 ?20。
[0227]接着,分别使用所得的电极用糊剂组合物16?20,并如表2所示那样变更加热处理的温度及处理时间,除此以外,与实施例1同样地分别制作了形成有所需电极的太阳能电池元件16?20。
[0228]< 实施例 21 >
[0229]准备在受光面上形成有n+型扩散层、纹理及抗反射膜(氮化硅膜)的膜厚为190μπι的P型半导体基板,并将其切割成125mmX125mm的大小。之后,将铝电极糊剂印刷在背面来形成背面集电用电极图案。背面集电用电极图案如图3所示那样印刷在除背面输出提取电极以外的整个面上。此外,以使烧成后的背面集电用电极的膜厚成为30 μ m的方式适当调整铝电极糊剂的印刷条件。将其在加热至150°C的烘箱中放置15分钟,通过蒸发来去除溶剂。
[0230]接着,利用隧道式炉(Noritake公司制造,I列运送W/B隧道式炉),在大气环境下进行烧成最高温度为800°C、保持时间为10秒的加热处理(烧成),形成背面的集电用电极及P+型扩散层。
[0231]其后,以成为如图2及图3所示的电极图案的方式印刷上述得到的电极用糊剂组合物I。受光面的电极的图案由150 μ m宽的指线和1.5mm宽的母线构成,且以使烧成后的膜厚成为20 μ m的方式适当调整印刷条件(网版的网眼、印刷速度、印刷压力)。此外,背面的电极的图案以123mmX5mm构成,且以使烧成后的膜厚成为20μηι的方式共计印刷了 2处。将其在加热至150°C的烘箱中放置15分钟,通过蒸发来去除溶剂。
[0232]接着,利用隧道式炉(Noritake公司制造,I列搬送W/B隧道式炉),在大气环境下对其进行烧成最高温度为650°C、保持时间为10秒的加热处理(烧成),制成形成有所需电极的太阳能电池元件21。
[0233]< 实施例 22 >
[0234]在实施例21的受光面的电极及背面输出提取电极的制作中使用上述得到的电极用糊剂组合物3,除此以外,与实施例21同样地制作了太阳能电池元件22。
[0235]< 实施例 23 >
[0236]在实施例21的受光面的电极及背面输出提取电极的制作中使用上述所得到的电极用糊剂组合物9,并将电极形成时的烧成条件从最高温度650°C、保持时间10秒变更为最高温度620°C、保持时间10秒,除此以外,与实施例21同样地制作了太阳能电池元件23。
[0237]< 实施例 24 >
[0238]使用上述得到的电极用糊剂组合物1,制作具有如图5所示结构的太阳能电池元件24。以下表示具体的制作方法。首先,对于P型硅基板,利用激光钻孔来形成贯穿受光面侧及背面侧这两面的直径为100 μ m的通孔。此外,在受光面侧依次形成纹理、n+型扩散层、抗反射膜。另外,在通孔内部及背面的一部分上也分别形成了 n+型扩散层。接着,利用喷墨法将电极用糊剂组合物I填充至先前形成的通孔内部,进而,也将电极用糊剂组合物I以栅格状印刷在受光面侧。
[0239]另一方面,在背面侧,使用电极用糊剂组合物1,将其按照如图4所示的图案以条状进行印刷,并以在通孔的下方印刷电极用糊剂组合物I的方式形成电极用糊剂组合物层。此外,将铝电极糊剂印刷在除电极用糊剂组合物层以外的区域,形成铝电极糊剂层。利用隧道式炉(Noritake公司制造,I列运送W/B隧道式炉)在大气环境下对其进行烧成最高温度为800°C、保持时间为10秒的加热处理,制成形成有所需电极的太阳能电池元件24。
[0240]此时,对形成有铝电极糊剂层的部分,通过烧成而使铝扩散至P型硅基板内,由此形成P+型扩散层。
[0241]< 实施例 25>
[0242]由实施例24中的电极用糊剂组合物I变更为上述得到的电极用糊剂组合物16,形成受光面集电用电极、通孔电极、背面电极,除此以外,与实施例24同样地制作了太阳能电池元件25。
[0243]< 实施例 26 >
[0244]将实施例24中的电极形成时的烧成条件从最高温度800°C、保持时间10秒变更为最高温度850°C、保持时间8秒,除此以外,与实施例24同样地制作了太阳能电池元件26。
[0245]< 实施例 27 >
[0246]由实施例24中的电极用糊剂组合物I变更为上述得到的电极用糊剂组合物9,形成受光面集电用电极、通孔电极、背面电极,除此以外,与实施例24同样地制作了太阳能电池元件27。
[0247]< 实施例 28 >
[0248]将实施例1中的玻璃粒子从玻璃GOl粒子变更为玻璃G03粒子,除此以外,与实施例I同样地制备了电极用糊剂组合物28。
[0249]另外,玻璃G03以包含二氧化硅(SiO2) 13份、氧化硼(B2O3) 58份、氧化锌(ZnO) 38份、氧化铝(Al2O3) 12份、氧化钡(BaO) 12份的方式来制备。所得的玻璃G03的软化点为5830C,结晶化温度超过650°C。
[0250]使用所得到的玻璃G03,得到平均粒径(D50% )为2.5 μ m的玻璃G03粒子。此外,其形状为大致球状。
[0251]接着,使用上述得到的电极用糊剂组合物28,制作具有如图6所示结构的太阳能电池元件28。对于制作方法而言,除不形成受光面电极以外,与实施例24?27相同。另夕卜,烧成条件为最高温度800°C、保持时间10秒。
[0252]< 实施例 29 >
[0253]将实施例28中的电极形成时的烧成条件从最高温度800°C、保持时间10秒变更为最高温度850°C、保持时间8秒,除此以外,与实施例28同样地制作了太阳能电池元件29。
[0254]< 实施例 30 >
[0255]使用上述得到的电极用糊剂组合物28,制作具有如图7所示结构的太阳能电池元件30。对于制作方法而言,除成为基底的基板使用η型硅基板、且不形成受光面电极、通孔及通孔电极以外,与实施例24相同。另外,烧成条件为最高温度800°C、保持时间10秒。
[0256]< 实施例 31 >
[0257]将实施例9中的玻璃粒子从玻璃GOl粒子变更为玻璃G03粒子,除此以外,与实施例5同样地制备了电极用糊剂组合物31。使用该电极用糊剂组合物31,与实施例30同样地制作了具有如图7所示结构的太阳能电池元件31。
[0258]< 实施例 32 >
[0259]将实施例16中的玻璃粒子从玻璃GOl粒子变更为玻璃G03粒子,除此以外,与实施例12同样地制备了电极用糊剂组合物32。使用该电极用糊剂组合物32,与实施例30同样地制作了具有如图7所示结构的太阳能电池元件32。
[0260]<比较例I >
[0261]在实施例1的电极用糊剂组合物的制备中不使用含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子,且以成为表I所示组成的方式变更各成分,除此以外,与实施例1同样地制备了电极用糊剂组合物Cl。
[0262]除使用不包含含有磷的铜合金粒子、含有锡的粒子及镍粒子的电极用糊剂组合物Cl以外,与实施例1同样地制作了太阳能电池元件Cl。
[0263]<比较例2~4 >
[0264]在实施例1的电极用糊剂组合物的制备中使用磷含量不同的含有磷的铜合金粒子,且不使用含有锡的粒子及镍粒子,分别制备了表1所示组成的电极用糊剂组合物C2~C4。
[0265]除了分别使用电极用糊剂组合物C2~C4以外,与比较例I同样地分别制作了太阳能电池元件C2~C4。
[0266]<比较例5 >
[0267]在实施例1的电极用糊剂组合物的制备中使用铜粒子(纯度99.5%、平均粒径(D50% ) 5.0 μ m、含量33.3份)来代替含有磷的铜合金粒子,且以成为表1所不组成的方式变更各成分,除此以外,与实施例1同样地制备了电极用糊剂组合物C5。
[0268]除了使用电极用糊剂组合物C5以外,与比较例I同样地制作了太阳能电池元件C5。
[0269]<比较例6 >
[0270]代替实施例24中的电极用糊剂组合物I而变更为上述得到的电极用糊剂组合物Cl,形成受光面集电用电极、通孔电极、背面电极,除此以外,与实施例24同样地制作了太阳能电池元件C6。
[0271]<比较例7>
[0272]代替实施例28中的电极用糊剂组合物28而变更为上述得到的电极用糊剂组合物Cl,除此以外,与实施例28同样地制作了太阳能电池元件C7。
[0273]<比较例8 >
[0274]代替实施例30中的电极用糊剂组合物28而变更为上述得到的电极用糊剂组合物Cl,除此以外,与实施例30同样地制作了太阳能电池元件CS。
[0275]【表1】
[0276]
【权利要求】
1.一种电极用糊剂组合物,其包含含有磷的铜合金粒子、含有锡的粒子、含有镍的粒子、玻璃粒子、溶剂和树脂。
2.根据权利要求1所述的电极用糊剂组合物,其中,所述含有磷的铜合金粒子的磷含有率为6质量%以上且8质量%以下。
3.根据权利要求1或2所述的电极用糊剂组合物,其中,所述含有锡的粒子是选自锡粒子及锡含有率为I质量%以上的锡合金粒子中的至少一种。
4.根据权利要求1?3中任一项所述的电极用糊剂组合物,其中,所述含有镍的粒子是选自镍粒子及镍含有率为I质量%以上的镍合金粒子中的至少一种。
5.根据权利要求1?4中任一项所述的电极用糊剂组合物,其中,所述玻璃粒子的玻璃软化点为650°C以下,所述玻璃粒子的结晶化起始温度超过650°C。
6.根据权利要求1?5中任一项所述的电极用糊剂组合物,其中,将所述含有磷的铜合金粒子、所述含有锡的粒子及所述含有镍的粒子的总含有率设为100质量%时,所述含有锡的粒子的含有率为5质量%以上且70质量%以下。
7.根据权利要求1?6中任一项所述的电极用糊剂组合物,其中,将所述含有磷的铜合金粒子、所述含有锡的粒子及所述含有镍的粒子的总含有率设为100质量%时,所述含有镍的粒子的含有率为10质量%以上且60质量%以下。
8.根据权利要求1?7中任一项所述的电极用糊剂组合物,其中,所述含有磷的铜合金粒子、含有锡的粒子及含有镍的粒子的总含有率为70质量%以上且94质量%以下,所述玻璃粒子的含有率为0.1质量%以上且10质量%以下,所述溶剂及所述树脂的总含有率为3质量%以上且29.9质量%以下。
9.根据权利要求1?8中任一项所述的电极用糊剂组合物,其还含有银粒子。
10.根据权利要求9所述的电极用糊剂组合物,其中,将所述含有磷的铜合金粒子、所述含有锡的粒子、所述含有镍的粒子及所述银粒子的总含有率设为100质量%时,所述银粒子的含有率为0.1质量%以上且10质量%以下。
11.根据权利要求9或10所述的电极用糊剂组合物,其中,所述含有磷的铜合金粒子、含有锡的粒子、所述含有镍的粒子及银粒子的总含有率为70质量%以上且94质量%以下,所述玻璃粒子的含有率为0.1质量%以上且10质量%以下,所述溶剂及所述树脂的总含有率为3质量%以上且29.9质量%以下。
12.—种太阳能电池元件,其具备具有pn结的硅基板和被赋予到所述硅基板上的电极,所述电极是权利要求1?11中任一项所述的电极用糊剂组合物的烧成物。
13.根据权利要求12所述的太阳能电池元件,其中,所述电极包含Cu-Sn-Ni合金相及Sn-P-O玻璃相。
14.根据权利要求13所述的太阳能电池元件,其中,所述Sn-P-O玻璃相配置在所述Cu-Sn-Ni合金相与所述娃基板之间。
15.一种太阳能电池,其具有权利要求12?14中任一项所述的太阳能电池元件和配置在所述太阳能电池元件的电极上的布线材料。
【文档编号】H01L31/0224GK103930950SQ201280055775
【公开日】2014年7月16日 申请日期:2012年11月9日 优先权日:2011年11月14日
【发明者】足立修一郎, 吉田诚人, 野尻刚, 栗原祥晃, 加藤隆彦 申请人:日立化成株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1