一种复合型磷酸盐系列锂离子电池正极材料的制备方法与流程

文档序号:13218696阅读:426来源:国知局
技术领域本发明涉及一种通过共沉淀方法进行金属离子掺杂的复合型磷酸盐系列锂离子电池正极材料的制备方法,属于材料制备技术领域。

背景技术:
近年来,锂离子电池的研究和开发取得了可喜的成绩,特别是负极性能的改善和电解质体系的开发取得了很大成果,但锂离子电池正极材料的研究显得相对滞后,已成为制约锂离子电池市场和应用领域拓展的瓶颈。钴酸锂、镍酸锂、锂镍钴复合氧化物、锰酸锂、钒酸锂等系列正极材料一直是正极材料研究领域研究的热点。目前商品化锂离子电池中普遍使用的钴酸锂正极材料,虽具有274mAh/g的理论容量和良好的循环性能,但实际容量只有140mAh/g左右,且钴资源匮乏,价格昂贵。镍酸锂虽然实际容量可达200mAh/g左右,但在实际充放电过程中,呈非化学计量时易发生相变,影响材料循环稳定性能,且分解出的氧气可能与电解液反应,安全性能差。尖晶石型锰酸锂的开发应用虽然可以解决钴酸锂的价格问题和镍酸锂的安全问题,但其容量不高且高温稳定性能差。自从20世纪90年代末,橄榄石型磷酸铁锂正极材料的锂离子脱嵌性能被报导以来,LiFePO4正极材料的性能及其改性研究成为电池界研究的新热点。橄榄石型LiFePO4属正交晶系,空间群为Pnma,理论容量为170mAh/g,放电电压平台为3.4V(Li+/Li),完全放电前后晶体结构没有发生变化,体积仅变化6.81%,具有优良的循环性能和安全性能,且原料来源丰富,环境友好。LiFePO4正极材料的优势明显,但缺点同样不可忽视。首先,LiFePO4的真密度明显低于LiCoO2、LiNiO2及LiMn2O4等正极材料,必然会影响电池的能量密度,同时影响材料极片制备过程中的加工性能;其次,LiFePO4正极材料合成中,Fe2+易氧化成Fe3+,不易制得纯相LiFePO4正极材料;再次,由于LiFePO4自身结构所限制,致使其离子和电子导电性能不佳,此已成为制约其发展和应用的最大瓶颈。针对LiFePO4正极材料存在的这些问题,目前对其改性研究主要集中在以下三个方面:优化合成工艺,添加导电材料和掺杂金属离子。通过优化合成工艺,寻求恰当的制备方法和控制条件,可以改善LiFePO4正极材料的形貌、粒度大小、密度、纯度和表观导电性能。目前LiFePO4的制备方法主要有固相法、沉淀法、水热法、溶胶一凝胶、微波法等。添加导电性能良好的导电碳或碳化合物、金属或金属氧化物等,是改善LiFePO4的表观导电性能的一个有效途径。添加碳,不仅可以细化颗粒、改善材料的导电性能,还可以作为还原剂抑制Fe2+的氧化,但由于碳的密度小,必然会影响正极材料的能量密度。添加超细银粉或铜粉等金属能改善材料的导电性能,且不影响材料能量密度,但无法抑制Fe2+的氧化,且成本较高。优化合成工艺、添加导电材料只能提高材料的表观导电性能,为改善材料的本征导电性能,LiFePO4的Li位和Fe位掺杂少量金属离子,是一种可行方法,目前掺杂金属离子的方式主要是将主元素化合物与掺杂元素化合物直接用球磨机混合,然后进行高温灼烧合成,此法难以制备混合均匀的金属离子掺杂磷酸铁锂正极材料。专利CN101049922A提供了一种橄榄石型磷酸盐系列锂离子电池正极材料的制备方法。将二价铁盐与镍盐、钴盐或锰盐溶液中的一种或多种与草酸或草酸盐沉淀剂水溶液混合,得到复合草酸盐前驱体。将所述前驱体与锂源、磷源球磨混合均匀,在惰性或弱还原性气氛下,制得橄榄石型磷酸盐系列锂离子电池正极材料。该申请所述的方法中容易出现沉淀剂与盐溶液混合不均匀、沉淀颗粒粗细不等的现象,不利于得到成分比例稳定、粒度分布均匀、一致性良好的前驱体,最终导致合成的一元或多元复合磷酸盐锂离子电池正极材料性能不佳。

技术实现要素:
针对上述方法和手段的不足,本发明提供一种工艺简单、成本低廉、适于工业化生产的金属离子掺杂复合型磷酸盐系列锂离子电池正极材料的制备方法的制备方法。一种复合型磷酸盐系列锂离子电池正极材料的制备方法,包括以下步骤:(1)将可溶性二价铁盐与可溶性过渡金属镍盐、钴盐或锰盐中的一种或多种按所需Fe/M(M=Ni,Co,Mn,Ni+Mn,Ni+Co,Mn+Co,Ni+Co+Mn)摩尔比配制成0.1~3.0mol/L的溶液,然后加入酸和尿素,制得混合溶液;其中溶液浓度可为0.1mol/L、0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L或3mol/L等。(2)在步骤(1)的混合溶液中缓慢加入0.1~2.0mol/L的沉淀剂草酸或草酸盐溶液进行反应,控制反应温度为100~150℃,用2.0~8.0mol/L的氨水溶液和0.5~2.0mol/L的酸溶液调节反应pH,当pH值为0.2~4.0时,制得复合草酸盐前驱体;其中,沉淀剂的浓度可为0.1mol/L、0.5mol/L、1mol/L、1.5mol/L或2mol/L等;反应温度可为100℃、105℃、110℃、120℃、130℃、140℃或150℃等;氨水溶液的浓度可为2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L或8mol/L等;调节反应pH的酸溶液的浓度可为0.5mol/L、1mol/L、1.5mol/L或2mol/L等;调节pH可为0.2、0.5、1.0、1.5、2.0、2.5、3.0、3.5或4.0等。在这一步骤中,随着尿素的分解,溶液中氢离子被消耗,溶液的pH值逐渐提高,沉淀物的溶解度逐渐下降而析出,然后经过滤、洗涤、烘干得到亚微米级的复合草酸盐前驱体。(3)将复合草酸盐前驱体与锂源、磷源按摩尔比1∶0.91~1.09∶1混合,加入无水乙醇混合球磨1~5小时,在惰性或弱还原性气氛下,在600~900℃下高温热处理5~30小时得到复合型磷酸盐系列锂离子电池正极材料;其中复合草酸盐前驱体与锂源、磷源的摩尔比可为1:0.91:1、1:1:1或1:1.09:1等;球磨时间可为1小时、2小时、3小时、4小时或5小时等;高温热处理温度可为600℃、650℃、700℃、750℃、800℃、850℃或900℃等;高温热处理时间可为5小时、10小时、15小时、20小时、25小时或30小时等。所述可溶性二价铁盐可选用氯化亚铁、硫酸亚铁、硫酸亚铁铵、硝酸亚铁或醋酸亚铁。所述可溶性过渡金属镍、钴、锰盐可选用镍、钴、锰的氯化物、硫酸盐、硝酸盐或醋酸盐。所述沉淀剂与金属离子摩尔比为:NC2O42-∶NM2+(过渡金属离子总和)为0.8~1.5。所述草酸盐包括草酸铵或草酸钠。所述锂源可选用碳酸锂、草酸锂、醋酸锂、氢氧化锂、氯化锂、硝酸锂或硫酸锂。所述磷源可选用磷酸二氢铵、磷酸氢二铵、磷酸三铵、磷酸二氢钠、磷酸氢二钠、磷酸三钠、磷酸二氢钾、磷酸氢二钾、磷酸三钾。所用惰性或弱还原性气氛分别选自氮气、氩气和氢气与氮气混合气或氢气与氩气混合气中的一种。本发明具有以下特点:本发明使用尿素水溶液在酸、碱和尿素酶催化或加热条件下会发生缓慢水解,由于尿素水解速度缓慢,且水解产物简单易挥发,可用于元素和离子的均匀沉淀。本发明采用尿素作为反应体系的pH值调节剂,,与现有方法相比采用尿素水解均匀共沉淀方法制备前驱体,稳定了化学共沉淀过程中pH值,减小了反应体系pH值的波动,克服了反应条件前后的差别以及使用pH调节试剂所引起的副反应,避免了出现沉淀剂与盐溶液混合不均匀、沉淀颗粒粗细不等的现象,有利于得到成分比例稳定、粒度分布均匀、一致性良好的前驱体,最终合成高容量、高放电平台、批次性好的一元或多元复合磷酸盐锂离子电池正极材料用该方法可制备粒径在0.3~10μm、室温下首次放电比容量160mAh/g、循环性能良好的复合型磷酸盐系列锂离子电池正极材料。具体实施方式实施例1配制硫酸亚铁水、硫酸钴和硫酸锰混合溶液,总浓度为2.0摩尔/升,三者的摩尔比为5:4:1,每升溶液加入2摩尔的硫酸和80克尿素,加入沉淀剂草酸与总金属离子摩尔比为1.1:1,搅拌溶解固体使体系成溶液,通过加热套对溶液加热,控制反应时间,随着尿素的分解,溶液中氢离子被消耗,溶液的pH值逐渐提高,沉淀物的溶解度逐渐下降而析出。反应器内温度为120℃,反应搅拌进行14小时,过滤、洗涤直至用氯化钡检测不出洗涤水中的硫酸根,干燥制得Mn0.1Co0.4Fe0.5C2O4·2H2O三元元前驱体。前驱体加入化学计量比的磷酸二氢铵和氢氧化锂,在丙酮介质中球磨干燥得到样品。将样品放入气氛炉中,在氩气保护下进行焙烧,600℃保温10小时,700℃恒温24小时,然后自然冷却至室温,得到磷酸盐锂离子正极材料。测得该产品平均粒径在200-300nm,以锂片为负极,测得该磷酸盐锂离子正极材料室温首次放电比容量达160mAh/g,中值电压为3.77V。实施例2:配制硫酸锰、硫酸亚铁、硫酸镍、硫酸钴混合水溶液,其中硫酸锰、硫酸亚铁、硫酸镍、硫酸钴的总浓度为0.1摩尔/升,四者的摩尔比为1:1:1:1,每升溶液加入0.1摩尔的盐酸和40克尿素,加入沉淀剂草酸与总金属离子摩尔比为0.8:1,搅拌溶解固体使体系成溶液,通过加热套对溶液加热,控制反应时间,随着尿素的分解,溶液中氢离子被消耗,溶液的pH值逐渐提高,沉淀物的溶解度逐渐下降而析出。控制反应器内温度为150℃。反应搅拌进行10小时,过滤、洗涤直至用氯化钡检测不出洗涤水中的硫酸根,干燥制得MnFeCoNiC2O4·2H2O四元复合前驱体。前驱体加入化学计量比的磷酸二氢铵和碳酸锂,在丙酮介质中球磨干燥得到样品。将样品放入气氛炉中,在氩气保护下进行焙烧,800℃保温5小时,900℃恒温25小时,然后自然冷却至室温,得到磷酸盐锂离子正极材料。测得该产品平均粒径在300-400nm,以锂片为负极,测得该四元磷酸盐锂离子正极材料室温首次放电比容量达162mAh/g,中值电压为3.82V。实施例3:配制硫酸锰、硫酸亚铁、硫酸镍、硫酸钴混合水溶液,其中硫酸锰、硫酸亚铁、硫酸镍、硫酸钴的总浓度为3摩尔/升,四者的摩尔比为1:1:1:1,每升溶液加入5摩尔的盐酸和300克尿素,加入沉淀剂草酸与总金属离子摩尔比为1.5:1,搅拌溶解固体使体系成溶液,通过加热套对溶液加热,控制反应时间,随着尿素的分解,溶液中氢离子被消耗,溶液的pH值逐渐提高,沉淀物的溶解度逐渐下降而析出。控制反应器内温度为100℃。反应搅拌进行30小时,过滤、洗涤直至用氯化钡检测不出洗涤水中的硫酸根,干燥制得Mn1/4Fe1/4Co1/4Ni1/4C2O4·2H2O四元复合前驱体。前驱体加入化学计量比的磷酸二氢铵和碳酸锂,在丙酮介质中球磨干燥得到样品。将样品放入气氛炉中,在氩气保护下进行焙烧,900℃恒温30小时,然后自然冷却至室温,得到磷酸盐锂离子正极材料。测得该产品平均粒径在300-400nm,以锂片为负极,测得该四元磷酸盐锂离子正极材料室温首次放电比容量达159mAh/g,中值电压为3.82V。对比例1:专利CN10149922A中的实施例1,其制得的橄榄石型磷酸盐系列锂离子电池正极材料室温首次放电比容量达144.5mAh/g。从上述结果可以看出,本发明采用尿素作为反应体系的pH值调节剂,,与现有方法相比采用尿素水解均匀共沉淀方法制备前驱体,稳定了化学共沉淀过程中pH值,减小了反应体系pH值的波动,克服了反应条件前后的差别以及使用pH调节试剂所引起的副反应,避免了出现沉淀剂与盐溶液混合不均匀、沉淀颗粒粗细不等的现象,有利于得到成分比例稳定、粒度分布均匀、一致性良好的前驱体,最终合成高容量、高放电平台、批次性好的一元或多元复合磷酸盐锂离子电池正极材料,用该方法可制备粒径在0.3~10μm、室温下首次放电比容量160mAh/g、循环性能良好的复合型磷酸盐系列锂离子电池正极材料。申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1