晶体管的制造方法与流程

文档序号:12598965阅读:461来源:国知局
晶体管的制造方法与流程

本发明实施例是关于一种晶体管及其制造方法,且特别是关于一种石墨烯为基底的晶体管及其制造方法。



背景技术:

电子产业对于更小及更快的电子元件的需求与日俱增,其同时能够承受骤增的复杂度及精密功能。因此,半导体产业致力于制造低成本、高表现及低功率集成电路(ICs)为时势所趋。迄今这些目标通过缩减半导体IC尺寸(如最小特征尺寸)大致上已达成,并且因此改善了产出效率及降低相关成本。然而,此种尺寸的缩减也增加了半导体制造过程的复杂度。体认到在半导体IC及元件持续的进步,需于半导体制造过程及科技发展类似的进步。

石墨烯,为碳原子键结成六角形晶格的二维(2D)薄片,近来已被用于晶体管装置作为潜力的通道替代材料。除了它固有的高载子迁移率,石墨烯还具有其他令人引起极大兴趣的特性,例如电流密度、热力及机械稳定度大,及高饱和速度。大面积的石墨烯膜已被以各种方法进行制造,例如磊晶成长于碳化硅(SiC)基板上、化学气相沉积(CVD)成长(例如,涉及催化碳氢化合物沉积于金属表面上)及机械剥离法(例如,来自石墨块)。例如,制造石墨烯为基底的装置常涉及石墨烯层的转移(例如,来自成长基板或来自石墨块),及将会在移至的目标基板上进行石墨烯为基底的装置的制造。由于转移制程的关系,可能会引进晶界、点缺陷、皱褶、折叠、撕裂或其他晶格缺陷,并因此对任何后续制造的装置的特性有不良影响。另外,带电杂质吸附至及/或于目标基板中可能会造成转移的石墨烯层非出于本意的掺杂(例如,由于电荷转移掺杂),从而影响后续制造的石墨烯为基底的装置其品质及/或表现。因此,现存技术尚未显示完全满足各方面需求。



技术实现要素:

本揭露一实施态样是提供一种晶体管的制造方法,包含:提供一基板,包含一绝缘层;形成一疏水层于该绝缘层上;转移一石墨烯层至该疏水层上,其中该转移的石墨烯层具有一第一载子迁移率;以及转移该石墨烯层之后,执行一退火制程,其中该退火的石墨烯层具有一第二载子迁移率大于该第一载子迁移率。

附图说明

当结合附图阅读以下详细描述时将更好地理解本揭露内容的态样。但须注意依照本产业的标准做法,各种特征未按照比例绘制。事实上,各种特征的尺寸为了清楚的讨论而可被任意放大或缩小。

图1为背栅式石墨烯装置的剖视图;

图2是依据本揭露一或多个实施态样,为制造石墨烯装置的方法流程图;

图3至图6是依据本揭露一或多个实施态样,显示石墨烯装置的实施方式的剖视图,及对应至图2中方法的一或多个步骤;

图7是依据本揭露一或多个实施态样,为双栅式石墨烯装置的剖视图;

图8是依据本揭露一或多个实施态样,为顶栅式石墨烯装置的剖视图;

图9是依据本揭露一或多个实施态样,为石墨烯装置的退火方法的温度曲线;

图10是依据本揭露一或多个实施态样,为背栅式石墨烯光侦测器的剖视图;

图11是依据本揭露一或多个实施态样,显示各种石墨烯装置其导电率对栅极电压作图;

图12是依据本揭露一或多个实施态样,显示包含各种石墨烯装置电相关特性的表格。

具体实施方式

本揭露接下来将会提供许多不同的实施方式或实施例以实施所提供标的中不同的特征。各特定实施例中的组成及配置将会在以下作描述以简化本揭露。这些为实施例仅作为示范并非用于限定本揭露。例如,叙述中一第一特征形成于一第二特征之上可包含实施例中的第一特征与第二特征直接接触,亦可包含第一特征与第二特征之间更有其他额外特征形成使第一特征与第二特征无直接接触。此外,本揭露于各种实施例中将重复使用元件符号及/或字母。此重复乃为了简化与清晰的目的,而其本身并不决定各种实施例及/或结构配置之间的关系。

此外,空间关系的用语像是“下方”、“之下”、“较低”、“上方”、“较高”及类似用语,可用于此处以便描述附图中一元件或特征与另一元件与特征之间的关系。这些相对空间关系的用语乃为了涵盖除了附图所描述的方向以外,元件于使用或操作中的各种不同的方向。装置可另有其他导向方式(旋转90度或朝其他方向),此时的空间相对关系也可依上述方式解读。

图1中显示为例示性的背栅式石墨烯装置100。石墨烯装置100包含基板102、绝缘层104设置于基板102上、石墨烯层106设置于绝缘层104上及源极/漏极接点108接触石墨烯层106的尾端。基板102可为半导体基板,例如硅基板。取决于该技术领域中已知的设计需求,基板102可包含各种掺杂配置。例如,基板102可包含重掺杂,低电阻率的基板使得基板102可被用于作为石墨烯装置100的整体背栅极。

绝缘层104可包含氧化硅(SiO2)层通过热氧化成长于基板102上。在一些实施例中,绝缘层104可择一厚度使得石墨烯层106与下方对应的基板102的对比最佳化。例如,绝缘层104可具有一厚度约90纳米(nm)或280nm。在一些实施例中,绝缘层104可具有一厚度落于范围约自90-100nm,或约自280-300nm。

石墨烯层106可包含通过各种方法生产的石墨烯,例如磊晶成长于碳化硅(SiC)基板上、化学气相沉积(CVD)成长(例如,涉及催化碳氢化合物沉积于金属表面上)及机械剥离法(例如,来自石墨块)。例如,成长或剥离的石墨烯层106可被转移(例如,自成长基板或自石墨块)至基板102的绝缘层104上,其可称之为目标基板,以石墨烯为基底的装置可于其上进行制造。在各种实施例中,石墨烯转移可通过湿式或干式转移制程来完成。转移的石墨烯层106至绝缘层104上之后,可形成金属源极/漏极接点108。金属源极/漏极接点108可包含传导层例如Cr、Ti、Au、Ni、Pd、Ir、Ag、Pt、Cu、Co、Al、Fe或其组合,及/或其他适合的组成。源极/漏极接点108可利用PVD、CVD、电子束(e-beam)蒸镀法及/或其他适合的制程形成。在一些实施例中,装置100的主动区可通过适合的光微影及蚀刻制程(例如,氧化等离子蚀刻制程)定义出来(例如,在形成源极/漏极接点108之前或之后)。因而,图1的例示性背栅式石墨烯装置100包含作为装置通道的石墨烯层106,通过源极/漏极接点108连接,及基板102为整体背栅极,通过绝缘层104与石墨烯层106分隔开来。

在各种传统方法中,由于石墨烯层106转移至绝缘层104上的关系,可能会将晶界、点缺陷、皱褶、折叠、撕裂或其他晶格缺陷引进转移的石墨烯层106,从而劣化任何后续制造的装置的特性。另外,带电杂质吸附至及/或于目标基板中(例如,于绝缘层104中,其上方为转移的石墨烯层106)可能会造成转移的石墨烯层106非出于本意的掺杂(例如,由于电荷转移掺杂),从而影响后续制造的石墨烯为基底的装置(例如,装置100)其品质及/或表现。因此,现存技术尚未显示完全满足各方面需求。

本揭露的实施方式提供胜过现存技术的优点,即使已知仍有其他实施方式可提供不同的优点,所有优点没有必要于此多做撰述,并且无特定优点用以限定所有实施方式。例如,于此讨论的实施方式包含方法及结构,是关于例如通过转移石墨烯至疏水性表面上并执行热处理制程(例如,退火),来提供高品质转移的石墨烯层(例如,于目标基板上),其为实质平坦并且能呈现降低的基板效应(例如,包含降低由于带电基板杂质所造成的石墨烯层的电子转移掺杂)。在此,用语像是“疏水性表面”是用来叙述具有接触角度(contact angle,CA)介于约90°及约150°之间的表面。在此,用语像是“接触角度”是用来叙述液体与固体表面于液体及固体的介面所造成的角度。此外,在各种实施方式中,用语像是“疏水性表面”可用来叙述一表面其为实质地低湿润或非湿润,此处“湿润”一词是用来叙述液体(例如,水)维持与疏水性表面接触的程度。换另一种方式来说,用语像是“疏水性表面”可用来叙述一表面其排斥或排除疏水性表面的水。依据本揭露的实施例,石墨烯层106转移前,先对目标基板进行处理使之为疏水的。例如,在一些实施方式中,于石墨烯层106转移至绝缘层104前,先对绝缘层104进行处理使其具有疏水性表面。在一些实施方式中,绝缘层104的表面可以疏水性材料进行处理(例如,涂布),包含三氯十八硅烷(ODTS)及/或辛基三氯硅烷(OTS)的自组装单分子层(SAMs)、聚合物如聚四氟乙烯(PTFE)、聚乙烯(PE)、聚丙烯(PP)聚苯乙烯(PS)、聚酰亚胺(PI),及/或蜡以提供疏水性表面。由于使用疏水性材料处理绝缘层104使其具有疏水性表面的关系,在各种实施方式中,可防止带电杂质吸附至绝缘层104的疏水性表面涂料,及/或绝缘层104的疏水性表面涂料可掩蔽存于绝缘层104中的带电杂质。此后,在各种实施方式中,转移态的石墨烯层106(即转移至疏水性表面上的状态)可于约200℃的温度下持续进行退火约2小时。在各种实施方式中,退火温度可做改变,例如,约+/-50℃。因此,在一些实施例中,转移态的石墨烯层106可于约150℃至约250℃的温度下持续进行退火约2小时。由于热处理制程(例如,退火制程)的关系,转移态的石墨烯于疏水性表面上,可为较平坦及较干净的(例如,通过观察电性特征及表面形态特征)。仅以一实施例来说,在一些实施方式中,石墨烯于涂布SAM的绝缘层(例如,绝缘层104)上可具有RMS粗度值为约1.65纳米(nm),相较之下,石墨烯于裸露SiO2的绝缘层上可具有RMS粗度值为约2.25nm。在各种实施方式中,退火制程也可用于移除水气,其可能出现在转移态的石墨烯及上方为转移的石墨烯的绝缘层的疏水性表面之间。因此,由于热处理制程的关系,转移态的石墨烯,于疏水性表面上,也可呈现获得改善的载子迁移率。在一些实施方式中,于退火制程之后,顶部电极(例如,源极/漏极电极)可沉积于退火的石墨烯层106之上。

现参照图2,是依据本揭露一或多个实施态样,显示制造石墨烯装置的方法流程图。方法200可被用以实施石墨烯为基底的晶体管,包含方法关于提供实质平坦及干净的石墨烯表面,从而改善石墨烯的载子迁移率(例如,于石墨烯层中电子及空穴的迁移率)。在一些实施方式中,方法200可被用来制造装置100,参照上方所述的图1。如此,参照装置100的上述一或多个实施态样也可适用于方法200。此外,图3-6依据本揭露一或多个实施态样,为石墨烯装置300的剖视图,及对应至图2中方法的一或多个步骤。

已知方法200的部分及/或石墨烯装置300可通过熟知的互补式金属氧化物半导体(CMOS)技术制程流程进行制造,因而一些制程仅简短于此撰述。此外,如上所述,装置300可适用装置100部分实施态样,因此一些装置300的实施态样及/或制程为达清晰理解的目的仅简短于此撰述。进一步,石墨烯装置300可包含及/或整合于各种其他装置及特征,例如额外的晶体管、双载子接面晶体管、电阻器、电容器、二极管、熔丝等等,但为了更易理解本揭露的发明概念而被简化。进一步,在一些实施方式中,石墨烯装置300包含复数个石墨烯装置(例如,晶体管),其可为互连的。

在各种实施方式中,石墨烯装置300可为集成电路或其部分的制程期间进行制造的中间装置,其可包含静态随机存取记忆体(SRAM)及/或其他逻辑电路,被动元件例如电阻器、电容器及电感器,及主动元件例如P通道场效晶体管(PFETs)、N通道FETs(NFETs)、金属氧化物半导体场效晶体管(MOSFETs)、互补式金属氧化物半导体(CMOS)晶体管、双载子晶体管、高电压晶体管、高频率晶体管、其他记忆体单元,及/或其组合。在一些实施方式中,石墨烯装置300可形成于基板上(例如,基板102),具有介电层(例如,绝缘层104)设置于其上,此处基板可包含CMOS晶体管(或其他上方所提装置)形成于基板102中,及此处石墨烯装置300的电极(例如,源极/漏极接点108)及于基板102中的装置的电极可透过介电层以一或多个接点、通孔或其他电性互连体进行连接。

现参照方法200,方法200始于区块202,提供了具有绝缘层的基板。参照图3的实施例,及区块202的实施方式,显示此处为装置300,包含基板302。参照上述图1的装置100,基板302可为实质上相似于基板102。例如,基板302可为半导体基板例如硅基板,及取决于该技术领域中已知的设计需求,基板302可包含各种掺杂配置。在各种实施方式中,基板302可包含重掺杂(例如,N+或P+),低电阻率的基板(例如,小于5mOhm-cm)使得基板302可被用于作为石墨烯装置300的整体背栅极。进一步于区块202的实施方式中,绝缘层304可形成于基板302上。参照上述图1的装置100,绝缘层304可为实质上相似于绝缘层104。例如,绝缘层304可包含SiO2层通过热氧化成长于基板302上。然而,在不违背本揭露的范畴下,可使用其他氧化沉积的方法(例如,CVD)。在一些实施方式中,绝缘层304可具有厚度约90nm或280nm。在一些实施例中,绝缘层304可具有厚度落于范围约90-100nm,或约280-300nm。

方法200接着进行到区块204,此处疏水层形成于绝缘层上。参照图4中的实施例,及区块204的实施方式,疏水层402形成于绝缘层304上,从而提供疏水性表面404(石墨烯层接着会转移至其上)于绝缘层304上。在一些实施方式中,形成疏水层402于绝缘层304之前,绝缘层的表面可进行清洁以移除有机残留物。例如,在一些实施方式中,装置300可被浸于食人鱼洗液(piranha solution,即硫酸及过氧化氢的混合液)以自绝缘层304的表面移除有机残留物,及以羟基化绝缘层304的表面。在一些实施例中,食人鱼洗液的清洗可持续约30分钟,及在一些实施例中进行时间可倍数增加(例如,两倍)。例如,及在一些实施方式中,以食人鱼洗液清洁绝缘层304之后,装置300可于超音波浴中以超纯水(UPW)清洗,以移除可能自食人鱼清洗液清洁中所残留的残留物。在一些实施方式中,清洗/超音波浴过程可持续进行约10分钟,及在一些实施例中进行时间可倍数增加(例如,三倍)。

回到图4,及在各种实施方式中,疏水层402提供疏水性表面404,其具有接触角度(CA)介于约90°及约150°之间。例如,疏水层402可包含疏水性材料例如三氯十八硅烷(ODTS)及/或辛基三氯硅烷(OTS)的自组装单分子层(SAMs)、聚合物如聚四氟乙烯(PTFE)、聚乙烯(PE)、聚丙烯(PP)聚苯乙烯(PS)、聚酰亚胺(PI),及/或蜡。在一些实施例中,疏水层402可包含单一层或复数层(例如,多层膜)。在一些实施方式中,疏水层402可利用溶剂浇铸、溶剂上漆、热喷制程、旋转涂布、浸没(例如,浸入包含疏水性材料的溶液中)、PVD、CVD、电子束(e-beam)蒸镀法、脉冲激光沉积、等离子聚合法,及/或其他适合的制程来形成。在一些实施方式中,用来形成疏水层402的疏水性材料可以溶液来施行(例如,加到绝缘层304上)。例如,可利用于无水甲苯(0.3M)/5ppm中的OTS或ODTS溶液。在一些实施方式中,具有上述清洁过绝缘层304的装置300,可浸没于疏水性材料溶液中(例如,OTS或ODTS的溶液)约24小时以形成疏水层402。在一些实施例中,形成疏水层402之后,装置300可以超音波浴使用无水甲苯及乙醇(EtOH)的溶液进行清洁约15分钟。在一些实施方式中,形成疏水层402及清洁装置300之后,装置300可于约150摄氏温度下烘烤约60分钟(例如,在烤箱中、烤炉中或热板上)。在各种实施方式中,疏水层402可有益于防止带电杂质吸附至疏水性表面404,及/或疏水层402可掩蔽存于绝缘层304或基板302之中的带电杂质,从而减缓后续转移至疏水层402上的石墨烯层的电子转移掺杂。尽管一些实施例已提供用于形成疏水层402的疏水性材料,这些提供的实施例无意以任何方式加以限制,及应将了解有其他材料可用于形成疏水层402,从而在不违背本揭露的范畴下提供疏水性表面404。

也值得注意的是,在此讨论的自组装单分子层(SAMs),包含有序的分子组装(例如,有机分子)其通过分子吸附自发性地形成于固体基质上(例如,吸附于绝缘层304上)。在各种实施例中,SAM界面分子可包含前端官能基、烷链及尾端官能基。前端官能基对固体基质(例如,绝缘层304)可具有高亲和性,因此可与其进行沉积的基质有化学性交互作用。在各种实施方式中,SAM分子可吸附于实质上所有表面位置(例如,绝缘层304),造成单层封包。在一些实施方式中,SAM前端官能基可包含烷基硫醇[X-(CH2)n-SH](例如,当下方表面包含金属例如Ag、Au及Cu,或其他适合的金属)及烷基三氯硅烷[X-(CH2)n-SiCl3](例如,当下方表面包含绝缘层304,及此处绝缘层304包含在此所述的氧化物例如SiO2、Al2O3及/或其他氧化物/介电材料或介电基质)。此外,SAM烷链间的凡得瓦力(Van der Waals)有效促成SAM的排序。在各种实施方式中,终端官能基曝露于表面(例如,于疏水性表面404),例如,其上方将会有石墨烯层转移过来。例如,SAM烷链可以各种官能基结尾(例如,CH3、OH、COOH、NH2等等),使得SAM可用于改变表面特性(例如,创造疏水性表面404)。

方法200接着进行至区块206,此处石墨烯层转移至疏水层上。参照图5的实施例,及区块206的实施方式,石墨烯层502转移至疏水层402上。参照上述图1的装置100,石墨烯层502可为实质上相似于石墨烯层106。例如,石墨烯层502可包含通过各种方法生产的石墨烯,例如磊晶成长于碳化硅(SiC)基板上、化学气相沉积(CVD)成长(例如,涉及催化碳氢化合物沉积于金属表面上)、液相剥离法、机械剥离法(例如,来自石墨块)及/或其他该技术领域中已知的方法。在各种实施方式中,石墨烯层502可包含单层石墨烯、双层石墨烯或多层石墨烯(例如,包含多于两层)。于此所述对石墨烯进行CVD成长,可利用各种金属基材例如Cu、Ni、Co、Ru、Ir、Pt或其他适合的金属,及利用各种任何碳源例如碳氢化合物,包含甲烷(CH4)、乙炔(C2H2)、乙烯(C2H4)或该技术领域已知的其他东西。例如,成长或剥离的石墨烯层502可转移(例如,从成长基板或从石墨烯块)至疏水层402上。在各种实施例中,石墨烯转移可通过湿式或干式转移制程来完成。如此,在各种实施方式中,石墨烯转移可通过利用聚甲基丙烯酸甲酯(PMMA)辅助方法或无聚合物转移制程来完成。仅以一PMMA辅助方法的实施例来说,在石墨烯成长之后(例如,CVD成长石墨烯于金属基板上),可旋转涂布PMMA支持层于金属上石墨烯基板,及金属基板可以金属蚀刻液进行蚀刻,留下PMMA/石墨烯膜。在各种实施方式中,及取决于用于CVD成长石墨烯的金属基板,金属蚀刻液可包含氯化铁(FeCl3)、硝酸氮(HNO3)、过硫酸铵((NH4)2S2O8)或其他该技术领域已知的金属蚀刻液。

在一些实施方式中,PMMA/石墨烯膜可接着转移至另一基板(例如,包含疏水层402的基板302),其后PMMA支持层可用溶剂溶解(例如,丙酮)。作为选择,在各种实施方式中,石墨烯转移制程可利用聚二甲基硅氧烷(PDMS)、热解胶带(thermal release tape)、卷对卷(roll-to-roll)转移制程、电化学制程、直接转移制程(例如,利用施压及/或热),或该技术领域中已知的其他湿式及/或干式转移制程。尽管已提供石墨烯成长及转移的一些实施力,这些提供的实施例无意以任何方式加以限制,及应将了解在不违背本揭露的范畴下有其他方法可用于石墨烯成长及/或转移。

方法200接着进行到区块208,此处形成退火制程。参照图5中的实施例,及区块208的实施方式,为了进一步改善转移态的石墨烯(例如,平坦及干净)的品质,从而进一步改善石墨烯载子迁移率。可对装置300包含转移的石墨烯层502(即转移至疏水层402的疏水性表面404上的状态)进行退火。特别是,在各种实施方式中,区块208的退火制程用于移除水气,其可能出现在转移的石墨烯层502及上方为转移的石墨烯的疏水层402的疏水性表面404之间。在各种实施方式中,例如,通过电性特征及表面形态特征,可观察到品质获得改善的退火、转移态的石墨烯。仅以一实施例,在一些实施方式中,石墨烯于涂布SAM的绝缘层上可具有RMS粗度值为约1.65纳米(nm),相较之下,石墨烯于裸露SiO2的绝缘层上其可具有RMS粗度值为约2.25nm。参照图9,区块208的退火制程的各种实施方式可被理解及解释的更为详尽,其显示石墨烯装置的退火方法的温度曲线。如图9中所显示,时间(T)等于零(0)(T=0)时可为石墨烯层502转移至疏水层402的时间点。如图9所显示的温度曲线,装置300(如此转移的石墨烯层502),可于初始承受温度‘t1’。在一些实施方式中,‘t1’可等同于约25℃+/-25℃。如此,例如,在一些实施方式中,‘t1’可落于范围约0℃至约50℃。在一些实施方式中,于‘T1’时,温度可以例如斜率902自‘t1’增加至‘t2’。例如,斜率902可大于或等于约60℃/分钟,及‘t2’可等于约200℃+/-50℃。因此,例如及在各种实施方式中,‘t2’可落于范围约150℃至约250℃。在各种实施方式中,退火时间904可介于约10分钟及约240分钟之间。在一些实施例中,退火制程可于氮气(N2)环境下执行。作为选择,在一些实施方式中,退火制程可于惰性气体(例如,氦、氖、氩等等)环境下执行。在至少一些实施方式中,区块208的退火制程可于温度约200℃下执行约2小时。在一些例子中,区块208的退火制程可于温度约150℃至约250℃下持续执行2小时。在一些实施方式中,于‘T2’时,温度可以例如斜率906自‘t2’减少至‘t1’。例如,斜率906可小于或等于约1℃/分钟,及‘t1’可为上述所提之。在一些实施方式中,退火温度斜率为摇摆的曲线。例如,区块208的退火制程可利用热辐射(例如,热烤箱)、利用热传导(例如,热板)、利用光电方法(例如,激光退火)或其他适合的方法来进行。在各种实施方式中,区块208的退火制程可于约10-3Torr压力下进行。

方法200接着进行到区块210,其形成电极。参照图6中的实施例,在上述退火制程之后及区块208的实施方式中,源极/漏极电极602可形成于退火的石墨烯层502上。在一些实施方式中,金属源极/漏极电极602可包含传导层例如Cr、Ti、Au、Ni、Pd、Ir、Ag、Pt、Cu、Co、Al、Fe或其组合,及/或其他适合的组成。在一些实施方式中,源极/漏极电极602可利用PVD、CVD、电子束(e-beam)蒸镀及/或其他适合的制程来形成。在一些实施例中,源极/漏极电极602可利用金属剥离(lift-off)制程来形成。在一些实施例中,装置300的主动区可通过适合的光微影及蚀刻制程(例如,氧化等离子蚀刻制程)定义出来(例如,在形成源极/漏极电极602之前或之后)。因而,图6的背栅式石墨烯装置300包含平坦、干净的石墨烯层502(装置通道)于疏水层402上,此处石墨烯层藉源极/漏极电极602连接,及基板302为整体背栅极通过绝缘层304及疏水层402与石墨烯层502分隔开来。在一些例子中,为了改善基板302的接触,金属层(例如,Al)可蒸镀至基板302的表面604上。

装置300可经进一步的制程以形成各种该技术领域中已知的特征及区域。例如,后续制程可形成各种接点/通孔/线及多层互连特征(例如,金属层及层间介电质)于基板302上,配置以连接各种特征以形成功能性电路,其可包含一或多个石墨烯装置。于促成的实施例中,多层互连可包含垂直的互连体,例如通孔或接点,及水平的互连体,例如金属线。各种互连特征可使用各种传导材料,包含铜、钨及/或硅化物。在一实施例中,镶嵌及/或双镶嵌制程用以形成铜相关的多层互连结构。在一些实施方式中,石墨烯装置300可形成于基板上,其具有介电层设置于其上,此处基板可包含CMOS晶体管(或其他上述装置)形成于基板中,及此处石墨烯装置300的电极(例如,源极/漏极电极602)及于基板中的装置的电极可透过介电层以一或多个接点、通孔或其他电性互连体进行连接。此外,依据各种方法200的实施方式,额外的制程步骤可于方法200之前、期间或之后实施,及一些上述制程步骤可被取代或省略。

现参照图7,依据本揭露一或多个实施态样,显示其中为双栅极石墨烯装置700的剖视图。在各种实施方式中,关于方法200,装置700可以实质上相似于上述装置300的方式进行处理。举例来说,如图6所示,在形成背栅式装置之后,可执行额外的制程以制造图7中的双栅式装置。例如,在一些实施方式中,在形成源极/漏极电极602之后,顶栅介电层702可形成于石墨烯层502上。由于石墨烯的惰性本质,在一些实施例中,为了使介电层702能够沉积于石墨烯层502之上,成核及/或官能层(或成核/官能处理)可于介电层702形成之前形成。仅做说明的用,在一些实施方式中,Al成核层可于Al2O3层沉积之前形成。进一步显示,在一些实施例中,臭氧(O3)前处理可于介电层702沉积之前执行。尽管已提供一些关于形成成核层于石墨烯上或执行官能处理的实施例,这些实施例无意以任何方式有所限制,及本领域具通常知识者将理解在不违背本揭露的范畴下,还可实施其他成核层及/或官能处理。

在各种实施方式中,介电层702可包含高介电常数(high-K)介电层,或在一些例子中可包含高介电常数层形成于界面层上。于此所用及所述的高介电常数介电质,包含具有大于热氧化硅的高介电常数(~3.9)的介电材料。在一些实施方式中,界面层(若存在的话)可包含介电材料例如SiO2、HfSiO或SiON。在各种实施方式中,介电层702的高介电常数介电层可包含介电层例如HfO2、TiO2、HfZrO、Ta2O3、HfSiO4、ZrO2、ZrSiO2、LaO、AlO、ZrO、TiO、Ta2O5、Y2O3、SrTiO3(STO)、BaTiO3(BTO)、BaZrO、HfZrO、HfLaO、HfSiO、LaSiO、AlSiO、HfTaO、HfTiO、(Ba,Sr)TiO3(BST)、Al2O3、Si3N4、氧化氮硅(SiON)、其组合或其他适合的材料。每一界面层及介电层702的高介电常数介电层可通过ALD、物理气相沉积(PVD)、CVD、化学氧化、热氧化及/或其他适合的方法来形成。

仍参照图7,在形成介电层702之后,顶栅电极704可被形成。例如,在一些实施方式中,顶栅电极可包含传导层例如W、TiN、TaN、WN、Re、Ir、Ru、Mo、Al、Cu、Co、Ni、Cr、Ti、Au、Pd、Ag、Pt、Fe、其组合及/或其他适合的组成。在一些实施方式中,顶栅电极704可供选择地包含多硅层。顶栅电极704可利用PVD、CVD、电子束(e-beam)蒸镀及/或其他适合的制程来形成。在一些实施例中,顶栅电极704可利用金属剥离制程来形成。因此,图7的装置700提供了双栅结构,包含平坦、干净的石墨烯层502(装置通道)于疏水层402上,及包含作为整体背栅极的基板302及作为顶部栅极的顶栅电极704。

参照图8,依据本揭露一或多个实施态样,显示其中为顶栅式石墨烯装置800的剖视图。在各种实施方式中,关于方法200,装置800的态样可以相似于上述装置300的方式,及/或参考上述图7的装置700来形成。举例而言,及在方法200的区块204的一实施方式中,疏水层402形成于绝缘层上。然而,在图8的实施例中,绝缘层(石墨烯层是转移至其上)包含绝缘基板802。例如,在各种实施方式中,绝缘基板802可包含石英、玻璃、陶瓷、碳化硅(SiC)及其他该技术领域已知的绝缘或半导体绝缘基材。在至少一些实施方式中,绝缘基板可对射频(RF)石墨烯装置有所助益。在转移石墨烯层402至绝缘基板802上之后,可对装置800进行与上述实质上相同的处理。例如,可执行退火制程(区块208)、可形成源极/漏极电极602,及可形成介电层702/顶部栅极704。因此,图8的装置800提供了顶栅结构,包含平坦、干净的石墨烯层502(装置通道)于疏水层402上,及作为顶部栅极的顶栅电极704。值得注意的是,由于绝缘基板802的关系,装置800不包含整体背栅极。

参照图10,依据本揭露一或多个实施态样,显示其中为背栅式石墨烯光侦测器1000的剖视图。在各种实施方式中,关于方法200,装置1000可以实质上相似于上述装置300的方式进行处理。如图10中所示,装置1000可被用来侦测光子(例如,以标注为‘hv’的箭号表示)。石墨烯光侦测器的操作大致上包含:(1)通过半导体层中入射光子的吸收而产生载子,(2)载子运输及倍增,及(3)汲取光驱动的载子而成的电流(例如,通孔源极/漏极电极602)。由于石墨烯缺乏能带间隙,石墨烯光侦测器1000可能为低敏感度,尤其为单片石墨烯的石墨烯层502时。因而,在一些实施方式中,特别是在包含光侦测器1000的实施例中,石墨烯层502可包含双层或多层石墨烯(例如,为了打开石墨烯中的能带间隙)。在一些实施方式中,石墨烯层502的表面可覆上光吸收材料(例如,CdSe/ZnS量子点(QDs)、PbS QDs等等),例如,以增加载子产生及后续电流汲取。在各种实施例中,由于利用疏水层402搭配退火制程(区块208),其如上述所提造成石墨烯层502较为干净及平坦,可使石墨烯光侦测器1000的敏感度增强。

图11及图12依据本揭露的制造方法,提供至少一些装置例示性的电性特征。图11显示例示性石墨烯装置其导电率对栅极电压作图,说明了依据本揭露一或多个实施态样制造的装置其益处(例如,石墨烯装置载子迁移率)。

图11内显示于各种栅极电压(Vg)数值,例示性石墨烯装置的输出特性。图12提供了表格,包含用各种例示性石墨烯装置的电性特征,再次说明了依据本揭露一或多个实施态样制造的装置,对于石墨烯装置载子迁移率的益处。例如,栏位1202说明了载子迁移率(电子为273cm2/V-s;空穴为1337cm2/V-s)及石墨烯晶体管的狄拉克点(Dirac point)(89V),其制造于裸露SiO2基板上(例如,无区块208的疏水层或退火制程)。栏位1204说明了载子迁移率(电子为1708cm2/V-s;空穴为6000cm2/V-s)及石墨烯晶体管的狄拉克点(Dirac point)(50V),其利用区块208中省略退火制程的转移态的石墨烯层制造于涂覆ODTS的SiO2基板上。栏位1206说明了载子迁移率(电子为3800cm2/V-s;空穴为11000cm2/V-s)及石墨烯晶体管的狄拉克点(Dirac point)(35V),其制造于涂覆ODTS的SiO2基板上及进一步使用了区块208的退火制程。值得注意的是,图11及图12所得电性特征是于室温下所进行。尽管涂覆ODTS的SiO2被用来(例如,图12中)说明本揭露的实施方式的益处,在不违背本揭露的范畴下,应了解仍有其他疏水性材料、其他基材、其他介电材料等等,可用做具有相似的益处。

于此所述各种实施方式提供胜过现存技术的优点。应了解的是,并非所有优点须于此讨论,亦无特定优点用以限定所有实施方式,及其他实施方式可提供不同的优点。例如,于此讨论的实施方式包含方法及结构,是关于例如通过转移石墨烯至疏水层的疏水性表面上并执行热处理制程(例如,退火),来提供高品质转移的石墨烯层(例如,于包含绝缘层的基板上),其为实质平坦并且能呈现降低的基板效应(例如,包含降低由于带电基板杂质所造成的石墨烯层的电子转移掺杂)。在各种实施方式中,由于形成疏水层于介电层上是在石墨烯层转移之前,可防止带电杂质吸附至介电层的疏水性表面涂料及/或介电层的疏水性表面涂料可掩蔽存于介电层中及/或下方基板中的带电杂质。其后,在各种实施方式中,可对转移态的石墨烯层进行退火。由于退火制程,转移态的石墨烯,于疏水性表面上,可为较平坦及较干净的,及可从而呈现改善的载子迁移率。在一些实施方式中,于退火制程之后,顶部电极(例如,源极/漏极电极)可沉积于退火的石墨烯层上。在一些实施例中,顶部介电层也可形成于石墨烯层上,及顶部栅极电极可形成于顶部介电层上。

因此,本揭露的其中一实施方式描述了用于制造一种装置的方法(例如,石墨烯装置),此方法包含,提供包含绝缘层的基板,及形成疏水层于绝缘层上。在各种实施方式中,石墨烯层转移至疏水层上。例如,转移的石墨烯层具有第一载子迁移率。在一些实施方式中,于转移石墨烯层之后,可执行退火制程,及退火的石墨烯层具有第二载子迁移率大于第一载子迁移率。

在另一实施方式中,讨论的是方法,提供关于基板包含介电层设置于其上。在一些实施例中,对介电层的表面进行清洁以移除有机残留物,及疏水层形成于介电层的清洁过的表面上。其后,在一些实施方式中,以CVD成长的石墨烯膜转移至疏水层上,此CVD成长的石墨烯膜具有第一电子迁移率及第一空穴迁移率。在各种实施方式中,于转移CVD成长的石墨烯膜之后,可执行退火制程,此退火的CVD成长的石墨烯膜具有第二电子迁移率大于第一电子迁移率及第二空穴迁移率大于第一空穴迁移率。

在另一实施方式中,讨论的是装置,包含具有介电层设置于基板上的基板。例如,装置进一步包含疏水性层形成于介电层上。在一些实施方式中,疏水层可包含至少其中之一ODTS、OTS、PTFE、PE、PP、PS、PI及蜡。装置也包含石墨烯层设置于疏水层上,此石墨烯层包含以CVD成长的石墨烯,及源极及漏极电极与石墨烯层接触。

根据本揭露的一实施例,进一步包含:在执行退火制程之后,形成源极及漏极电极与石墨烯层接触。

根据本揭露的一实施例,其中绝缘层包含二氧化硅层形成于基板之上,及其中基板可被用于作为整体背栅极。

根据本揭露的一实施例,其中基板为绝缘基板,及其中绝缘层包含绝缘基板。

根据本揭露的一实施例,进一步包含:在形成源极及漏极电极之后,沉积顶栅介电层于石墨烯层之上;及形成顶栅电极于顶栅介电质之上。

根据本揭露的一实施例,其中疏水层包含疏水性材料,包含至少一者的三氯十八硅烷(ODTS)、辛基三氯硅烷(OTS)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚丙烯(PP)聚苯乙烯(PS)、聚酰亚胺(PI),及蜡。

根据本揭露的一实施例,其中转移石墨烯层至疏水层上是利用无聚合物转移制程来完成。

根据本揭露的一实施例,其中执行退火制程的方法包含:于退火温度自约150℃至约250℃下,执行退火制程。

根据本揭露的一实施例,其中执行退火制程的方法包含:持续执行退火制程自约10分钟至约240分钟。

根据本揭露的一实施例,其中执行该退火制程的方法包含:在至少一者的氮气环境及惰性气体环境下执行退火制程。

本揭露另一实施态样是提供一种晶体管的制造方法,包含:提供一基板,包含介电层设置于其上;清洁介电层的表面以移除有机残留物;形成疏水层于介电层的清洁的表面上;转移CVD成长的石墨烯膜至疏水层上,其中CVD成长的石墨烯膜具有第一电子迁移率及第一空穴迁移率;以及在转移CVD成长的石墨烯膜之后,执行退火制程,其中退火的CVD成长的石墨烯膜具有第二电子迁移率大于第一电子迁移率及第二空穴迁移率大于第一空穴迁移率。

根据本揭露的一实施例,进一步包含:在执行退火制程之后,形成源极及漏极电极与CVD成长的石墨烯膜接触;沉积顶栅介电层于CVD成长的石墨烯膜之上;以及形成顶栅电极于顶栅介电质之上。

根据本揭露的一实施例,其中疏水层包含疏水性材料,包含至少一者的三氯十八硅烷(ODTS)、辛基三氯硅烷(OTS)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚丙烯(PP)聚苯乙烯(PS)、聚酰亚胺(PI),及蜡。

根据本揭露的一实施例,其中疏水层包含具有接触角度(contact angle,CA)介于约90°及约150°之间的疏水性表面,及其中CVD成长的石墨烯膜转移至疏水层的疏水性表面上。

根据本揭露的一实施例,其中CVD成长的石墨烯膜包含单层石墨烯、双层石墨烯及多层石墨烯其中之一。

根据本揭露的一实施例,其中执行退火制程的方法包含:以约每分钟60℃的一斜率上升一退火温度自约25℃至约200℃。

根据本揭露的一实施例,其中执行退火制程的方法包含:于退火温度下执行退火制程持续约120分钟。

根据本揭露的一实施例,其中执行退火制程的方法包含:以约每分钟1℃的一斜率下降一退火温度至约25℃。

本揭露又一实施态样是提供一种晶体管,包含:一基板,具有介电层设置于该基板上;疏水层形成于介电层上,其中疏水层包含至少一者的三氯十八硅烷(ODTS)、辛基三氯硅烷(OTS)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚丙烯(PP)聚苯乙烯(PS)、聚酰亚胺(PI),及蜡;石墨烯层设置于疏水层上;以及源极及漏极电极与石墨烯层接触。

根据本揭露的一实施例,进一步包含:顶栅介电层形成于石墨烯层之上,其中顶栅介电层包含高介电常数层;以及顶栅电极形成于顶栅介电层之上。

前文概述数个实施例的特征以使得熟悉该项技术者可更好地理解本揭露的态样。熟悉该项技术者应了解,可容易地将本揭露内容用作设计或修改用于实现相同目的及/或达成本文引入的实施例的相同优点的其他制程及结构的基础。熟悉该项技术者亦应认识到,此类等效物构造不违背本揭露内容的精神及范畴,且可在不违背本揭露内容的精神及范畴的情况下于此作出各种变化、替代以及变更。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1