功能性流感病毒样颗粒(vlp)的制作方法

文档序号:1299977阅读:3377来源:国知局
功能性流感病毒样颗粒(vlp)的制作方法
【专利摘要】本发明涉及功能性流感病毒样颗粒(VLP)。本发明公开并要求保护病毒样颗粒(VLP),这些VLP表达和/或含有季候性流感病毒蛋白、禽流感病毒蛋白和/或来自具有大流行潜力的病毒的流感蛋白。本发明包括包含所述蛋白的载体构建体、包含所述构建体的细胞、包含本发明VLP的制剂和疫苗。本发明还包含制备VLP和对脊椎动物施用VLP的方法,包括诱发针对季候性流感和禽流感,或它们的至少一种症状的显著的免疫力的方法。
【专利说明】功能性流感病毒样颗粒(VLP)
[0001]本申请是申请日为2006年10月18日、中国申请号为200680045850.7、发明名称
为“功能性流感病毒样颗粒(VLP) ”的发明申请的分案申请。。
[0002]本申请要求下列申请的优先权:2005年10月18日提交的临时申请60/727,513 ;2006年5月10日提交的临时申请60/780,847 ;2006年5月15日提交的临时申请60/800,006 ;2006年7月17日提交的临时申请60/831,196 ;2006年7月21日提交的临时申请60/832,116 ;和2006年9月19日提交的临时申请60/845,495 ;本文引证收录上述申请的全部内容用于所有目的。
[0003]发明背景
[0004]流感病毒是正粘病毒科(Orthomyxoviridae)的成员(综述见Murphy andWebster, 1996)。流感病毒有三个亚型,称为A、B和C。流感病毒体含有分段的负义RNA基因组。流感病毒体包括下述蛋白:血凝素(HA)、神经氨酸酶(NA)、基质(Ml)、质子离子通道蛋白(M2)、核蛋白(NP)、聚合酶碱性蛋白I (PBl)、聚合酶碱性蛋白2(PB2)、聚合酶酸性蛋白(PA)、和非结构蛋白2 (NS2)蛋白。通、嫩、11和112是膜相关的,而咿、?81、?82、?4和吧2是核壳相关蛋白。NSl是不与病毒体颗粒结合而是特异于流感病毒感染细胞的唯一非结构蛋白。Ml蛋白是流感病毒颗粒中最丰富的蛋白。HA和NA蛋白是包膜糖蛋白,负责病毒附着和病毒颗粒侵入细胞,是病毒中和和保护性免疫所用的主要免疫显性表位的来源。HA和NA蛋白都被认为是预防性流感疫苗最重要的组分。
[0005]流 感病毒感染通过病毒体表面HA蛋白附着于含唾液酸细胞受体(糖蛋白和糖脂)而被引发。NA蛋白介导唾液酸受体的加工,且病毒对细胞的侵入依赖于HA依赖性受体介导的胞吞作用。在内化的含流感病毒体的内体的酸性境界中,HA蛋白经历构象变化,导致病毒和宿主细胞膜融合,随后病毒脱壳,Ml蛋白在M2的介导下从核壳相关核糖核蛋白(RNP)释放,进入细胞核以进行病毒RNA合成。针对HA分子的抗体可以通过中和病毒感染性来预防病毒感染,而针对NA蛋白的抗体介导它们对病毒复制早期步骤的作用。
[0006]目前得到许可的灭活甲型和乙型流感病毒疫苗是作为供非消化道施用的三价疫苗。这些三价疫苗是在含胚鸡卵尿囊腔中作为单价的总物料产生,通过速率区带离心或柱层析纯化,用福尔马林或丙内酯灭活,然后配制成特定年份人群中流行的两株甲型和乙型流感病毒株的混合物。现有的商品化流感疫苗是全病毒(WV)或亚病毒体(SV,裂解或纯化的表面抗原(split or purified surface antigen))病毒疫苗。WV疫苗含有完整的灭活病毒体。用诸如磷酸三正丁酯等溶剂处理过的SV疫苗(Flu-Shield, Wyeth-Lederle)含有几乎所有的病毒结构蛋白和一些病毒包膜。用Triton X-100溶解的SV疫苗(Fluzone,Sanof 1-Aventis; Fluvirin, Novartis)主要含有HA单体、NA和NP的聚集物,尽管存在残余量的其它病毒结构蛋白。最近FDA对一种活的减毒冷适应病毒疫苗(FluMist,MedImmune)授予了销售许可,批准其作为鼻内投递疫苗用于在5-17岁的健康儿童和青年及18-49岁的健康成人中针对甲型及乙型流感病毒所引起的疾病的自动免疫接种和预防的商业应用。
[0007]已经开发了数种重组产品作为候选的重组流感疫苗。这些手段均着眼于甲型流感病毒HA和NA蛋白的表达、生产和纯化,包括使用杆状病毒感染的昆虫细胞(Crawford et al, 1999; Johansson, 1999; Treanor et al., 1996),病毒载体(Pushko etal., 1997;Berglund et al.,1999),和 DNA 疫苗构建体(Olsen et al.,1997)表达这些蛋白。
[0008]Crawford et al.(1999)证明杆状病毒感染的昆虫细胞中表达的流感HA能够预防由H5和H7禽流感亚型引起的致死性流感疾病。同时,另一个小组证明杆状病毒表达的流感HA和NA蛋白在动物中诱导的免疫应答优于一种常规疫苗所诱导的免疫应答(Johanssonet al.,1999)。将杆状病毒表达的马流感病毒血凝素的免疫原性和效力与一种同源DNA疫苗候选物进行了比较(Olsen et al.,1997)。总之,这些数据证明,使用各种实验手段,在不同的动物模型中,用重组HA或NA蛋白均可诱导出针对流感病毒攻击的高度保护。
[0009]Lakey等人(1996)显示,在一项I期剂量升高安全性研究中,源自杆状病毒的流感HA疫苗在人志愿者中得到了良好的耐受并且具有免疫原性。然而,在数个临床点用数个剂量的由HA和/或NA蛋白组成的流感疫苗接种人志愿者进行第二期研究,结果表明重组亚单位蛋白疫苗没有引发保护性免疫[G.Smith, Protein Sciences ;M.Perdue, USDA, Personal Communications]。这些结果表明,感染性病毒体HA和NA包膜粒(peplomer)表面上展示的构象表位在中和性抗体和保护性免疫的引发中是重要的。
[0010]关于在重组流感疫苗候选物中包含其它流感蛋白的问题,已经进行了若干研究,包括涉及流感核蛋白NP (单独地或者与Ml蛋白组合地)的实验(Ulmer et al., 1993;Ulmeret al., 1998;Zhou et al., 1995;Tsui et al.,1998)。这些由近似不变的内部病毒体蛋白构成的疫苗候选物可引发广谱的免疫力,主要是细胞免疫(⑶4+和⑶8+记忆T细胞)。这些实验涉及使用DNA或病毒基因载体。需要相对大量的注射DNA,因为使用较低剂量DNA的实验结果显示很少或没有保护作用(Chen et al.,1998)。因此,需要进一步的临床前和临床研究来评估此类涉及流感NP和Ml的基于DNA的手段是否安全、有效和持久。
[0011]最近,为了尝试开发更有效的流感疫苗,使用了颗粒蛋白作为流感M2蛋白表位的载体。开发基于M2的 疫苗的理论根据是在动物研究中M2蛋白引发了针对流感的保护性免疫(Slepushkin et al., 1995)。Neirynck et al.(1999)使用一种 23 个氨基酸长的 M2跨膜域作为与乙型肝炎病毒核心抗原(HBcAg)的氨基末端融合配偶体,以将M2表位暴露在HBcAg壳体样颗粒的表面上。然而,尽管全长M2蛋白和M2-HBcAg VLP在小鼠中均诱导可检测的抗体和保护作用,将来的流感疫苗不大可能仅仅基于M2蛋白,因为M2蛋白每个病毒体中存在的拷贝数低,抗原性弱,不能引发结合游离流感病毒体的抗体,也不能阻断病毒对细胞受体的附着(即中和病毒)。
[0012]由于先前的研究已经显示,表面流感糖蛋白HA和NA是引发抗流感病毒保护性免疫的主要靶标,而且Ml提供抗流感细胞免疫的保守靶标,新疫苗候选物可能包含这些病毒抗原作为蛋白大分子颗粒,诸如病毒样颗粒(VLP)。此外,具有这些流感抗原的颗粒可展示能引发针对多种流感病毒株的中和性抗体的构象表位。
[0013]数项研究已经证明,在使用哺乳动物表达质粒或者杆状病毒载体的细胞培养中重组流感蛋白能够自组装成VLP (Gomez-Puertas et al., 1999; Neumann et al., 2000; Lathamand Galarza, 2001)。Gomez-Puertas et al.(1999)证明,流感 VLP 的高效形成依赖于病毒蛋白的表达水平。Neumann et al.(2000)建立了一种基于哺乳动物表达质粒的系统,用于完全从克隆的cDNA产生感染性的流感病毒样颗粒。Latham和Galarza (2001)报道了在共表达HA、NA、M1和M2基因的重组杆状病毒感染的昆虫细胞中形成流感VLP。这些研究证明,流感病毒体蛋白在真核细胞中共表达时可自组装。
[0014]发明概述
[0015]本发明提供一种病毒样颗粒(VLP),它包含流感病毒Ml蛋白和流感病毒H5及NI血凝素和神经氨酸酶蛋白。在一个实施方案中,Ml蛋白与H5和NI蛋白相比衍生自不同的流感病毒株。在另一个实施方案中,所述H5或NI来自H5N1进化枝(clade) I流感病毒。
[0016]本发明还提供在容许VLP形成的条件下,由包含编码流感H5和NI蛋白及流感Ml蛋白的一种或多种核酸的真核细胞表达的VLP。在一个实施方案中,所述真核细胞选自酵母细胞、昆虫细胞、两栖动物细胞、禽类细胞和哺乳动物细胞。在另一个实施方案中,所述真核细胞是昆虫细胞。
[0017]本发明还提供这样的VLP,当它施用于人或动物时,在所述人或动物体中引发针对流感感染具有保护性的中和性抗体。
[0018]本发明还提供包含有效剂量的本发明VLP的免疫原性组合物。在一个实施方案中,所述组合物包含佐剂。
[0019]本发明还提供包含有效剂量的本发明VLP的疫苗。在一个实施方案中,所述疫苗至少包含第二种VLP,其包含来自不同流感病毒株的HA和NA。在另一个实施方案中,所述疫苗包含佐剂。
[0020]本发明还提供在动物中诱发显著的抗流感病毒感染免疫的方法,其包括施用至少一个有效剂量的包含本发明VLP的疫苗。在一个实施方案中,将所述疫苗通过口服、皮内、鼻内、肌肉内、腹膜内、静脉内或皮下施用于动物。
[0021]本发明还提 供本发明的VLP用于制备动物用疫苗的用途,其中该疫苗在所述动物中诱发显著的抗流感病毒感染免疫。
[0022]本发明还提供制备本发明VLP的方法,其包括在真核细胞中表达Ml、HA和NA蛋白。
[0023]本发明提供包含流感VLP的疫苗,其中所述VLP包含流感Ml、HA和NA蛋白,其中所述疫苗在人体中诱导显著的抗流感病毒感染免疫。在一个实施方案中,所述疫苗包含流感VLP,其中所述VLP基本上由流感Ml、HA和NA蛋白组成,其中所述疫苗在人体中诱导显著的抗流感病毒感染免疫。在另一个实施方案中,所述疫苗包含流感VLP,其中所述VLP包含选自流感Ml、HA和NA蛋白的多种流感蛋白,其中所述疫苗在人体内诱导显著的抗流感病毒感染免疫。
[0024]本发明还提供流感VLP用于制备疫苗的用途,其中所述VLP包含流感M1、HA和NA蛋白,其中所述疫苗在人体中诱导显著的抗流感病毒感染免疫。
[0025]由此,本发明提供一种大分子蛋白结构,其包含(a)第一种流感病毒Ml蛋白和(b)附加结构蛋白,其可以包括:第二种或更多种流感病毒Ml蛋白;第一种、第二种或更多种流感病毒HA蛋白;第一种、第二种或更多种流感病毒NA蛋白;和第一种、第二种或更多种流感病毒M2蛋白。如果所述附加结构蛋白不是来自第二种或更多种流感病毒Ml蛋白,那么该组中所有的成员,例如第一种和第二种流感M2病毒蛋白,均包括在内。由此,本发明提供一种基本上由通过本发明方法产生的流感病毒结构蛋白所组成的功能性流感蛋白结构,包括亚病毒颗粒、VLP或壳粒结构,或者其部分、疫苗、多价疫苗以及它们的混合物。在一个特别优选的实施方案中,所述流感大分子蛋白结构包括流感病毒HA、NA和Ml蛋白,这些蛋白是从野生型病毒作为合成片段克隆的流感病毒基因的表达产物。
[0026]所述大分子蛋白结构还可以包括附加结构蛋白,例如核蛋白(NP)、来自非流感病毒(noninfluenza viruses)之外的物种的膜蛋白及来自非流感来源(non-1nfIuenzasource)的膜蛋白,这些蛋白衍生自禽类或哺乳动物来源及流感病毒的不同亚型,包括甲型和乙型流感病毒。本发明可包括嵌合大分子蛋白结构,其所包括的至少一种蛋白质的一部分具有不是由流感病毒所产生的模块。
[0027]可以通过提供可在宿主细胞中由重组构建体自组装的大分子蛋白结构来实现流感的预防。本发明的大分子蛋白结构能够自组装成同型或异型的病毒样颗粒(VLP),这些颗粒在HA和NA蛋白上展示构象表位,这些表位引发保护性的中和性抗体。所述组合物可以是疫苗组合物,其还含有载体或稀释剂和/或佐剂。功能性流感VLP能引发针对一种或多种流感病毒株或病毒型的中和性抗体,取决于所述功能性流感VLP是否含有来自一种或多种病毒株或病毒型的HA和/或NA蛋白。所述疫苗包含的流感病毒蛋白可以是野生型流感病毒蛋白。优选地,含有流感VLP的结构蛋白或者其部分,可衍生自野生型流感病毒的多种病毒株。可以将所述流感疫苗施用于人或动物以引发针对一种或多种流感病毒株或病毒型的保护性免疫力。
[0028]本发明的大分子蛋白结构可以展现血凝素活性和/或神经氨酸酶活性。
[0029]本发明提供一种通过构建重组构建体来制备流感衍生的VLP的方法,其中所述重组构建体编码流感结构基因(包括Ml、HA)和至少一种流感病毒衍生的结构蛋白。使用重组构建体,利用重组杆状病毒转染、感染或转化合适的宿主细胞。在容许表达M1、HA和至少一种流感病毒衍生的结构蛋白的条件下培养所述宿主细胞,在所述宿主细胞中形成VLP。收获含有功能性流感VLP的被感染细胞的培养液,并纯化VLP。本发明还有一个特点在于用编码第二种流感蛋白的第二重组构建体共转染、共感染或共转化宿主细胞,从而将第二种流感蛋白纳入VLP中的额外步骤。这样的结构蛋白可以衍生自流感病毒,包括NA、M2和NP,并且至少一种结构蛋白衍 生自禽类或哺乳动物来源。结构蛋白可以是甲型和乙型流感病毒。根据本发明,宿主细胞可以是真核细胞。此外,VLP可以是嵌合型VLP。
[0030]本发明的另一个特点是一种配制含有流感VLP的药品的方法,该方法是通过向宿主细胞中导入编码流感病毒基因的重组构建体,并容许重组流感病毒蛋白在细胞中自组装成为功能性的同型或异型VLP。分离并纯化流感VLP,并配制含有该流感VLP的药品。所述药品可以进一步包含佐剂。此外,本发明提供一种配制药品的方法,该方法是通过将此类含有流感VLP的药品与脂质小泡,即非离子性脂质小泡混合。由此,功能性的同型或异型VLP可作为覆包膜的颗粒从被感染细胞出芽(bud)。出芽的流感VLP可以通过超离心或柱层析分离纯化为药品,并单独地或者与佐剂诸如Novasomes? (Novavax, Inc产品)等配制成药物产品,诸如疫苗。Novasomes?.提供增强的免疫效应,在美国专利N0.4,911,928中对其有进一步描述,通过提述纳入本文。
[0031]本发明提供一种检测脊椎动物中针对流感病毒感染的体液免疫的方法,该方法是通过提供包含有效抗体检测量的流感病毒蛋白的测试试剂,所述流感病毒蛋白具有流感病毒大分子结构的至少一个构象表位。将测试试剂与来自需要检查流感病毒感染的脊椎动物的体液样品接触。让样品中包含的流感病毒特异性抗体与流感病毒大分子结构的构象表位结合以形成抗原-抗体复合物。将这些复合物从未结合的复合物中分离出来,并使它们与可检测地标记的免疫球蛋白结合剂接触。测定结合于所述复合物的可检测地标记的免疫球蛋白结合剂的量。
[0032]可以如下检测来自怀疑感染了流感病毒的动物或人的标本中的流感病毒,即通过提供具有产生可检测信号的标记物或者连接于可检测地标记的试剂、并且对流感病毒颗粒的至少一种构象表位具有特异性的抗体。使标本与抗体接触,并让抗体与流感病毒结合。利用所述可检测标记物确定标本中流感病毒的存在。
[0033]本发明提供治疗、预防和产生保护性免疫应答的方法,所述方法是通过对脊椎动物施用有效量的本发明的组合物。
[0034]或者,所述流感VLP药品可以配制成实验室试剂,用于流感病毒结构研究和临床诊断测定。本发明还提供用于通过施用有效量的本发明的组合物来治疗流感病毒的试剂盒和使用指导。
[0035]本发明还提供包含HA、NA和Ml蛋白的VLP,所述HA、NA和Ml蛋白衍生自能够在脊椎动物中导致发病(morbidity)或死亡(mortality)的禽流感病毒。在一个实施方案中,所述HA、NA和Ml蛋白衍生自甲型禽流感病毒。在另一个实施方案中,HA选自H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、Hll、H12、H13、H14、H15 和 H16,而 NA 选自 N1、N2、N3、N4、N5、N6、N7、N8和N9。在另一个实施方案中,所述HA和NA蛋白分别是H5和NI。在另一个实施方案中,所述HA和NA蛋白分别是H9和N2。在另一个实施方案中,所述HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在一个实施方案中,VLP基本上由HA、NA和Ml蛋白组成,也就是说,这些蛋白基本上是VLP中仅有的流感蛋白。
[0036]本发明还提供一种产生VLP的方法,其包括将编码禽流感病毒蛋白的载体转染到合适的宿主细胞中,并在容许形成VLP的条件下表达所述禽流感病毒蛋白。在一个实施方案中,该方法涉及用仅编码HA、NA和Ml流感蛋白的重组DNA分子转染宿主细胞。
[0037]本发明还包 括一种包含VLP的抗原性制剂,所述VLP含有衍生自能够在脊椎动物中导致发病和死亡的禽流感病毒的HA、NA和Ml蛋白。在另一个实施方案中,HA选自Hl、H2、H3、H4、H5、H6、H7、H8、H9、H10、Hll、H12、H13、H14、H15 和 H16,而 NA 选自 N1、N2、N3、N4、N5、N6、N7、N8和N9。在另一个实施方案中,所述HA和NA蛋白分别是H5和NI。在另一个实施方案中,所述HA和NA蛋白分别是H9和N2。在另一个实施方案中,将所述抗原性制剂通过口服、皮内、鼻内、肌肉内、腹膜内、静脉内或皮下施用于受试者。
[0038]本发明进一步提供对脊椎动物进行抗禽流感病毒免疫接种的方法,其包括对所述脊椎动物施用诱导保护量的VLP,所述VLP包含衍生自禽流感病毒的HA、NA和Ml蛋白。
[0039]本发明还包括在受试者中诱导针对流感病毒感染或其至少一种症状的显著的免疫力的方法,其包括施用至少一个有效剂量的流感VLP。在一个实施方案中,所述VLP基本上由HA、NA和Ml组成。在另一个实施方案中,所述VLP包含流感蛋白,其中所述流感蛋白由HA、NA和Ml组成。在另一个实施方案中,所述HA和/或NA分别展现血凝素和/或神经氨酸酶活性。
[0040]本发明还包括在受试者中诱导针对流感病毒感染或其至少一种症状的显著的免疫力的方法,其包括施用至少一个有效剂量的禽流感VLP。在一个实施方案中,所述流感VLP基本上由禽类HA、NA和Ml组成。在另一个实施方案中,所述流感VLP包含流感蛋白,其中所述流感蛋白由禽类HA、NA和Ml组成。
[0041]本发明还包括在受试者中诱导针对流感病毒感染或其至少一种症状的显著的免疫力的方法,其包括施用至少一个有效剂量的季候性流感VLP。在一个实施方案中,所述流感VLP基本上由季候性HA、NA和Ml组成。在另一个实施方案中,所述流感VLP包括流感蛋白,其中所述流感蛋白由季候性HA、NA和Ml组成。
[0042]本发明还包括在受试者中诱导针对流感病毒感染或其至少一种症状的显著的免疫力的方法,其包括施用至少一个有效剂量的至少一种季候性流感VLP。在一个实施方案中,所述流感VLP包含季候性流感HA、NA和Ml。在另一个实施方案中,所述流感VLP基本上由季候性流感HA、NA和Ml组成。
[0043]本发明进一步包括在受试者中诱导针对流感病毒感染或其至少一种症状的显著的保护性抗体应答的方法,其包括施用至少一个有效剂量的流感VLP。
[0044]本发明包括在受试者中诱导针对流感病毒感染或其至少一种症状的显著的保护性细胞免疫应答的方法,其包括施用至少一个有效剂量的流感VLP。
[0045]本发明还包括配制疫苗的方法,所述疫苗在受试者中诱导针对流感病毒感染或其至少一种症状的显著的免疫力,所述方法包括向所述制剂中加入有效剂量的流感VLP。在一个实施方案中,所述针对流感病毒感染或其至少一种症状的显著的免疫力是通过一个剂量赋予的。在另一个实施方案中,所述针对流感病毒感染或其至少一种症状的显著的免疫力是通过多个剂量赋予的。
[0046]本发明还包括一种含有流感VLP的疫苗,其中所述疫苗当施用于受试者时诱导针对流感病毒感染或其至少一种症状的显著的免疫力。在一个实施方案中,所述流感VLP是禽流感VLP。在另一个实施方案中,所述流感VLP是季候性流感VLP。
[0047]本发明还包括一种含有流感VLP的抗原性制剂,其中所述疫苗当施用于受试者时诱导针对流感病毒感染 或其至少一种症状的显著的免疫力。在一个实施方案中,所述流感VLP是禽流感VLP。在另一个实施方案中,所述流感VLP是季候性流感VLP。
[0048]附图简要说明
[0049]图1描述禽流感甲型/香港/1073/99 (H9N2)病毒神经氨酸酶(NA)基因的核苷酸序列(SEQ ID NO:1) ο
[0050]图2描述禽流感甲型/香港/1073/99 (H9N2)病毒血凝素(HA)基因的核苷酸序列(SEQ ID NO:2)ο
[0051]图3描述禽流感甲型/香港/1073/99 (H9N2)病毒基质蛋白Ml (Ml)基因的核苷酸序列(SEQ ID NO:3)。
[0052]图4描述构建用于表达禽流感甲型/香港/1073/99 (H9N2)HA、NA和Ml蛋白的重组杆状病毒所用转移载体。图4中的(A)描述表达各个基因的转移载体,图4中的(B)描述用于基因的多重表达的转移载体。
[0053]图5描述禽流感甲型/香港/1073/99 (H9N2)HA、NA和Ml蛋白在Sf_9S细胞中的表达。
[0054]图6描述通过蔗糖密度梯度方法纯化禽流感甲型/香港/1073/99 (H9N2) VLP。
[0055]图7描述通过凝胶过滤层析检测流感病毒蛋白。Western印迹分析中所用的抗体如下:(A)兔抗H9N2 ; (b)鼠抗Ml单抗;(C)鼠抗BACgp64。[0056]图8描述通过电子显微术检测禽流感甲型/香港/1073/99 (H9N2)蛋白,包括亚病毒颗粒、VLP和VLP复合物。
[0057]图9描述纯化的禽流感甲型/香港/1073/99 (H9N2) VLP的血凝素活性。
[0058]图10描述纯化的禽流感甲型/香港/1073/99 (H9N2) VLP的神经氨酸酶活性。
[0059]图11描述在小鼠中使用纯化的禽流感甲型/香港/1073/99 (H9N2) VLP进行重组流感免疫原性研究所用的免疫和取血时间表。
[0060]图12描述在用重组流感H9N2VLP免疫的小鼠中免疫原性研究的结果。图12中的(a)描述来自用重组VLP免疫的BALB/c小鼠的血清,其中的VLP由来自禽流感甲型/香港/1073/99 (H9N2)的HA、NA和Ml蛋白组成。图12中的(b)描述将来自用灭活甲型禽流感病毒H9N2免疫的新西兰白兔的血清与含有灭活甲型禽流感病毒H9N2 (泳道I和3)或冷适应甲型禽流感病毒H9N2 (泳道2和4)的Western印迹反应。
[0061]图13描述初次免疫和再次免疫之后BALB/c小鼠中的几何平均抗体应答。
[0062]图14描述BALB/c小鼠中的血清血凝素抑制(HI)应答。
[0063]图15描述用H9N2流感攻击的BALB/c小鼠中的体重减轻(%)。
[0064]图16描述用H9N2攻击后3天和5天的肺病毒效价。
[0065]图17A、17B和17C描述用H3N2VLP免疫小鼠后针对甲型/福建/411/2002的抗体应答。
[0066]图18A和18B描 述小鼠IgG抗体同种型。
[0067]图19描述用H9N2VLP疫苗免疫的SD大鼠中的血凝素抑制(HI)抗体应答。
[0068]图20A和20B描述BALB/c小鼠中针对有和没有佐剂的不同剂量H9N2VLP的血凝素抑制(HI)抗体应答。
[0069]图21描述BALB/c小鼠中在不同剂量的VLP之间的血清血凝素抑制(HI)应答。
[0070]图22描述在雪貂中的血清血凝素抑制(HI)应答。
[0071]图23描述雪貂施用不同病毒株的H3N2VLP后21和42天时抽取的血清的血清血凝素抑制(HI)应答。
[0072]图24描述肌肉内接种低剂量H5N1 (越南/1203/2003) VLP的小鼠的抗HA抗体(终点稀释效价)。
[0073]图25描述鼻内接种低剂量H5N1 (越南/1203/2003) VLP的小鼠的抗HA抗体(终点稀释效价)。
[0074]图26描述制造、分离和纯化本发明VLP的一个实例。
[0075]图27描述通过肌肉内给药H3N2VLP接种小鼠,然后通过鼻内用甲型/Aichi/2/68x31(H3N2)病毒攻击。
[0076]图28描述通过鼻内给药H3N2VLP接种小鼠,然后通过鼻内用甲型/Aichi/2/68x31(H3N2)病毒攻击。
[0077]图29描述用H9N2VLP疫苗接种后用H9N2病毒鼻内攻击的雪貂洗鼻液中的病毒脱落(shedding)。
[0078]图30A、30B、30C、30D、30E、30F、30G和30H描述用不同剂量的甲型/福建/411/2002 (H3N2) VLP肌肉内或鼻内接种后针对不同的流感病毒H3N2株进行测试时小鼠中的血凝素抑制(HI)抗体应答。[0079]发明详述
[0080]如本文所用的,术语“杆状病毒”,又称杆状病毒科(baculoviridae),是指节肢动物有包膜DNA病毒的一个科,该科的成员可以用作表达载体在昆虫细胞培养中生成重组蛋白。病毒体含有一种或多种杆状核壳,所述核壳还有环状超螺旋双链DNA分子(Mr54X 106-154X IO6)。用作载体的病毒通常是苜猜银纹夜蛾(Autographa californica)核多角体病毒(NVP)。导入基因的表达是处于通常调控大核包涵体(在被感染细胞中病毒包埋在大核包涵体内)多角体蛋白组分的强启动子的控制之下。
[0081]如本文所用的,术语“衍生自”指起源或来源,可包括天然存在的、重组的、未纯化的、或者纯化的分子。本发明的蛋白和分子可以衍生自流感或非流感分子。
[0082]如本文所用的,术语“第一种”流感病毒蛋白,即第一种流感病毒Ml蛋白,是指衍生自某一具体流感病毒株的蛋白质,例如Ml、HA、NA和M2。第一种流感病毒的株或型不同于第二种流感病毒蛋白的株或型。因此,“第二种”流感病毒蛋白,即第二种流感病毒Ml蛋白,是指衍生自第二种流感病毒株的蛋白,例如Ml、HA、NA和M2,其中第二种流感病毒株是不同于第一种流感病毒蛋白的株或型。
[0083]如本文所用的,术语“血凝素活性”是指含HA蛋白、VLP或它们的部分所具有的结合红细胞(红血球)并使之凝集的能力。
[0084]如本文所用的,术语“神经氨酸酶活性”是指含NA蛋白、VLP或它们的部分所具有的从底物(包括蛋白质,例如胎球蛋白)切除唾液酸残基的酶活性。
[0085]如本文所用的,术语“异型的”(heterotypic)是指一种或多种不同型或株的病毒。
[0086]如本文所用的,术语“同型的”(heterotypic)是指一种型或株的病毒。
[0087]如本文所用的,术语“大分子蛋白结构”是指一种或多种蛋白的构造(construction)或排列(arrangement)。
[0088]如本文所用的,术语“多价”疫苗是指针对多种流感病毒株或病毒型的疫苗。
[0089]如本文所用的,术语“非流感的”(non-1nfluenza)是指非衍生自流感病毒的蛋白或分子。
[0090]如本文所用的,术语“疫苗”是指死亡或弱化的病原体的制备物,或者衍生的抗原性决定簇的制备物,用于诱导针对所述病原体的抗体或免疫力的形成。给予疫苗以提供针对疾病(例如由流感病毒导致的流感)的免疫力。本发明提供具有免疫原性并提供保护的疫苗组合物。此外,术语“疫苗”还指免疫原(例如VLP)的悬液或溶液,其被施用于脊椎动物以产生保护性免疫力,即减轻感染相关疾病的严重性的免疫力。
[0091]如本文所用的,术语“显著的免疫力”是指这样的免疫应答:当对脊椎动物施用本发明的VLP时,该脊椎动物中存在免疫系统的诱导,导致所述脊椎动物中流感感染的预防、流感感染的改善或者与流感病毒感染相关的至少一种症状的减轻。显著的免疫力还可以指在已施用本发明VLP并已诱导了免疫应答的哺乳动物中> 40的血凝抑制(HI)效价。
[0092]如本文使用的,术语“佐剂”是指这样的化合物,当其与特定的免疫原(例如VLP)在制剂中组合使用时,增大或以其它方式改变或修饰由此所致的免疫应答。免疫应答的修饰包括抗体免疫应答和细胞免疫应答之一或二者的强度增大或特异性增宽。免疫应答的修饰还可以意味着特定的抗原特异性免疫应答的降低或抑制。
[0093]如本文所用的,术语“免疫刺激物”是指通过身体自身的化学信使(细胞因子)增强免疫应答的化合物。这些分子包括具有免疫刺激、免疫强化和促炎症活性的各种细胞因子、淋巴因子和趋化因子,诸如白细胞介素(例如IL-1、IL-2、IL-3、IL_4、IL-12、IL-13);生长因子(例如粒细胞-巨噬细胞(GM)集落刺激因子(CSF));及其它免疫刺激分子,诸如巨噬细胞炎症因子,Flt3配体,B.71 ;B7.2等。免疫刺激物分子可以在与流感VLP相同的制剂中施用,或者可以另行施用。可以施用蛋白质或者编码该蛋白质的表达载体来产生免疫刺激效应。
[0094]如本文所用的,“有效剂量”一般指足以诱导免疫力、预防和/或改善流感病毒感染或减轻流感感染的至少一种症状、和/或增强另一个剂量的VLP的效力的本发明VLP的量。有效剂量可以指足以延迟流感感染发作或使之最小化的VLP的量。有效剂量还可以指在流感感染的治疗或管理中提供治疗益处的VLP的量。此外,有效剂量是就单独或与其它疗法组合在流感病毒感染的治疗或管理中提供治疗益处的本发明VLP而言的量。有效剂量还可以是足以增强受试者(例如人)自己针对后来与流感病毒接触的免疫应答的量。免疫力的水平可以通过例如测量中和性分泌抗体和/或血清抗体的量来加以监测,所述测量例如通过曬斑中和(plaque neutralization)、补体结合(complement fixation)、酶联免疫吸附、或微中和(microneutralization)测定来进行。在疫苗的情况下,“有效剂量”是预防疾病或降低症状严重性的剂量。
[0095]如本文所用的,术语“禽流感病毒”是指主要见于鸟类中,但也可感染人类或其它动物的流感病毒。在一些情况下,禽流感病毒可以从一个人传播或扩散至另一个人。感染人的禽流感病毒具有导致流感大流行,即导致人类中的发病和死亡的潜力。当出现新的流感病毒株(人对其不具有天然免疫力的病毒),其扩散经过各个地点并可能遍及全球,同时感染很多人时,即出现大流行。
[0096]如本文所用的,术语“季候性流感病毒”是指就某一流感季候而言,已根据全球各国家流感中心(National Influenza Centers)进行的流行病学调查确定为正在人群内传播的流感病毒株。这些流行病学研究结果以及某些分离的流感病毒被送到世界卫生组织(WHO)的四个参考实验室之一以进行详细研究,其中一个实验室设置在亚特兰大的疾病控制和预防中心(Centers for Disease Control and Prevention(CDC))。这些实验室测试针对现有疫苗制备的抗体 与流行中的病毒和新流感病毒反应的良好程度。将该信息和有关流感活动情况的信息汇总并提交到美国食品和药品管理局(FDA)的一个顾问委员会以及WHO的会议上。这些会议的结果是选择三种病毒(甲型流感病毒的两个亚型和乙型流感病毒的一个亚型)进入用于下个秋季和冬季的流感疫苗。该选择在北半球于2月份进行,在南半球于9月份进行。通常,每年改变疫苗中三种病毒株中的一种或两种。
[0097]如本文所用的,术语“显著保护性的抗体应答”是指脊椎动物(例如人)展现的、由针对流感病毒的抗体介导的、预防或改善流感感染或减轻其至少一种症状的免疫应答。本发明的VLP可以刺激产生抗体(例如中和性抗体),所述抗体阻止流感病毒进入细胞、结合所述流感病毒从而阻断该病毒复制、和/或保护宿主细胞不受感染和破坏。
[0098]如本文所用的,术语“显著保护性的细胞免疫”是指脊椎动物(例如人)展现的、由针对流感病毒的T淋巴细胞和/或其它白细胞介导的、预防或改善流感感染或减轻其至少一种症状的免疫应答。细胞免疫的一个重要方面涉及细胞溶解性T细胞(CTL)所致的抗原特异性应答。CTL针对与主要组织相容性复合物(MHC)编码蛋白结合呈递并表达在细胞表面的肽抗原具有特异性。CTL帮助诱导和促进细胞内微生物的破坏或感染了这些微生物的细胞的溶解。细胞免疫的另一个方面涉及T辅助细胞所致的抗原特异性应答。T辅助细胞帮助刺激非特异性效应细胞的功能,并使这些效应细胞的活性集中指向在其表面上展示与MHC分子结合的肽抗原的细胞。“细胞免疫应答”还指由活化T细胞和/或其它白细胞(包括衍生自CD4+和CD8+T细胞的细胞)所产生的细胞因子、趋化因子以及其它此类分子的产生。
[0099]如本文所用的,术语“基于全群体的显著免疫力”是指对群体中的个体施用的本发明VLP所致的免疫力。所述群体中的所述个体中的免疫力,导致所述个体中流感感染的预防、改善,或者与流感病毒感染相关的至少一种症状的减轻,并防止所述流感病毒扩散到群体中其它个体。术语“群体”定义为个体(例如学童、老人、健康个体等等)的群组,可包括地理区域(例如具体的城市、学校、小区、工作场所、国家(country)、州(state),等)。
[0100]如本文所用的,术语“抗原性制剂”或“抗原性组合物”是指这样的制备物:当将它施用于脊椎动物,尤其是鸟类或哺乳动物时,会诱导免疫应答。
[0101]如本文所用的,术语“脊椎动物”或“受试者”或“患者”是指脊索动物亚门(subphylum cordata)的任何成员,包括但不限于人和其它灵长类,包括非人灵长类,例如黑猩猩和其它猿类和猴类物种。家畜(farm animals),如牛、绵羊、猪、山羊和马;家养动物,如狗和猫;实验动物,包括啮齿类如小鼠、大鼠和豚鼠;鸟类,包括家禽、野鸟和猎禽,如鸡、火鸡和其它鹑鸡类鸟类,鸭、鹅等等也是非限制性的例子。该定义中包含术语“哺乳动物”和“动物”。意图覆盖成体和新生个体。
[0102]虽然现有在最优条件下60-80%有效的特异性灭活病毒疫苗,流感仍然是一个普遍的公共健康问题。当这些疫苗有效时,通常通过防止病毒感染而避免患病。抗原性差异的积累(抗原性转变和抗原性漂移)可导致疫苗失效。例如,甲型禽流感H9N2与人流感病毒甲型/悉尼/97(H3N2)在猪中共流行(co-circulate),导致基因重排列和具有大流行潜力的人流感病毒新株的出现(Peiris et al.,2001)。在发生此类抗原性转变的情况下,现有的疫苗不大可能提供足够的保护。
[0103]缺乏流感疫苗方案的另一个原因是现有疫苗引发的免疫力持续时间相对较短。流感控制措施的进一步缺乏反映了现有疫苗的使用受到限制,这是由于疫苗的反应原性以及对幼儿、老年人和对商业许可的灭活病毒流感疫苗的制造中使用的卵组分过敏的人的副作用。
[0104]此外,灭活的流感病毒疫苗往往缺少HA和NA构象表位或者所含HA和NA构象表位发生了改变,而这些表位引发中和性抗体并且在抗病免疫中起重要作用。因此,灭活病毒疫苗和某些重组单体流感亚基蛋白疫苗赋予的保护不足。另一方面,大分子蛋白结构,例如壳粒、亚病毒颗粒和/或VLP,含有多拷贝的展示构象表位的天然蛋白,有利于获得最优的疫苗免疫原性。
[0105]本发明描述将禽流感甲型/香港/1073/99 (H9N2)病毒HA、NA和Ml基因单独或串联地克隆到单一杆状病毒表达载体中,以及生产由重组流感结构蛋白构成的流感疫苗候选物或试剂;在杆状病毒感染的昆虫细胞中,这些重组流感结构蛋白自组装成功能性和免疫原性同型大分子蛋白结构,包括亚病毒流感颗粒和流感VLP。
[0106]本发明描述将人流感甲型/悉尼/5/97和甲型/福建/411/2002 (H3N2)病毒HA、NA、Ml、M2和NP基因克隆到杆状病毒表达载体中,以及生产由流感结构蛋白构成的流感疫苗候选物或试剂;在杆状病毒感染的昆虫细胞中,这些流感结构蛋白自组装成功能性和免疫原性同型大分子蛋白结构,包括亚病毒流感颗粒和流感VLP。
[0107]此外,本发明描述将人流感甲型/悉尼/5/97和甲型/福建/411/2002(H3N2)病毒的HA基因和禽流感甲型/香港/1073/99 (H9N2)的HA、NA和Ml基因串联地克隆到单一杆状病毒表达载体中,以及生产由流感结构蛋白构成的流感疫苗候选物或试剂;在杆状病毒感染的昆虫细胞中,这些流感结构蛋白自组装成功能性和免疫原性同型大分子蛋白结构,包括亚病毒流感颗粒和流感VLP。
[0108]本发明的VLP
[0109]本发明的流感VLP有用于制备针对流感病毒的疫苗。该系统的一个重要特征是能够用不同亚型的HA和/或NA或其它病毒蛋白代替表面糖蛋白,从而可以每年更新新的流感抗原性变体或为流感大流行做准备。当这些糖蛋白的抗原性变体被鉴定时,可以更新VLP以包含这些新变体(例如用于季候性流感疫苗)。此外,来自潜在大流行性病毒如H5N1的表面糖蛋白,或其它具有大流行性潜力的HA、NA组合,也可纳入VLP中,而不用担心释放出已有数十年未在人类中流行的基因。这是因为这些VLP没有感染性,不会复制且不能致病。因此,该系统可用于每年创造新的候选流感疫苗,和/或在任何需要的时候创造流感大流行性疫苗。
[0110]有16种不同的血凝素(HA)和9种不同的神经氨酸酶(NA),它们都已在野生鸟类中找到。野生鸟类是所有类型的甲型流感病毒的主要天然储库,并且被认为是所有其它脊椎动物中的所有类型的甲型流感病毒的来源。这些亚型由于它们表面上的血凝素(HA)和神经氨酸酶(NA)的变化而不同。HA和NA蛋白的许多不同组合是可能的。每种组合代表一种不同的甲型流感病毒类型。此外,每种类型根据其8种基因的每一种中发现的不同突变可以进一步分类为多种病毒株。
[0111]所有已知类型的 甲型流感病毒均可在鸟类中找到。通常,禽流感病毒不感染人类。但是,某些禽流感病毒可发生与穿越物种屏障的能力相关联的遗传变异。这样的病毒能够造成大流行,因为人类对此病毒没有天然免疫力,能够容易地从人到人传播。1997年香港,在一次家禽禽流感爆发中,禽流感病毒从鸟类传到了人类。该病毒被鉴定为流感病毒H5N1。这种病毒导致18人发生严重的呼吸道病情,其中6人死亡。从那时起,全世界人类中发生了越来越多的已知H5N1感染病例,这些人中大约半数已经死亡。
[0112]因此,本发明包括从禽流感病毒、具有大流行潜力的流感病毒和/或季候性流感病毒克隆HA、NA和Ml核苷酸到表达载体中。本发明还描述由自组装成功能性VLP的流感蛋白构成的流感疫苗候选物或试剂的生产。所有病毒蛋白组合都必须与Ml核苷酸共表达。
[0113]本发明的VLP包括流感HA、NA和Ml蛋白或由它们组成。在一个实施方案中,所述VLP包含来自禽流感病毒、大流行性流感病毒和/或季候性流感病毒的HA,和来自禽流感病毒、大流行性流感病毒和/或季候性流感病毒的NA,其中所述HA选自Hl、H2、H3、H4、H5、H6、H7、H8、H9、H10、Hll、H12、H13、H14、H15 和 H16,所述 NA 选自 N1、N2、N3、N4、N5、N6、N7、N8和N9。在另一个实施方案中,本发明包括基本上由HA、NA和Ml组成的VLP。所述HA和NA可以来自上面所列的HA和NA。这些VLP可包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,所述流感 VLP包含流感蛋白,其中所述流感蛋白由HA、NA和Ml蛋白组成。这些VLP含有HA、NA和Ml,并可含有其它细胞组分如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它流感蛋白(除了 M1、HA和/或NA的片段之外)。在另一个实施方案中,当表达在VLP表面上时,HA和/或NA可分别展现血凝素活性和/或神经氨酸酶活性。
[0114]在另一个实施方案中,所述VLP包含H5N1病毒的HA和NA,以及Ml蛋白(该Ml蛋白可以来自也可以不来自同一病毒株)。在另一个实施方案中,所述VLP基本上由H5N1病毒的HA和NA以及Ml蛋白组成。这些VLP可以包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,所述VLP由H5N1病毒的HA和NA以及Ml蛋白组成。在另一个实施方案中,所述流感VLP包含流感蛋白,其中所述流感蛋白由H5、NI和Ml蛋白组成。这些VLP含有H5、N9和Ml,并可含有其它细胞组分如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它流感蛋白(除了 M1、H5和/或NI的片段之外)。在另一个实施方案中,当表达在VLP表面上时,H5和/或NI可分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述VLP包含H9N2病毒的HA和NA,以及Ml蛋白。在另一个实施方案中,所述VLP基本上由H9N2病毒的HA和NA,以及Ml蛋白组成。这些VLP可以包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,所述VLP由H9N2病毒的HA和NA,以及Ml蛋白组成。在另一个实施方案中,所述流感VLP包含流感蛋白,其中所述流感蛋白由H9、N2和Ml蛋白组成。这些VLP含有H9、N2和Ml,并可含有其它细胞组分如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它流感蛋白(除了 M1、H9和/或N2的片段之外)。在另一个实施方案中,当表达在VLP表面上时,H9和/或N2可分别展现血凝素活性和/或神经氨酸酶活性。
[0115]在另一个实施方案中,所述VLP包含来自乙型流感病毒的HA和NA,以及Ml蛋白。乙型流感病毒通常仅见于人类。和甲型流感病毒不同,这些病毒不根据亚型分类。乙型流感病毒可在人类中导致发病和死亡,但与甲型流感病毒相比,其相关的流行严重程度一般较小。在另一个实施方案中,所述VLP基本上由来自乙型流感病毒的HA和NA,以及Ml蛋白组成。这些VLP可以包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,所述流感VLP包含流感蛋白,其中所述流感蛋白由HA、NA和Ml蛋白组成。这些VLP含有HA、NA和Ml,并可含有其它细胞组分如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它流感蛋白(除 了 M1、HA和/或NA的片段之外)。在另一个实施方案中,所述VLP由乙型流感病毒的HA和NA,以及Ml蛋白组成。在另一个实施方案中,当表达在VLP表面上时,HA和/或NA可分别展现血凝素活性和/或神经氨酸酶活性。
[0116]本发明还涵盖在本发明VLP之上或之中表达的所述流感蛋白的变体。这些变体可在所述组分蛋白的氨基酸序列中包含改变。术语“变体”就多肽而言是指相对于参考序列改变了一个或多个氨基酸的氨基酸序列。变体可具有“保守的”改变,其中用于替换的氨基酸具有类似的结构或化学性质,例如用异亮氨酸替换亮氨酸。或者,变体可具有“非保守的”改变,例如用色氨酸替换甘氨酸。类似的次要变化还可包括氨基酸缺失和/或插入。使用本领域公知的计算机程序,例如DNASTAR软件,可以找到确定哪些氨基酸残基可供替换、插入或缺失而不消除生物学活性或免疫学活性的指导。
[0117]天然变体可由于抗原性漂移而产生。抗原性漂移是病毒蛋白中随时间不断发生的细小变化。因此,感染了某一特定流感病毒株的人产生针对该病毒的抗体,当新病毒株出现时,针对较旧病毒株的抗体不再识别该较新的病毒,而可能发生再感染。这就是每个季候都有新流感疫苗的原因。此外,流感病毒中的某些改变可导致流感病毒跨种传播。例如,某些禽流感病毒发生与穿越物种屏障能力相关的遗传变异。这样的病毒能够造成大流行,因为人类对此病毒没有天然免疫力,该病毒能够容易地从人到人传播。所述流感蛋白的天然发生的变异是本发明的一个实施方案。
[0118]描述可应用于本发明的分子生物学技术例如克隆、突变、细胞培养等的通用教科书包括:Berger 和 Kimmel, Guide to Molecular Cloning Techniques, Methods inEnzymology volume152Academic Press,Inc., San Diego,Calif.(Berger);Sambrook etal., Molecular Cloning—A Laboratory Manual(3rd Ed.), Vol.1-3,Cold Spring HarborLaboratory, Cold Spring Harbor, N.Y.,2000 ( “Sambrook,,)和 Current Protocolsin Molecular Biology, F.M.Ausubel et al., eds., Current Protocols, 由 GreenePublishing Associates, Inc.和 John ffiley&Sons, Inc.联合出版(“Ausubel”)。这些教科书描述了诱变、载体的使用、启动子和许多其它相关的题目,例如HA和/或NA分子的克隆和突变等。因此,本发明也涵盖使用已知的蛋白质工程和重组DNA技术的方法来改进或改变表达在本发明VLP之上或之中的流感蛋白的特性。有多种诱变类型可用于产生和/或分离变体HA、NA和/或Ml分子和/或用于进一步修饰/突变本发明的多肽。它们包括但不限于定点诱变、随机点诱变、同源重组(DNA改组)、使用含尿嘧啶模板进行诱变、寡核苷酸定点诱变、硫代磷酸酯修饰的DNA诱变、使用缺口双链体DNA的诱变等等。其它合适的方法包括点错配修复(point mismatch repair),使用修复缺陷的宿主株的诱变,限制选择和限制纯化,缺失诱变,通过全基因合成的诱变,双链断裂修复等等。诱变,例如涉及嵌合构建体的诱变,也包含在本发明中。在一个实施方案中,可通过天然存在的分子或经过改变或突变的天然存在的分子,例如序列、序列比较、物理性质、晶体结构等等的已知信息来指导诱变。
[0119]本发明还包括当表达在VLP之上或之中时显示显著的生物学活性(例如能够引发有效的抗体应答)的流感蛋白变体。这样的变体包括缺失、插入、倒序(inversion)、重复,和替代,根据本领域已知的一般规则来选择它们使其对活性几乎不产生影响。
[0120]克隆所述流感蛋白的方法是本领域已知的。例如,可以从感染了流感病毒的细胞提取聚腺苷酸化mRNA,通过RT-PCR从中分离出编码特定流感蛋白的流感基因。所得产物基因可以作为DNA插入片段克隆到载体中。术语“载体”是指可用于扩增核酸和/或在生物体、细胞或细胞组分之间转移核酸的工具。载体包括自主复制或可整合到宿主细胞的染色体中的质粒、病毒、噬菌体、原病毒、噬菌粒、转座子、人工染色体等等。载体还可以是非自主复制性的裸RNA多核苷酸、裸DNA多核苷酸、在同一链中包含DNA和RNA 二者的多核苷酸、聚赖氨酸偶联的DNA或RNA、肽偶联的DNA或RNA、脂质体偶联的DNA等等。在许多但不是所有的通常实施方案中,本发明的载体是质粒或杆粒(bacmid)。
[0121 ] 因此,本发明包括这样的核苷酸,它们编码HA、NA和/或Ml流感蛋白,克隆到能在细胞中表达的表达载体中,其中所述载体诱导VLP的形成。“表达载体”是能够促进纳入其中的核酸的表达和复制的载体,例如质粒。典型地,要表达的核酸与启动子和/或增强子“可操作地连接”,并受该启动子和/或增强子的转录调控。在一个实施方案中,所述编码来自禽流感病毒、大流行性流感病毒和 /或季候性流感病毒的HA的核苷酸选自H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、Hll、H12、H13、H14、H15 和 H16。在另一个实施方案中,所述编码来自禽流感病毒、大流行性流感病毒和/或季候性流感病毒的NA的核苷酸选自N1、N2、N3、N4、N5、N6、N7、N8和N9。在另一个实施方案中,所述载体由编码HA、NA和/或Ml流感蛋白的核苷酸组成。在另一个实施方案中,所述载体由编码HA、NA和Ml流感蛋白的核苷酸组成。优选的表达载体是杆状病毒载体。克隆了编码所述流感蛋白的核苷酸之后,对所述核苷酸可以进一步加以操作。例如,本领域技术人员可以突变编码区的特定碱基来产生变体。变体可在编码区、非编码区或者编码区和非编码区二者中含有改变。这样的变体可增加流感蛋白的免疫原性或去除蛋白或RNA中的剪接位点。例如,在一个实施方案中,将流感M蛋白(全长)上的供体和受体剪接位点突变,以避免M mRNA被剪接成Ml和M2转录物。在另一个实施方案中,将HA工程化以去除或突变剪切位点。例如,野生型H5HA具有含多个碱性氨基酸的剪切位点(RRRKR)。该野生型序列使得HA对宿主中或表达这些HA的系统中可能存在的多种遍在蛋白酶更为敏感。在一个实施方案中,去除这些氨基酸可以降低HA对多种蛋白酶的敏感性。在另一个实施方案中,可突变该剪切位点以去除该剪切位点(例如突变成RESR)。
[0122]本发明还使用编码NA、HA和Ml的核酸和多肽。在一个实施方案中,流感NA核酸或蛋白与 SEQ ID N01、ll、31、32、39、38、46、47、54 或 55 至少 85%、90%、95%、96%、97%、98% 或99%同一。在另一个实施方案中,流感HA核酸或蛋白与SEQ ID N02、10、56、57、58、27、28、29、30、37、36、33、34、35、42、43、44、45、50、51、52 或 53 至少 85%、90%、95%、96%、97%、98% 或99%同一。在另一个实施方案中,流感Ml核酸或蛋白与SEQ ID N012、40、41、48或49至少85%、90%、95%、96%、97%、98% 或 99% 同一。
[0123]在一些实施方案中,突变包含这样的变化:这些变化产生沉默的替换、添加或缺失,但不改变被编码蛋白的性质或活性或者生成这些蛋白的方式。可以出于多种原因而产生核苷酸变体,例如为了最优化特定宿主的密码子表达(将人mRNA中的密码子改变为昆虫细胞例如Sf9细胞偏好的那些密码子)。参见美国专利公布2005/0118191,本文通过提述收录其全部内容用于所有目的。本发明的最优化密码子序列的例子在下文公开(例如SEQID42、44、46、48、50、52 和 54)。
[0124]此外,可将核苷酸测序以保证克隆的是正确的编码区,且不含有任何不希望的突变。可以将这些核苷酸亚克隆到表达载体(例如杆状病毒)中用于在任何细胞中表达。上文仅仅是如何克隆流感病毒蛋白的一个例子。本领域技术人员理解,其它方法也是可用和可能的。
[0125]本发明还提供这样的构建体和/或载体,其包含编码流感病毒结构基因包括NA、Ml和/或HA的禽类、大流行性和/或季候性核苷酸。所述载体可以是例如噬菌体、质粒、病毒或逆转录病毒载体。所述编码禽流感病毒、大流行性流感病毒和/或季候性流感病毒结构基因包括NA、M1和/或HA的构建体和/或载体应与合适的启动子可操作地连接,这样的启动子的非限制性例子有诸如AcMNPV多角体蛋白启动子(或其它杆状病毒),λ噬菌体PL启动子,大肠杆菌(E.coli) lac、phoA和tac启动子、SV40早期和晚期启动子,和逆转录病毒LTR的启动子。取决于希望的宿主细胞和/或表达率,本领域技术人员将知道其它合适的启动子。表达构建体将进一步含有转录起始、终止位点,以及被转录区域中用于翻译的核糖体结合位点。所述构建体所 表达的转录物的编码部分优选在要翻译的多肽的起始处包含翻译起始密码子,而在该多肽末尾处的合适位置上含有终止密码子。[0126]表达载体优选包含至少一种选择标记。这样的标记包括用于真核细胞培养的二氢叶酸还原酶、G418或新霉素抗性,以及用于培养大肠杆菌和其它细菌的四环素、卡那霉素或氨苄青霉素抗性基因。优选的载体包括病毒载体,例如杆状病毒、痘病毒(例如牛痘病毒、禽痘病毒(avipox virus)、金丝雀痘病毒、禽痘病毒、浣熊痘病毒、猪痘病毒等等)、腺病毒(例如犬腺病毒)、疱疹病毒和逆转录病毒。可用于本发明的其它载体包括用于细菌的载体,包括 pQE70、pQE60 和 pQE_9, pBluescript 载体,Phagescript 载体,pNH8A、pNH16a、pNH18A、pNH46A、ptrc99a、pKK223_3、pKK233_3、pDR540、pRIT5。优选的真核载体包括 pFastBaclpWINEO、pSV2CAT、pOG44、pXTl 和 pSG、pSVK3、pBPV、pMSG 和 pSVL。其它合适的载体是本领域技术人员显而易见的。在一个实施方案中,所述包含编码禽流感病毒、大流行性流感病毒和/或季候性流感病毒结构基因(包括HA、Ml和/或NA)的核苷酸的载体是pFastBac。在另一个实施方案中,所述包含由编码禽流感病毒、大流行性流感病毒和/或季候性流感病毒结构基因(包括HA、M1和/或NA)的核苷酸组成的插入片段的载体是pFastBacο
[0127]接下来,可以将重组载体转染、感染或转化到合适的宿主细胞中。由此,本发明提供这样的宿主细胞:它们包含载体(或多个载体),所述载体含有编码HA、Ml和/或NA且容许HA、Ml和/或NA在可形成VLP的条件下于所述宿主细胞中表达的核酸。
[0128]在一个实施方案中,上述重组构建体可以用来转染、感染或转化,并可以在真核细胞和/或原核细胞中表达HA、NA和Ml流感蛋白。真核宿主细胞包括酵母、昆虫、禽类、植物、秀丽隐杆线虫(C.elegans)(或线虫)和哺乳动物宿主细胞。昆虫细胞的非限制性例子有:草地夜蛾(Spodoptera frugiperda) (Sf)细胞、例如 Sf9> Sf21,粉纹夜蛾(Trichoplusiani)细胞,例如High Five细胞,和果蝇S2细胞。真菌(包括酵母)宿主细胞的例子有酿酒酵母(S.cerevisiae)、乳克鲁维酵母(Kluyveromyces lactis;K.1actis)、假丝酵母属(Candida)物种包括白色假丝酵母(C.albicans)和光滑假丝酵母(C.glabrata)、构巢曲霉(Aspergillus nidulans)、粟酒裂殖酵母(Schizosaccharomyces pombe; S.pombe)、巴斯德毕赤酵母(Pichia pastoris)、和解脂耶罗酵母(Yarrowia Iipolytica)。哺乳动物细胞的例子有COS细胞、幼仓鼠肾细胞、小鼠L细胞、LNCaP细胞、中国仓鼠卵巢(CHO)细胞、人胚肾(HEK)细胞和非洲绿猴细胞、CVl细胞、HeLa细胞、MDCK细胞、Vero和!fep-2细胞。非洲爪蟾(Xenopus Iaevi s)卵母细胞,或两栖动物来源的其它细胞也可以使用。原核宿主细胞包括细菌细胞,例如大肠杆菌、枯草芽孢杆菌(B.subtilis)和分枝杆菌。
[0129]可以将载体,例如包含HA、NA和/或Ml多核苷酸的载体根据本领域公知的技术转染到宿主细胞中。例如,可通过磷酸钙共沉淀、电穿孔、显微注射、脂转染和利用多胺转染试剂的转染来将核酸导入真核细胞。在一个实施方案中,所述载体是重组杆状病毒。在另一个实施方案中,所述重组杆状病毒被转染到真核细胞中。在一个优选的实施方案中,所述细胞是昆虫细胞。在另一个实施方案中,所述昆虫细胞是Sf9细胞。
[0130]在另一实施方案中,所述载体和/或宿主细胞包含这样的核苷酸:所述核苷酸编码选自 H1、H2、H3、H4、H5、H6、H7、H8、H9、H10、Hll、H12、H13、H14、H15 和 H16 的禽流感病
毒、大流行性流感病毒和/或季候性流感病毒HA蛋白。在另一实施方案中,所述载体和/或宿主细胞包含这样的核苷酸:所述核苷酸编码选自N1、N2、N3、N4、N5、N6、N7、N8和N9的NA蛋白。在另一实施方案中,所述载体和/或宿主细胞包含流感HA、M1和/或NA。在另一实施方案中,所述载体和/或宿主细胞基本上由HA、Ml和/或NA组成。在又一实施方案中,所述载体和/或宿主细胞由包括HA、Ml和NA的流感蛋白组成。这些载体和/或宿主细胞包含HA、NA和M1,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它的流感蛋白(除了 M1、HA和/或NA的片段之外)。在另一实施方案中,所述核苷酸编码这样的HA和/或NA:当它们表达在VLP表面上时,分别展现血凝素活性和/或神经氨酸酶活性。
[0131]本发明还提供将增加VLP产生效率的构建体和方法。例如,去除蛋白质中的剪切位点以增加蛋白质表达(见上文)。其它方法包括向HA、NA和/或Ml蛋白添加前导序列以增加转运效率。例如,可将异源信号序列与HA、NA和/或Ml流感蛋白融合。在一个实施方案中,所述信号序列可衍生自昆虫细胞的基因,且融合于流感HA蛋白(用于在昆虫细胞中表达)。在另一个实施方案中,信号肽是几丁质酶信号序列,其可在杆状病毒表达系统中高效地工作。在其它实施方案中,在流感蛋白之间互相交换前导序列可提供更好的蛋白转运。例如,已证明H5血凝素转运到颗粒表面的效率较低。而H9血凝素靶向表面和整合到表面中的效率更高。因此,在一个实施方案中,将H9前导序列与H5蛋白融合。
[0132]另一种增加VLP产生效率的方法是针对具体的细胞类型对编码HA、NA和/或Ml蛋白的核苷酸进行密码子优化。例如,为在Sf9细胞中表达而对核酸进行密码子优化(见美国专利公布2005/0118191,本文通过提述收录其全部内容用于所有目的)。下文公开了用于Sf9细胞的经过密码子优化的序列的例子(例如SEQ ID42、44、46、48、50、52和54)。在一个实施方案中,经过密码子优化的流感蛋白的核酸序列与SEQ ID N042、44、46、48、50、52和54的任一序列有至少85%、90%、95%、96、97、98或99%的同一性。
[0133]本发明还提供产生VLP的方法,所述方法包括在可形成VLP的条件下表达禽类、大流行性和/或季候性流感蛋白。取决于所选的表达系统和宿主细胞,在表达重组蛋白和形成VLP的条件下培养用表达载体转化的宿主细胞,来产生VLP。合适的培养条件的选择在本领域普通技术人员的技术之内。
[0134]培养经过工程化而产生本发明VLP的细胞的方法包括但不限于分批、分批补料、连续和灌流(perfusio n)细胞培养技术。细胞培养意思是在生物反应器(发酵室)中使细胞生长和增殖,其中细胞在生物反应器中增殖并表达蛋白(例如重组蛋白)以供纯化分离用。典型地,细胞培养在生物反应器中无菌、温度和大气受控的条件下进行。生物反应器是用于培养细胞的腔室(chamber),其中可以监控环境条件例如温度、大气、搅拌和/或pH。在一个实施方案中,所述生物反应器是不锈钢室。在另一个实施方案中,所述生物反应器是预
灭菌的塑料袋(例如Cellbagi丸:,Wave Biotech, Bridgewater, NJ)。在另一实施方案中,所述预灭菌的塑料袋为大约50L到1000L的袋子。
[0135]然后用保持VLP完整性的方法来分离这些VLP,例如通过梯度离心,例如氯化铯、蔗糖和碘克沙醇(iodixanol)梯度离心,以及标准纯化技术,包括例如离子交换和凝胶过滤层析。
[0136]下面是如何制备、分离和纯化本发明VLP的一个例子。通常VLP是由重组细胞系产生的,其中这些细胞系经过工程化而在细胞培养(见上文)中生长时产生VLP。可以利用图26所示的方案实现VLP的生产。本领域技术人员将会理解,可以使用其它的方法来制备和纯化本发明的VLP,因此本发明不限于所述的方法。[0137]本发明的VLP的生产可首先将Sf9细胞(未感染的)接种到摇瓶中,使细胞随着生长繁殖而扩增和规模放大(例如从125ml瓶到50L Wave袋)。培养细胞所用的培养基为合适的细胞系配制(优选无血清培养基,例如昆虫培养基ExCel 1-420,JRH)。然后,用重组杆状病毒以效率最高的感染复数(例如每个细胞约I个到约3个噬斑形成单位)感染所述细胞。一旦发生感染,流感HA、NA和Ml蛋白即从病毒基因组表达,自组装成VLP,并在感染后大约24到72小时从细胞分泌出来。通常,当细胞处于生长的对数中期(4-8X106个细胞/ml)且至少约90%生存时,感染效率最高。
[0138]可以在感染后大约48到96小时,当细胞培养基中VLP水平接近最大值但尚未发生广泛的细胞裂解之前收获本发明的VLP。收获时的Sf9细胞密度和生存力可以为:大约0.5X IO6个细胞/ml到大约1.5 X IO6个细胞/ml,生存力至少为20%,如染料排除测定所示。然后,移出培养基并将其澄清。可以向培养基中加入NaCl至浓度为大约0.4到大约1.0M,优选到大约0.5M,以避免VLP聚集。可利用一次性使用的预灭菌中空纤维0.5或1.00 μ m筒式滤器或类似的装置进行切向流过滤(TFF),来从含有本发明VLP的细胞培养基中去除细胞和细胞碎片。
[0139]接着,可以使用一次性使用的、预灭菌的500,000分子量截留中空纤维筒式滤器通过超滤来浓缩经过澄清的培养基中的VLP。可以将经过浓缩的VLP对10倍体积的含0.5MNaCl的pH7.0到8.0的磷酸盐缓冲盐水(PBS)渗滤来去除残余的培养基成分。
[0140]可以将经过浓缩、渗滤的VLP置于含0.5M NaCl的pH7.2PBS缓冲液中20%_60%不连续蔗糖梯度上,于大约4°C到大约10°C 6,500 Xg离心18小时来进一步纯化。通常,VLP将在大约30%到大约40%蔗糖之间或者在界面上(在20%和60%的分步梯度中)形成显著可见的条带,可从梯度中收集该条带并保存。可稀释该产物使其含有200mM NaCl,以准备纯化过程的下一步。该产物含有VLP,并可能含有完整的杆状病毒颗粒。
[0141]可以通过阴离 子交换层析或者44%等密度鹿糖垫层(cushion)离心来进一步纯化VLP。在阴离子交换层析中,将来自蔗糖梯度(见上文)的样品加载到装有带阴离子介质(例如Matrix Fractogel EMD TMAE)的柱子中,并通过盐梯度(从大约0.2M到大约1.0MNaCl)洗脱,该梯度可以将VLP与其它杂质(例如杆状病毒和DNA/RNA)分开。在蔗糖垫层方法中,将含有VLP的样品添加到44%蔗糖垫层,并在30,OOOg离心约18小时。VLP在44%蔗糖的顶部形成条带,而杆状病毒沉淀于底部,其它杂质蛋白停留在顶部的0%蔗糖层中。收集VLP峰或VLP带。
[0142]如果希望,可以将完整的杆状病毒灭活。可以通过化学方法,例如福尔马林或β-丙内酯(BPL)灭活。还可以主要使用本领域已知的选择性沉淀和层析方法,如上文例举的,来实现完整杆状病毒的去除和/或灭活。灭活方法包括将含有VLP的样品在0.2%BPL中于大约25°C到大约27°C温育3小时。还可以将含有VLP的样品在0.05%BPL于4°C温育3天,然后在37°C温育I小时,来灭活杆状病毒。
[0143]灭活/去除步骤后,可使含有VLP的产物经过另一渗滤步骤以去除任何来自灭活步骤的试剂和/或任何残余的蔗糖,并将VLP置入期望的缓冲液(例如PBS)中。含有VLP的溶液可以通过本领域已知的方法(例如无菌过滤)灭菌,并保存在冰箱或低温冰箱中。
[0144]上述技术可以在多种 规模上实施。例如,T形瓶(T-flasks)、摇瓶、转瓶、乃至工业级容量的生物反应器。生物反应器可包括不锈钢槽或预灭菌的塑料袋(例如,WaveBiotech, Bridgewater, NJ出售的系统)。本领域技术人员将知道用于其目的的最佳选择。
[0145]杆状病毒表达载体的扩增和生产,以及用重组杆状病毒感染细胞以生产重组流感VLP,可以在昆虫细胞,例如前文所述的Sf9昆虫细胞中实现。在一个优选的实施方案中,所述细胞是用产生流感VLP的工程化重组杆状病毒感染的SF9细胞。
[0146]药物或疫苗制剂和施用
[0147]本文中有用的药物组合物含有可药用载体和本发明的VLP,其中所述载体,包括任何合适的稀释剂或赋形剂,包括本身不诱导产生对接受该组合物的脊椎动物有害的免疫应答、并且可以在不引起任何异常毒性的条件下施用的任何药剂。如本文所用的,术语“可药用”意思是经过联邦或州政府监管部门批准,或者在美国药典、欧洲药典或其它公认的药典中记载用于脊椎动物,更具体地用于人类中。这些组合物可以用作疫苗和/或抗原性组合物,用于在脊椎动物中诱导保护性免疫应答。
[0148]所述本发明的药物制剂包括含流感Ml、HA和/或NA蛋白的VLP和可药用的载体或赋形剂。可药用载体包括但不限于盐水、缓冲盐水、右旋糖、水、甘油、无菌等渗缓冲水溶液,和它们的组合。Remington’s Pharmaceutical Sciences (Mack Pub.C0.N.J.current edition)提供了可药用载体、稀释剂和其它赋形剂的全面讨论。制剂必须适合施用模式。在一个优选的实施方案中,制剂适于施用给人,优选制剂是无菌、非颗粒性(non-particulate)和/或非热原性的。
[0149]如果期望,组合物还可以含有次要量的润湿剂或乳化剂,或pH缓冲剂。组合物可以是固体形式,例如适于重构的冻干粉末;液体溶液;悬液;乳液;片剂;丸剂;胶囊;持续释放制剂;或粉剂。口服制剂可包含标准的载体,例如药品级的甘露糖醇、乳糖、淀粉、硬脂酸镁、糖精钠、纤维素、碳酸镁等等。
[0150]本发明还提供药包(pharmaceutical pack)或试剂盒(kit);其包含一个或多个容器,所述容器装有本发明疫苗制剂的一种或多种成分。在一个优选的实施方案中,所述试剂盒包含两个容器, 其一装有VLP,另一个装有佐剂。所述容器还可以伴有通告,该通告采取由监管药品或生物制品的生产、使用或销售的政府部门规定的形式,反映该部门对为人体施用而生产、使用或销售的许可。
[0151]本发明还提供VLP制剂包装在标示组合物数量的密封容器例如安瓿或小药囊(sachette)中。在一个实施方案中,VLP组合物作为液体提供,在另一个实施方案中,作为密封容器中的干燥无菌冻干粉末或无水浓缩物提供,并且可以例如用水或盐水重构为供施用于受试者的合适浓度。优选地,VLP组合物作为密封容器中的干燥无菌冻干粉末提供,单位剂量优选为大约I P g、大约5 μ g、大约10 μ g、大约20 μ g、大约25 μ g、大约30 μ g、大约50 μ g、大约100 μ g、大约125 μ g、大约150 μ g或大约200 μ g。或者,VLP组合物的单位剂量小于约I μ g(例如大约0.08 μ g,大约0.04 μ g ;大约0.2 μ g、大约0.4 μ g、大约0.8 μ g、大约0.5 μ g或更少、大约0.25 μ g或更少,或大约0.1 μ g或更少),或多于大约125 μ g (例如大约150 μ g或更多、大约250 μ g或更多、或大约500 μ g或更多)。这些剂量可以以总VLP或HA的μ g数测量。VLP组合物应当在自冻干粉末重构后大约12小时内、优选约6小时内、约5小时内、约3小时内、或约I小时内施用。
[0152]在一个作为选择的实施方案中,VLP组合物作为标示VLP组合物的数量和浓度的密封容器中的液体形式提供。优选地,VLP组合物在密封容器中以至少约50μ g/ml、优选至少约100 μ g/ml、至少约200 μ g/ml、至少500 μ g/ml、或至少lmg/ml的浓度提供。
[0153]通常,本发明的流感VLP以足以刺激针对一种或多种流感病毒株的免疫应答的有效量或数量(如上文定义的)施用。优选地,施用本发明的VLP引发针对至少一种流感病毒的显著的免疫力。典型地,可以根据例如年龄、身体健康状况、体重、性别、饮食、施用时间和其它临床因素,在该范围内调节该剂量。预防性疫苗制剂是全身施用的,例如通过使用针头和注射器或无针头注射装置进行皮下或肌肉内注射来施用。或者,疫苗制剂是鼻内施用的,通过滴剂、大颗粒气溶胶(大于约10微米)、或喷雾到上呼吸道中。虽然上述任何投递途径均产生免疫应答,但鼻内施用还带来额外的益处,即在流感病毒进入的部位引发粘膜免疫。
[0154]由此,本发明还包括诱导受试者中针对流感病毒感染或其至少一种症状的显著免疫力的疫苗或抗原性组合物的配制方法,包括对所述制剂添加有效剂量的流感VLP。
[0155]虽然优选的是以单个剂量刺激显著的免疫力,但可以通过相同或不同的途径施用额外的剂量来达到所需效果。例如,在新生儿和婴儿中,可能需要多次施用来引发足够的免疫水平。根据维持足够水平的抗流感感染保护的需要,可以在整个儿童期以一定间隔继续进行施用。类似地,特别容易受到反复或严重的流感感染的成年人,例如卫生保健工作者、日间护理工作者、幼儿的家人、老年人、以及心肺功能受损的个体等,可能需要进行多次免疫来建立和/或维持保护性免疫应答。可以通过例如测量中和性分泌和血清抗体的量来监测诱导产生的免疫力的水平,并根据引发和维持期望的保护水平的需要来调整剂量或重复接种。
[0156]因此,在一个实施方案中,诱发受试者中针对流感病毒感染或其至少一种症状的显著免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP包含流感HA、NA和Ml蛋白。在另一个实施方案中,诱发受试者中针对流感病毒感染或其至少一种症状的显著免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP基本上由流感HA、NA和Ml组成。所述VLP可包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,诱发受试者中针对流感病毒感染或其至少一种症状的显著免疫力的方法包括施用至少一个有效剂量的流 感VLP,其中所述VLP由流感HA、NA和Ml组成。在另一个实施方案中,所述流感HA、NA和Ml衍生自季候性流感和/或禽流感病毒。在另一个实施方案中,诱发受试者中针对流感病毒感染或其至少一种症状的显著免疫力的方法包括施用至少一个有效剂量的包含流感蛋白的流感VLP,其中所述流感蛋白由HA、NA和Ml蛋白组成。这些VLP包含HA、NA和Ml,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它的流感蛋白(除了 M1、HA和/或NA的片段之外)。在另一个实施方案中,所述HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在另一个实施方案中,所述方法包括通过以一个剂量施用所述制剂而诱发针对流感病毒感染或其至少一种症状的显著的免疫力。在另一个实施方案中,所述方法包括通过以多个剂量施用所述制剂而诱发针对流感病毒感染或其至少一种症状的显著的免疫力。
[0157]包含VLP的组合物(疫苗和/或抗原性制剂)的施用方法包括,但不限于,非消化道施用(例如皮内、肌肉内、静脉内和皮下)、硬膜外、和粘膜(例如鼻内和口腔或肺途径或通过栓剂)。在一个具体实施方案中,本发明的组合物通过肌肉内、静脉内、皮下、透皮或皮内施用。组合物可以通过任何方便 的途径施用,例如通过输注或推注,通过经由上皮或粘膜皮肤衬里(例如口腔粘膜、结肠、结膜、鼻咽、口咽、阴道、尿道、膀胱和肠粘膜等)的吸收,并且可以与其它生物学活性剂一起施用。在一些实施方案中,本发明含VLP组合物的鼻内或其它粘膜施用途径所诱发的抗体或其它免疫应答可显著高于其它施用途径。在另一个实施方案中,本发明含VLP组合物的鼻内或其它粘膜施用途径可诱发这样的抗体或其它免疫应答,所述应答将诱发针对其它流感病毒株的交叉保护。施用可以是全身性的或者是局部的。
[0158]在又一个实施方案中,所述疫苗和/或抗原性制剂以这样的方式施用,使得其靶向粘膜组织,以在免疫部位引发免疫应答。例如,可以通过口服含有具备特定粘膜靶向性质的佐剂的组合物,来靶向粘膜组织例如肠相关淋巴样组织(GALT)进行免疫。还可以靶向其它粘膜组织,例如鼻咽淋巴样组织(NALT)和支气管相关淋巴样组织(BALT)。
[0159]本发明的疫苗和/或抗原性制剂还可以按照剂量日程表(dosage schedule)来施用,例如用疫苗组合物进行一次初次施用,随后进行多次加强施用。在具体的实施方案中,第二个剂量的组合物在初次施用后大约两周到一年,优选约I个月、约2个月、约3个月、约4个月、约5个月到约6个月施用。进一步,可以在第二个剂量之后,且在初次施用后大约3个月到大约两年甚至更长时间,优选约4个月、约5个月、或者约6个月、或者约7个月到约I年施用第三个剂量。当施用第二个剂量后在受试者的血清和/或尿或者粘膜分泌物中没有检测到或者检测到低水平的特异性免疫球蛋白时,可任选地施用第三个剂量。在一个优选的实施方案中,第二个剂量在第一次施用后大约I个月施用,而第三个剂量在第一次施用后大约6个月施用。在另一个实施方案中,第二个剂量在第一次施用后大约6个月施用。
[0160]在另一个实施方案中,所述本发明的VLP可用作为联合疗法的一部分施用。例如,本发明的VLP可以与其它免疫原性组合物和/或抗病毒剂(例如金刚烷胺(Amantadine)、金刚乙胺(Rimantadine)、扎那米韦(Zanamivir)和奥塞米韦(Osteltamivir))共同配制。
[0161]本领域技术人员可以容易地确定药物制剂的剂量,例如通过首先鉴定可有效引发预防性或治疗性免疫应答的剂量,例如通过测量病毒特异性免疫球蛋白的血清效价或通过测量血清样品或尿样品或粘膜分泌物中抗体的抑制比。所述剂量可以由动物研究确定。用于研究流感病毒的动物的非限制性清单包括豚鼠、叙利亚地鼠(Syrian hamster)、栗鼠(chinchilla)、刺 猬、鸡、大鼠、小鼠和雪貂(ferret)。大多数动物不是流感病毒的天然宿主,但仍可用于该疾病的各个方面的研究。例如,可以对任何上述动物定量给予疫苗候选物,例如本发明的VLP,以部分地表征诱发的免疫应答,和/或确定是否生成了任何中和性抗体。例如,已经在小鼠模型中进行了许多研究,因为小鼠体型小,而且它们的成本低使得研究者可以进行大规模研究。但是,小鼠的小体型也增加了迅捷观察任何疾病临床体征的难度,而且小鼠不是人类中疾病的预测性模型。
[0162]雪貂已经广泛地用于人流感病毒感染及其作用过程的各个方面的研究。如果没有雪貂的应用,对流感病毒免疫的许多现代概念的发展是不可能的(Maher et al.2004)。已经证明雪貂是研究流感的良好模型,原因有如下数方面:就临床体征、发病机制和免疫力而言,雪貂中的流感感染非常近似于人中的流感感染;人类甲型和乙型流感病毒天然地感染雪貂,从而使人们有机会对完全受控的群体进行研究以观察感染传播、疾病和流感病毒糖蛋白中氨基酸序列变异之间的相互影响;而且雪貂还具有其它使其成为解析该疾病表现的理想模型的体质特征。例如,雪貂和人显示非常近似的流感感染临床体征,这些体征看起来依赖于宿主年龄、病毒株、环境条件、继发细菌感染的程度和其它许多变量。因此,相比于小鼠或者上述其它任何模型,本领域技术人员可以更容易地将来自雪貂模型的流感疫苗的效力与剂量方案与人相关联。
[0163]此外,本领域技术人员可以进行人体临床研究来确定用于人的优选有效剂量。这样的临床研究是常规的,且为本领域公知。要使用的确切剂量还将依赖于施用途径。可以从衍生自体外或动物试验系统的剂量-应答曲线外推得到有效剂量。
[0164]本领域还公知,可以使用免疫应答的非特异性刺激物来增强具体组合物的免疫原性,这样的刺激物称为佐剂。实验上已经使用佐剂来促进针对未知抗原的免疫力的普遍增加(见美国专利N0.4,877,611)。免疫规程使用佐剂来刺激应答已有多年,因此,本领域普通技术人员对佐剂是熟知的。有些佐剂影响抗原呈递的方式。例如,当蛋白抗原被明矾沉淀时,免疫应答增加。抗原的乳化也可延长抗原呈递的持续时间。本发明的范围意图涵盖Vogel 等人“A Compendium of Vaccine Adjuvants and Excipients (2nd Edition),,,(本文通过提述收录该文献全部内容用于所有目的)中所述任何佐剂的引入。
[0165]示例性的佐剂包括完全弗氏佐剂(一种非特异性免疫应答刺激物,含有已杀死的结核分枝杆菌(Mycobacterium tuberculosis))、不完全弗氏佐剂和氢氧化招佐剂。其它佐剂包括GMCSP、BCG、氢氧化铝、MDP化合物诸如thur_MDP和nor_MDP、CGP (MTP-PE)、脂质A和单磷酰脂质A(MPL)。还设想使用RIBI,其在2%角鲨烯/TWeen80乳液中含有从细菌提取的3种成分:MPL、海藻糖二霉菌酸酯(TDM)和细胞壁骨架(CWS)。还可以使用MF-59、Novasomes?, MHC 抗原。
[0166]在本发明的一个实施方案中,所述佐剂是少片层(paucilamellar)脂质小泡,其具有大约2到10个双层,它们排列成多个基本呈球形的壳,由水性层隔开,围绕着不含脂质双层的无定形中心大空腔。少片层脂质小泡可以通过数种方式起作用来刺激免疫应答:作为非特异性刺激物、作为抗原载体、作为其它佐剂的载体,以及这些方式的组合。例如,当通过混合抗原与预先形成的小泡,使得抗原相对于小泡保持在胞外(extracellular)的方法制备疫苗时,少片层脂质小泡起非特异性免疫刺激物的作用。通过将抗原包被在小泡的中心空腔中,小泡起到免 疫刺激物和抗原载体两方面的作用。在另一个实施方案中,小泡主要由非磷脂小泡构成。在另一个实施方案中,小泡是Novasomes。Novasomes?是大约IOOnm到大约500nm范围的少片层非磷脂小泡。它们包含Bri j72、胆固醇、油酸和角鲨烯。Novasomes已被证明是流感抗原的有效佐剂(参见美国专利5,629,021,6, 387,373和4,911,928,本文通过提述收录它们的全部内容用于所有目的)。
[0167]在一个方面,使用药剂来达到佐剂的效果,例如使用明矾,其以磷酸盐缓冲盐水中大约0.05到大约0.1%的溶液使用。或者,VLP可以制成与合成糖聚合物(Carbopol?)的混
合物,所述聚合物以大约0.25%的溶液使用。有些佐剂,例如某些从细菌获得的有机分子,作用于宿主而非抗原。一个例子是胞壁酰二肽(N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺[MDP]),—种细菌肽聚糖。在其它实施方案中,血蓝蛋白和血红蛋白(hemoerythrin)也可与本发明的VLP—起使用。在某些实施方案中优选使用来自钥孔I戚的血蓝蛋白(KLH),但可以使用其它软体动物和节肢动物血蓝蛋白和血红蛋白。
[0168]还可以使用各种多糖佐剂。例如,各种肺炎球菌多糖佐剂对小鼠抗体应答的效用已经有描述(Yin et al., 1989) 0产生最佳应答的剂量或者在其它方面不产生抑制的剂量应当如指示地使用(Yin et al.,1989)。多糖的多胺变化形式是特别优选的,例如几丁质和壳聚糖,包括脱乙酰几丁质。在另一个实施方案中,胞壁酰二肽的亲脂性双糖-三肽衍生物描述用于由磷脂酰胆碱和磷脂酰甘油形成的人工脂质体中。
[0169]两亲性物质和表面活性物质,例如阜苷和衍生物例如QS21 (Cambridge Biotech)构成用于本发明的VLP的另一类佐剂。非离子型嵌段共聚物表面活性剂(Rabinovich etal.,1994)也可以使用。寡核苷酸是另一类有用的佐剂(Yamamoto et al.,1988)。Quil A和香菇多糖(Ientinen)是其它可用于本发明某些实施方案中的佐剂。
[0170]另一类佐剂是脱毒的内毒素,例如美国专利N0.4,866,034的精制脱毒内毒素。这些精制脱毒内毒素可在脊椎动物中有效产生佐剂应答。当然,脱毒内毒素可以与其它佐剂组合使用以制备多佐剂制剂。例如,特别考虑脱毒内毒素与海藻糖二霉菌酸酯的组合,如美国专利N0.4,435,386所述的。还考虑脱毒内毒素与海藻糖二霉菌酸酯和内毒素糖脂的组合(美国专利N0.4,505,899),以及脱毒内毒素与细胞壁骨架(CWS)的组合或者与CWS和海藻糖二霉菌酸酯的组合,如美国专利N0.4,436,727,4, 436,728和4,505,900所述的。我们预想,仅有CWS和海藻糖二霉菌酸酯而无脱毒内毒素的组合也是有用的,如美国专利N0.4,520,019 中所述的。
[0171]本领域技术人员将会知道能够与根据本发明的疫苗偶联的不同种类的佐剂,这些包括烷基溶血磷脂(ALP) ;BCG;和生物素(包括生物素化的衍生物),以及其它。本文特别考虑使用的某些佐剂有来自革兰氏细胞(Gram-cells)的磷壁酸。这些包括脂磷壁酸(lipoteichoic acids, LTA)、核糖醇憐壁酸(ribitol teichoic acids, RTA)和甘油憐壁酸(glycerol teichoic acid, GTA)。它们的合成对应物的活性形式也可以用于本发明(Takada et al., 1995)。
[0172]例如,如果希望激发抗体或随后获得活化T细胞,多种佐剂,即使是那些通常不用于人的佐剂,仍可用于其它脊椎动物。佐剂或细胞可能造成的毒性或其它不良作用,例如使用未受照射的肿瘤细胞时可能发生的毒性或其它不良作用,在此情况下是不相干的。
[0173]另一种 诱发免疫应答的方法可以通过将本发明的VLP与“免疫刺激物” 一起配制来实现。这些“免疫刺激物”是身体自有的增加免疫系统应答的化学信使(细胞因子)。免疫刺激物包括但不限于具有免疫刺激性、免疫强化和促炎症活性的各种细胞因子、淋巴因子和趋化因子,例如白细胞介素(例如IL-1、IL-2、IL-3、IL_4、IL-12、IL-13);生长因子(例如粒细胞-巨噬细胞(GM)集落刺激因子(CSF));和其它免疫刺激性分子,例如巨噬细胞炎性因子,Flt3配体、B7.1、B7.2等等。免疫刺激性分子可以与流感VLP在相同的制剂中施用,或者可以另行施用。可以施用蛋白质或者编码该蛋白质的表达载体来产生免疫刺激效应。
[0174]刺激抗流感免疫应答的方法
[0175]本发明的VLP可用于制备刺激免疫应答的组合物,所述免疫应答赋予针对流感病毒的免疫力或显著的免疫力。粘膜免疫和细胞免疫均可贡献于抗流感感染和疾病的免疫力。在上呼吸道中局部分泌的抗体是针对自然感染的抗性中的主要因素。分泌型免疫球蛋白A(sIgA)参与上呼吸道的保护,血清IgG参与下呼吸道的保护。感染所诱发的免疫应答抵御同一病毒或抗原性类似的病毒株的再次感染。流感病毒频繁发生不可预测的变化,因此,自然感染后,宿主免疫提供的针对人群中流行的新病毒株的有效保护期可能仅有数年。[0176]本发明的VLP当施用于脊椎动物(例如人)时可以在所述脊椎动物中诱发显著的免疫力。显著的免疫力由针对本发明的流感VLP的免疫应答导致,在所述脊椎动物中保护或改善流感病毒感染或者至少减轻流感病毒感染的症状。在一些情况下,如果所述脊椎动物被感染,所述感染将是无症状的。所述应答可能不是完全保护性的应答。在此情况下,如果所述脊椎动物感染了流感病毒,该脊椎动物与未经免疫的脊椎动物相比将经历减轻的症状或者较短的症状持续时间。
[0177]在一个实施方案中,本发明包括诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法,包括施用至少一个有效剂量的流感VLP。在另一个实施方案中,所述显著的免疫力的诱导减少流感症状的持续时间。在另一个实施方案中,诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP包含流感HA、NA和Ml蛋白。在另一个实施方案中,所述流感VLP包含流感蛋白,其中所述流感蛋白由HA、NA和Ml蛋白构成。这些VLP含有HA、NA和M1,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它的流感蛋白(除了 M1、HA和/或NA的片段之外)。在另一个实施方案中,诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP基本上由HA、NA和Ml组成。所述VLP可包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP由流感HA、NA和Ml组成。在另一个实施方案中,所述HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在又一个实施方案中,所述VLP与佐剂或免疫刺激物一起配制。
[0178]最近,人们共同致力于构建针对具有产生大流行潜力的禽流感病毒的疫苗。这是因为多种禽流感病毒已经跨越了物种屏障而直接感染了人类,使人患病,而且在一些情况下导致死亡。这些病毒是H5N1、H9N2和H7N7(Cox et al.,2004)。最近一项研究考察了使用灭活H5N1流感病毒作为疫苗的潜力。该疫苗的配方与现有已许可上市的许可灭活疫苗相似。该研究的结论是使用灭活的H5N1病毒的确在人类中诱导了免疫应答,但所给的剂量很高(90 μ g禽流感,相比于 15 μ g的许可疫苗)(Treanor et al.,2006)。大量的禽流感抗原对于世界范围的接种计划而言是不切实际的。如下文说明的,本发明的VLP当施用于脊椎动物时在所述脊椎动物中诱发免疫应答。
[0179]因此,本发明涵盖诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法,包括施用至少一个有效剂量的禽流感VLP。在另一个实施方案中,所述显著的免疫力的诱发减少流感症状的持续时间。在另一个实施方案中,所述免疫力的诱发是来自施用含至少0.2 μ g禽类HA的本发明VLP。在另一个实施方案中,所述免疫力的诱发是来自施用含至少0.2 μ g禽类HA到至少15 μ g禽类HA的本发明VLP。施用可以分为一个或更多个剂量进行,但有利的是以一个剂量进行。在另一个实施方案中,所述VLP禽类HA衍生自禽流感H5N1。
[0180]在另一个实施方案中,本发明包括诱发受试者体内针对禽流感病毒感染或其至少一种症状的显著的免疫力的方法,包括施用至少一个有效剂量的禽流感VLP,其中所述VLP包含禽流感HA、NA和Ml。在另一 个实施方案中,所述禽流感VLP包含禽流感蛋白,其中所述禽流感蛋白由HA、NA和Ml蛋白组成。这些VLP含有HA、NA和Ml,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它的流感蛋白(除了 Ml、HA和/或NA的片段之外)。在另一个实施方案中,所述诱发受试者体内针对禽流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的禽流感VLP,其中所述VLP基本上由禽流感HA、NA和Ml组成。所述VLP可包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,所述诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP由禽流感HA、NA和Ml蛋白组成。在另一个实施方案中,所述禽流感HA和NA分别是H5N1。在另一个实施方案中,所述禽流感HA和NA分别是H9N2。在另一个实施方案中,所述禽流感HA和NA分别是H7N7。在另一个实施方案中,所述禽流感HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在又一个实施方案中,所述VLP与佐剂或免疫刺激物一起配制。
[0181]在另一个实施方案中,所述禽流感VLP在脊椎动物中诱发的免疫应答,与配制方式类似于现有许可上市的许可灭活疫苗的相似禽流感抗原相比,效力增加到大约2倍,大约4倍,大约8倍,大约16倍,大约32倍,大约64倍,大约128倍(或更高)。现有制剂包括全灭活病毒(例如甲醛处理的)疫苗、裂解(split)病毒(化学性破坏的)疫苗、和亚单位(纯化糖蛋白)疫苗。确定疫苗效力的方法在本领域是已知和常规的。例如,可进行微中和测定和凝血抑制测定来确定禽类VLP疫苗相对于配制方式类似于现有许可上市的许可灭活疫苗的禽流感抗原的效力。在一个实施方案中,当对脊椎动物施用大约0.2μ g、大约0.4 μ g、大约0.6 μ g、大约0.8 μ g、大约I μ g、大约2 μ g、大约3 μ g、大约4 μ g、大约5 μ g、大约6 μ g、大约7 μ g、大约9 μ g、大约10 μ g、大约15 μ g、大约20 μ g、大约25 μ g、大约30 μ g、大约35 μ g、40 μ g、大约45 μ g、大约50 μ g或更多的VLP和配制方式类似于现有许可上市灭活疫苗的抗原(即:VLP中相当量的HA和/或NA,和以配制方式类似于许可灭活疫苗和/或任何其它抗原的相当量的HA和/或NA)时,实现上述效力增加。可以根据HA含量来测量。例如,I μ g的本发明VLP为含HA的VLP溶液中的I μ g HA或者可以VLP重量测量。
[0182]人们每年接受季候性流感疫苗以减少每年流感病例的发生。目前,在美国有两种亚型的甲型流 感和乙 型流感流行。因此,现有疫苗是三价的,以提供针对流行中病毒株的保护。每年不同的流感病毒株或流感病毒变体改变。因此,大多数年份中制造并施用新疫苗组合物。灭活疫苗是通过在含胚鸡蛋中扩增病毒来生产的。采集尿囊液,浓缩并纯化病毒后加以灭活。因此,现有的许可流感病毒疫苗可能含有痕量的残余卵蛋白,因此不应给予对蛋有过敏性超敏反应的人。此外,蛋的供应必须是有组织的,而且用于生产疫苗的病毒株必须在下一个流感季候前数个月选定,这样就限制了该方法的灵活性,经常导致生产和分配的迟延和短缺。而且,一些流感病毒株在含胚鸡蛋中复制不好,这可能对能够生长并配制成疫苗的流感病毒株构成限制。
[0183]如上所述,本发明VLP的生产不需要蛋。这些VLP是藉由细胞培养系统制备的。因此,本发明涵盖诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法,包括施用至少一个有效剂量的季候性流感VLP。如上文讨论的,季候性流感病毒是指就某一流感季候而言,已根据全球各国家流感中心进行的流行病学调查确定为正在人群内传播的流感病毒株。所述研究结果以及某些分离的流感病毒被送到世界卫生组织(WHO)的四个参考实验室之一以进行详细研究,其中一个实验室设置在亚特兰大的疾病控制和预防中心(⑶C)。这些实验室测试针对现有疫苗制备的抗体与流行中的病毒和新流感病毒反应的良好程度。将该信息和有关流感活动情况的信息汇总并提交到美国食品和药品管理局(FDA)的一个顾问委员会以及WHO的会议上。这些会议的结果是选择三种病毒(甲型流感病毒的两个亚型和乙型流感病毒的一个亚型)进入用于下个秋季和冬季的流感疫苗。该选择在北半球于2月份进行,在南半球于9月份进行。通常,每年改变疫苗中三种病毒株中的一种或两种。在另一个实施方案中,所述显著的免疫力的诱导减少流感症状的持续时间。
[0184]在另一个实施方案中,本发明包含诱发受试者体内针对季候性流感病毒感染或其至少一种症状的显著的免疫力的方法,包括施用至少一个有效剂量的季候性流感VLP,其中所述VLP包含季候性流感HA、NA和Ml蛋白。在另一个实施方案中,所述季候性流感VLP包含季候性流感蛋白,其中所述流感蛋白由HA、NA和Ml蛋白构成。这些VLP含有HA、NA和M1,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它的流感蛋白(除了 M1、HA和/或NA的片段之外)。在另一个实施方案中,所述诱发受试者体内针对季候性流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的季候性流感VLP,其中所述VLP基本上由季候性流感HA、NA和Ml组成。所述VLP可包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP由季候性流感HA、NA和Ml组成。在另一个实施方案中,所述禽流感HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在又一个实施方案中,所述VLP与佐剂或免疫刺激物一起配制。
[0185]通常,本发明的季候性流感VLP的施用数量足以刺激针对一种或多种季候性流感病毒株的显著的免疫力。在一个实施方案中,将所述VLP与包含不同流感亚型蛋白(如上面列出的)的其它VLP—起掺混。在另一个实施方案中,制剂是三价制剂,包含具有来自至少两种甲型流感亚型和/或至少 一种乙型流感亚型的季候性流感HA和/或NA蛋白的VLP的混合物。在另一个实施方案中,所述乙型亚型是通过与上面所述相同的方法制备的。在另一个实施方案中,多价组合物包含一种或多种如上所述的本发明VLP。
[0186]在另一个实施方案中,本发明的VLP (禽类或季候性VLP)可引发这样的免疫应答,所述免疫应答将提供针对多于一种流感病毒株的保护。由具体亚类的、具体病毒株构建的流感VLP对脊椎动物的交叉保护可诱发针对不同毒株和/或亚类的流感病毒的交叉保护。下文的实施例显示,本发明的VLP能够诱发与不同病毒株和/或亚类的交叉反应性。
[0187]体液免疫系统产生针对不同流感抗原的抗体,其中HA特异性抗体对于中和病毒及由此防止疾病是最重要的。NA特异性抗体预防感染的有效性较低,但它们减少被感染细胞释放病毒。粘膜组织是许多病原体包括流感的主要侵入门户,而粘膜免疫系统提供了除天然免疫之外针对感染的第一道防线。SIgA,从某种程度上说还有IgM,是针对粘膜病原体的主要中和性抗体,防止病原体进入,并且可以在细胞内作用以抑制病毒复制。鼻分泌物含有中和性抗体,特别是针对流感HA和NA的中和性抗体,其主要为IgA同种型且为局部产生。在原发感染过程中,可以通过酶联免疫吸附测定在鼻冲洗液中检出对HA特异性的所有三个主要的Ig类型(IgG、IgA和IgM),虽然IgA和IgM比IgG更常被检出。IgA,从某种程度上说还有IgM,均在局部活跃地分泌,而IgG是作为血清分泌物衍生的。在具有局部IgA应答的受试者中,也观察到血清IgA应答。由自然感染刺激的局部IgA应答持续至少3-5个月,并且可以在局部检出流感特异性IgA定向的记忆细胞。IgA也是继发感染后局部分泌物中的主要Ig同种型,并且在后续感染时在血清中检测到IgA应答。活病毒疫苗诱发的局部产生的中和性抗体的存在与野生型病毒攻击后的感染抵抗力和病情相关联。
[0188]针对流感感染的抵抗力或病情与针对HA和NA抗体的局部和/或血清水平相关。血清抗HA抗体是最经常被测量的抗流感保护相关指标(Cox et al.,1999)。自然流感感染后在大约80%的受试者中可检测到保护性血清抗体(凝血抑制(HI)效价> 40)应答。在正常受试者(Cox et al., 1994)和正经历流感感染的个体中存在产生所有三种主要Ig类型的B细胞。在人类中,血清抗体在流感感染的抵抗力和恢复中起作用。人类中针对HA和NA的血清抗体水平可以与实验感染和自然感染后的病情抵抗力相关联。在原发感染过程中,在10-14天内可检测到三种主要Ig类型。IgA和IgM水平在2周后达到峰值然后开始降低,而IgG水平在4-6周达到峰值。虽然初次应答中IgG和IgM是主要的,在二次免疫应答中IgG和IgA占主要地位。
[0189]由此,本发明包含诱发受试者中针对流感病毒感染或其至少一种症状的显著的保护性抗体应答的方法,包括施用至少一个有效剂量的流感VLP。在另一个实施方案中,所述显著的保护性抗体应答的诱发减少流感症状的持续时间。在另一个实施方案中,诱发受试者中针对流感病毒感染或其至少一种症状的显著的保护性抗体应答的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP包含流感HA、NA和Ml蛋白。
[0190]在另一个实施方案中,本发明包括诱发受试者体内针对流感病毒感染或其至少一种症状的显著的保护性抗体应答的方法,包括施用至少一个有效剂量的流感VLP,其中所述VLP基本上由流感HA、NA和Ml组成。所述VLP可包含可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,所述VLP包含流感蛋白,其中所述流感蛋白由HA、NA和Ml组成。这些VLP含有HA、NA和 Ml,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、月旨质、碳水化合物等,但不含有其它的流感蛋白(除了 Ml、HA和/或NA的片段之外)。在另一个实施方案中,诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP由流感HA、NA和Ml组成。在另一个实施方案中,其中所述流感HA、NA和Ml衍生自季候性流感和/或禽流感。在另一个实施方案中,所述HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在又一个实施方案中,所述VLP与佐剂或免疫刺激物一起配制。
[0191]如本文所用的,术语“抗体”是包含一个或多个基本上或者部分地由免疫球蛋白基因或免疫球蛋白基因片段编码的多肽的蛋白质。公认的免疫球蛋白基因包括K、λ、α、Y、δ、ε和μ恒定区基因和无数免疫球蛋白可变区基因。轻链分为K或λ。重链分为Υ、μ、α、δ或ε,它们进而分别定义免疫球蛋白的类型:IgG、IgM、IgA、IgD和IgE。典型的免疫球蛋白(抗体)结构单位由四聚体构成。每个四聚体由同样的两对多肽链组成,每对具有一条“轻”(大约25kD)链和一条“重”(大约50-70kD)链。每条链的N末端定义一个大约100-110个或更多氨基酸的可变区,它主要负责抗原识别。抗体作为完整的免疫球蛋白存在,或者作为若干通过各种肽酶消化而产生的、已充分表征的片段存在。
[0192]细胞介导的免疫也在流感感染的恢复中起作用,还可以防止流感相关的并发症。已经在被感染受试者的血液和下呼吸道分泌物中检出了流感特异性细胞淋巴细胞。流感感染细胞的细胞溶解是由CTL与流感特异性抗体和补体共同介导的。在被感染或接种疫苗的个体中,初次细胞毒性应答可于6-14天后在血液中检测到,并在第21天以前消失(Enniset al.,1981)。流感特异性CTL在体外培养中展现交叉反应特异性,从而,它们溶解感染了相同类型流感而非其它类型(例如甲型流感而非乙型流感病毒)的细胞。识别内部非糖基化蛋白,M、NP和PB2的CTL已得到分离(Fleischer et al.,1985)。CTL应答在甲型流感病毒株之间有交叉反应性(Gerhard et al.,2001),并且在与抗体共同使病毒扩散最小化中是重要的(Nguyen et al.,2001)。
[0193]细胞介导的免疫也在流感感染的恢复中起作用,还可以防止流感相关的并发症。已经在被感染受试者的血液和下呼吸道分泌物中检出了流感特异性细胞淋巴细胞。流感感染细胞的细胞溶解是由CTL与流感特异性抗体和补体共同介导的。在被感染或接种疫苗的个体中,初次细胞毒性应答可于6-14天后在血液中检测到,并在第21天以前消失(Enniset al.,1981)。流感特异性CTL在体外培养中展现交叉反应特异性,从而,它们溶解感染了相同类型流感而非其它类型(例如甲型流感而非乙型流感病毒)的细胞。识别内部非糖基化蛋白,M、NP和PB2的CTL已得到分离(Fleischer et al.,1985)。CTL应答在甲型流感病毒株之间有交叉反应性(Gerhard et al.,2001),并且在与抗体共同使病毒扩散最小化中是重要的(Nguyen et al.,2001)。.[0194]由此,本发明包括诱发受试者体内针对流感病毒感染或其至少一种症状的显著的保护性细胞免疫应答的方法,包括施用至少一个有效剂量的流感VLP。在另一个实施方案中,诱发受试者体内针对流感病毒感染或其至少一种症状的显著的免疫力的方法包括施用至少一个有效剂量的流感VLP,其中所述VLP由流感HA、NA和Ml组成。在另一个实施方案中,所述流感VLP包含流感蛋白,其中所述流感蛋白由HA、NA和Ml蛋白组成。这些VLP含有HA、NA和M1,并可含有其它 细胞组分诸如细胞蛋白、杆状病毒蛋白、脂质、碳水化合物等,但不含有其它的流感蛋白(除了 M1、HA和/或NA的片段之外)。在另一个实施方案中,其中所述流感HA、NA和Ml衍生自季候性流感和/或禽流感病毒。在另一个实施方案中,所述HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在又一个实施方案中,所述VLP与佐剂或免疫刺激物一起配制。
[0195]如上所述,本发明的VLP (例如禽流感和/或季候性流感VLP)预防或减轻受试者中流感感染的至少一种症状。流感的症状是本领域公知的。它们包括发热、肌痛、头痛、严重不适、干咳、咽喉痛、体重减轻和鼻炎。因此,本发明的方法包括预防或减轻与流感病毒感染相关的至少一种症状。症状的减轻可以主观地或者客观地确定,例如受试者自我评估、由内科医生评估、或通过实施合适的测定或测量(例如体温),包括例如生活质量评价、流感感染或其它症状的进展减慢、流感症状的严重程度降低或者合适的测定(例如抗体效价(titer)和/或T细胞激活测定)。客观评价包括动物和人的评价。
[0196]免疫实施咨询委员会(AdvisoryCommittee on Immunization Practices, ACIP)所提倡的主要流感控制策略是对具有流感严重并发症风险的人,特别是> 65岁的人进行疫苗接种。但是,每年的流感流行仍未减轻,并给我们的社会带来了重大的健康和财政负担(Glaser et al.,1996)。在过去的20年中(1976-1999),流感相关全因超额死亡数(influenza-associated all cause excess deaths)发生了显著的增加。从 1990 年到1999年,每年流感相关全因死亡数超过50,000 (Thompson et al.,2003)。虽然过去10年内^ 65岁的人的疫苗覆盖率增加到了 65%,但流感相关全因超额死亡数未出现相应的减少。
[0197]因此,流感预防和控制的另一策略是对健康儿童和个体进行普遍接种。儿童的流感感染率、流感所致的就医疾病率和入院率均较高(Neuzil et al.,2000)。儿童在学校、家庭和社区内的流感传播中扮演着重要的角色。用现有流感疫苗对某个社区中大约80%的学童进行接种减少了成人中的呼吸系统疾病和老年人中的超额死亡(Reichert etal.,2001)。这种理念被称为社区免疫力或者“群体免疫力”(herd immunity),并被认为对于保护社区免于疾病具有重要意义。由于被接种的人具有能中和流感病毒的抗体,他们将流感病毒传播给其他人的可能性大大降低。从而,即使没有经过接种的人(以及接种已经减弱或者疫苗不完全有效的人)往往可以受到群体免疫力的防护,因为他们周围经过接种的人不得病。群体免疫力随着经过接种的人的百分比增加而更为有效。人们认为,为了实现群体免疫力,社区中大约95%的人必须得到疫苗的保护。未经免疫的人可增加他们和别人患病的机会。
[0198]因此,本发明包括通过对社区中的人群施用本发明的VLP,对人群或社区诱发针对流感病毒感染的显著的保护性免疫,以在免疫受损的个体或未接种个体中减少流感病毒感染发生率的方法。在一个实施方案中,通过施用本发明的VLP对大多数学龄儿童进行抗流感病毒免疫。在另一个实施方案中,通过施用本发明的VLP对社区中大多数健康个体进行抗流感病毒免疫。在另一个实施方案中,本发明的VLP是“动态接种”策略的一个部分。动态接种是指坚定地生产低效力的疫苗,该疫苗与新发的大流行性病毒株相关,但由于抗原性漂移而可能不会在哺乳动物中提供完全的保护(见Germann et al.,2006)。由于将来大流行性病毒株的身份的不确定性,储备匹配良好的大流行性病毒株几乎是不可能的。但是,用匹配性不高但可能有效的 疫苗进行接种可能延缓大流行性病毒的扩散和/或减少流感病毒大流行株症状的严重程度。
[0199]本发明还涵盖一种包含流感VLP的疫苗,其中所述疫苗当施用于受试者时诱发针对流感病毒感染或其至少一种症状的显著的免疫力。在另一个实施方案中,所述显著的免疫力的诱发减少流感症状的持续时间。在另一个实施方案中,所述疫苗在受试者中诱发针对流感病毒感染或其至少一种症状的显著的免疫力,包括含有流感HA、NA和Ml蛋白的VLP。在另一个实施方案中,一种所述疫苗在受试者中诱发针对流感病毒感染或其至少一种症状的显著的免疫力,包含基本上由流感HA、NA和Ml蛋白组成的VLP。所述VLP可含有可忽略浓度的其它流感蛋白和/或蛋白杂质。在另一个实施方案中,一种所述疫苗在受试者中诱发针对流感病毒感染或其至少一种症状的显著的免疫力,包含由流感HA、NA和Ml蛋白组成的VLP。在另一个实施方案 中,一种所述疫苗在受试者中诱发针对流感病毒感染或其至少一种症状的显著的免疫力,包含含有流感蛋白的VLP,其中所述流感蛋白由HA、NA和Ml蛋白组成。这些VLP含有HA、NA和Ml,并可含有其它细胞组分诸如细胞蛋白、杆状病毒蛋白、月旨质、碳水化合物等,但不含有其它的流感蛋白(除了 Ml、HA和/或NA的片段之外)。在另一个实施方案中,所述流感HA、NA和Ml蛋白衍生自禽流感和/或季候性流感病毒。在另一个实施方案中,所述HA和/或NA分别展现血凝素活性和/或神经氨酸酶活性。在另一个实施方案中,所述受试者是哺乳动物。在另一个实施方案中,所述哺乳动物是人。在又一个实施方案中,所述VLP与佐剂或免疫刺激物一起配制。在另一个实施方案中,所述疫苗施用于哺乳动物。在又一个实施方案中,所述哺乳动物是人。
[0200]通过下面的实施例进一步说明本发明,这些实施例不应解释为限制性的。本文通过提述收录本申请中引用的所有参考文献、专利和已公开的专利申请,以及附图和序列表。
实施例
[0201]实施例1
[0202]材料和方法
[0203]使用杆状病毒杆粒载体表达系统在草地夜蛾细胞(Sf_9S细胞系;ATCCPTA-4047)中表达禽流感甲型/香港/1073/99 (H9N2)病毒HA、NA和Ml基因。HA、NA和Ml基因是利用从禽流感甲型/香港/1073/99 (H9N2)病毒分离的RNA通过逆转录和聚合酶链式反应(PCR)合成的(图1、2和3)。逆转录和PCR使用对禽流感甲型/香港/1073/99 (H9N2)病毒HA、NA和Ml基因特异性的寡核苷酸引物(表1)。首先将这些基因的cDNA拷贝克隆到细菌亚克隆载体PCR2.1T0P0中。从所得的三种基于pCR2.1T0P0的质粒将HA、NA和Ml基因插入杆状病毒转移载体pFastBac I (InVitrogen)中AcMNPV多角体蛋白启动子的下游,得到三种基于PFastBacl的质粒:pHA、pNA和pMl,它们分别表达这些流感病毒基因。然后,构建了编码HA和Ml基因二者的、基于pFastBacl的单一质粒pHAM,这两个基因分别位于不同的多角体蛋白启动子的下游(图4)。测定了 pNA质粒中NA基因和邻近的5’-和3’-区域的核苷酸序列(SEQ ID NO:1)(图1)。同时,也使用pHAM质粒测定了 HA和Ml基因及邻近区域的核苷酸序列(SEQ ID NO:2和3)(图2和3)。
[0204]最后,将来自pHAM 质粒的一个编码HA和Ml表达盒的限制性DNA片段克隆到pNA质粒中。由此得到编码禽流感甲型/香港/1073/99 (H9N2)病毒HA、NA和Ml基因的质粒pNAHAM(图 4)。
[0205]使用质粒pNAHAM构建重组杆状病毒,该病毒含有整合到基因组中的流感病毒NA、HA和Ml基因,这些基因分别在不同的杆状病毒多角体蛋白启动子的下游。用所得的重组杆状病毒感染允许性Sf-9S昆虫细胞,结果这三种流感基因在每个感染了这些重组杆状病毒的Sf-9S细胞中共表达。
[0206]感染后(p.1.)经过72小时,使用HA特异性和Ml特异性抗体通过SDS-PAGE分析、考马斯蓝蛋白染色和Western免疫印迹分析对Sf_9S细胞中的表达产物进行表征(图5)。使用针对流感病毒甲型/香港/1073/99 (H9N2)激发产生的兔抗体(CDC,Atlanta, Ga.,USA)或者针对流感Ml蛋白的小鼠单克隆抗体(Serotec,UK)进行Western免疫印迹分析。Western免疫印迹分析检测到了具有期望分子量的HA、NA和Ml蛋白(分别为64kd、60kd和31kd)。相比于该测定中检测到的HA蛋白的量,NA蛋白与针对流感甲型/香港/1073/99 (H9N2)病毒的兔血清显示较低的反应性。对于可检测的NA蛋白的量的解释包括:与HA蛋白相比,感染了重组杆状病毒的Sf-9S细胞的NA蛋白表达水平较低;在Western免疫印迹测定中的致变性条件下NA与 该血清的反应性较低(由于膜结合的凝胶电泳过程中重要的NA表位丧失);与HA-抗体相比NA-抗体亲合力较低;或者血清中NA-抗体丰度较低。
[0207]对于来自感染了表达甲型/香港/1073/99 (H9N2)HA、NA和Ml蛋白的重组杆状病毒的Sf-9S细胞的培养基也进行了流感病毒的探测。对经过澄清的培养上清液进行27,OOOrpm的超离心,以浓缩流感病毒的高分子(量)蛋白复合物,例如亚病毒颗粒、VLP、VLP复合物以及可能存在的由流感HA、NA和Ml蛋白构成的其它自组装颗粒物。将离心沉淀的蛋白产物重悬在磷酸盐缓冲盐水(PBS,pH7.2)中,然后在不连续的20-60%蔗糖分步梯度上进行超离心来进一步纯化。从鹿糖梯度收集级分并利用SDS-PAGE分析、Western免疫印迹分析和电子显微术进行分析。
[0208]通过考马斯蓝染色和Western免疫印迹分析在多个蔗糖密度梯度级分中检测到了具有期望分子量的流感HA和Ml蛋白(图6,表1)。这提示来自被感染的Sf-9S细胞的流感病毒蛋白在大分子量复合物(如壳粒结构、亚病毒颗粒、VLP和/或VLP复合物)中是聚集的。考马斯蓝染色和Western免疫印迹分析对NA蛋白的检出不稳定,这可能是由于兔抗流感血清在Western免疫印迹分析中不能识别变性的NA蛋白所致,但在神经氨酸酶活性测定中稳定地检出了 NA蛋白(图10)。
[0209]表1
级分效价
【权利要求】
1.一种病毒样颗粒(VLP),其包含流感病毒Ml蛋白和流感病毒H5和NI血凝素和神经氨酸酶蛋白。
2.一种疫苗,其包含有效剂量的权利要求1的VLP。
3.—种在动物中诱发针对流感病毒感染的显著的免疫力的方法,其包括施用至少一个有效剂量的权利要求2的疫苗。
4.权利要求1的VLP用于制备动物用疫苗的用途,其中所述疫苗在所述动物中诱发针对流感病毒感染的显著的免疫力。
5.制备权利要求1的VLP的方法,其包括在真核细胞中表达所述Ml、HA和NA蛋白。
6.一种包含流感VLP的疫苗,其中所述VLP包含流感M1、HA和NA蛋白,其中所述疫苗在人体中诱发针对流感病毒感染的显著的免疫力。
7.一种在人体中诱发针对流感病毒感染的显著的免疫力的方法,其包括施用至少一个有效剂量的权利要求6的疫苗。
8.流感VLP用于制备疫苗的用途,其中所述VLP包含流感M1、HA和NA蛋白,其中所述疫苗在人体中诱发 针对流感病毒感染的显著的免疫力。
【文档编号】A61P31/16GK103865892SQ201410085506
【公开日】2014年6月18日 申请日期:2006年10月18日 优先权日:2005年10月18日
【发明者】盖尔.史密斯, 里克.布赖特, 彼得.普什科, 张金友, 库塔布.马穆德 申请人:诺瓦瓦克斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1