一种纳米纤维素复合抗菌材料及其制备方法与流程

文档序号:12104905阅读:636来源:国知局
一种纳米纤维素复合抗菌材料及其制备方法与流程

本发明涉及纳米抗菌复合材料技术领域,特别是涉及一种纳米纤维素复合抗菌材料制备方法。



背景技术:

由纤维素制备的纳米纤维素不仅具备纤维素本身可降解、无毒、无污染、生物相容性好等特点,还兼具有高比表面积、高力学强度等优点,可用做多种高分子材料的补强材料。对纳米纤维素的研究,引发了探索新型纳米复合材料的热潮;为了解决白色污染问题,来源于植物资源的绿色可降解高分子材料-聚乳酸得到了广泛的关注,它具有卓越的生物相容性、高透光性等特点。但它像大部分塑料一样脆性较高、强度低、耐冲击性能差、结晶性差等缺点,限制了工业应用;松香,在造纸、油漆、橡胶等行业应用最广泛的天然的树脂,主要成分是枞酸与海松酸。目前已证明松香经酯化改性后的衍生物对金黄色葡萄球菌具有良好的抑菌效果;壳聚糖具有良好的成膜性能、机械性能,同时还具有良好的水气选择透过性,但这种性能限制了它的使用。另外,壳聚糖具有抗菌活性可以抑制多种细菌、真菌、霉菌的生长,常与其他抑菌剂共同使用制备可食用膜。可应用于食品、医药、材料等领域。

选用纳米纤维素作为填充粒子分散于聚乳酸中,可得到各项性能优越,且具有降解性的新型纳米复合材料。但是纳米纤维素表面的羟基具有极性,限制了其在聚乳酸中均匀分布。为了实现复合材料优越的性能,需要对纳米纤维素进行表面改性。目前研究较多的有纳米纤维素的化学表面改性和纳米纤维素的物理改性。较为成功的一些化学改性方法有,酯化、乙酰化、硅烷化、嫁接高分子等。与物理改性方法相比,虽然化学改性方法操作步骤比较繁琐,但是经过化学改性后的纳米纤维素性能与结构比较稳定,改性后的纳米纤维素表面上的一些特殊活性基团赋予其更多功能。因此简化化学表面改性实验步骤,优化改性条件,同时兼顾绿色化学的要求显得尤为重要。

细菌污染是诸多领域应用中存在的严重问题,特别在医疗保健、食品、药品、公共卫生等行业。因此抗菌包装材料极具开发利用前景。抗菌包装的核心问题为抗菌剂的选择。松香与纳米纤维素酯化反应的产物对金黄色葡萄球菌有一定抑菌效果,但为了抗菌包装具有更广谱的抑菌效果,选用壳聚糖为另一种抗菌剂,复合使用,在低剂量时也可实现高效杀菌的协同效果。



技术实现要素:

发明目的:针对现有技术中存在的不足,本发明的目的是提供一种纳米纤维素复合抗菌材料,材料易得,操作简单,绿色可降解并具有高效抗菌性能。本发明的另一目的是提供一种上述纳米纤维素复合抗菌材料的制备方法。

技术方案:为了实现上述发明目的,本发明采用的技术方案为:

一种纳米纤维素复合抗菌材料,包括改性纳米纤维素增强的聚乳酸膜及壳聚糖膜两层结构;所述的改性纳米纤维素是经松香与纳米纤维素酯化反应得到的产物。

所述的两层结构:在制备好的壳聚糖膜上,浇铸与改性纳米纤维素混合的聚乳酸二氯甲烷溶液,室温下挥发溶剂,两层自组装而得。

一种制备纳米纤维素复合抗菌材料的方法,包括以下步骤:

1)室温下不断搅拌纳米纤维素水溶液,加入适量盐酸,调节pH为4.0;

2)将步骤1)得到的纳米纤维素水溶液于120℃-150℃加热10 min,缓慢加入松香,连接好蒸馏装置,搅拌,在N2保护条件下反应24 h;

3)将步骤2)反应后的混合物趁热加入无水乙醇,先高速分散,然后离心;用无水乙醇将未改性的纳米纤维素和松香洗去,至上清液颜色为透明;得到的下层沉淀分散于二氯甲烷中,获得改性纳米纤维素-二氯甲烷溶液;

4)将聚乳酸小球高速搅拌分散于二氯甲烷溶液中,得到聚乳酸-二氯甲烷溶液;将改性纳米纤维素-二氯甲烷溶液混合到聚乳酸-二氯甲烷溶液,混合液于冰水中密闭超声分散0.5h;

5)取壳聚糖溶于冰醋酸水溶液获得壳聚糖溶液,将壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜;

6)在壳聚糖膜上,浇注步骤4)得到的混合液,倒在玻璃板上,室温下挥发溶剂,既得纳米纤维素复合抗菌材料。得到改性纳米纤维素增强的聚乳酸膜。

步骤1)中,所述的纳米纤维素水溶液为质量含量为0.5%的纤维素纳米纤丝水溶液。

步骤2)中,所述的松香与纳米纤维素水溶液的质量比为1:10,2:10,3:10。

步骤3)中,所述的改性纳米纤维素-二氯甲烷溶液中,纳米纤维素与二氯甲烷的g/mL比为1:80。

步骤3)中,所述的高速分散为分散转速为8000rpm/min高速分散5min,所述的离心为用离心转速为4000rpm/min台式离心机低速离心一次,取上清用高速离心转速为10000rpm/min。

步骤4)中,所述的聚乳酸基体左旋聚乳酸。

步骤4)中,所述的改性纳米纤维素,聚乳酸,二氯甲烷的g/g/mL比为1:8:160。

步骤5)中,所述的壳聚糖-冰醋酸溶液,壳聚糖占冰醋酸水溶液的质量分数为3%,冰醋酸水溶液的质量分数为3%。

有益效果:与现有技术相比,本发明的显著优点有:

1)本发明具有绿色环保、可降解、生物相容性好、抗菌、力学性能优异等特点。

2)涉及的纳米纤维素改性方法简单,松香同时为溶剂与反应物,经济环保,可操作性强。从扫描电子显微镜照片中可以看出,改性后的纳米纤维素在聚乳酸中均匀分散,尺寸为纳米级别。

3)复合抗菌材料制备的方法较现有材料制备方法相比,效率高、成本低,易于工业化。

4)作为新型包装材料使用,可替代目前广泛使用的塑料,解决石油化工带来的环境污染与安全问题。还可以延长包装物的保质期、增加美感,具有极大的经济效益与社会效益。

附图说明

图1是纳米纤维素和松香改性纳米纤维素的透射电子显微镜(TEM)照片图;

图2是纳米纤维素和松香改性纳米纤维素的傅里叶变换红外光谱(FT-IR)图;

图3是纳米纤维素和松香改性纳米纤维素的X射线衍射(XRD)图;

图4是纳米纤维素复合抗菌材料的抑菌圈图,其中,左图为大肠杆菌抑菌圈图,右图为金黄色葡萄球菌抑菌图,其中的a为改性纳米纤维素/聚乳酸/壳聚糖复合膜,b为米纤维素/聚乳酸/壳聚糖复合膜,c为聚乳酸/壳聚糖复合膜,d为聚乳酸膜;

图5是改性纳米纤维素-二氯甲烷溶液照片图。

具体实施方式

下面结合附图对本发明的较佳实施例进行详细阐述。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

一种纳米纤维素复合抗菌材料,包括聚乳酸基体,在聚乳酸基体中分散松香改性的纳米纤维素。上述的抗菌材料的制备方法为:

1)将15g纳米纤维素水溶液(质量分数为0.5%,纳米纤维素直径为5-15nm)用0.1mol/L盐酸溶液至pH为4.0。加入到三口烧瓶中,120℃,加热10 min后,缓慢加入1.5g松香,连接好蒸馏装置,240rpm搅拌,在N2保护条件下反应24h。反应结束后,立即向瓶中加入100mL的乙醇,先在8000rpm/min转速下高速剪切10min。随后用台式离心机在4000rpm/min下离心,取上清液在10000rpm/min下用乙醇多次洗涤反应得到的混合物,至上清液无色。最后将得到的下层沉淀重新分散于5mL二氯甲烷中,得到改性纳米纤维素-二氯甲烷溶液。

2)将1g聚乳酸(牌号为2003D的左旋聚乳酸)加入到10mL二氯甲烷中,高速搅拌,得到聚乳酸-二氯甲烷溶液。取上述制得的改性纳米纤维素-二氯甲烷溶液5mL与5mL聚乳酸-二氯甲烷溶液搅拌混合。混合液于冰水中密闭超声分散(超声频率:100KHz)0.5h,待用。

3)3g壳聚糖(分子量为600000-800000)溶于97g质量分数为3%的冰醋酸水溶液中,取7mL上述壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜。

4)壳聚糖膜上倒入7mL上述超声后的改性纳米纤维素-二氯甲烷溶液与聚乳酸-二氯甲烷溶液混合液,室温下挥发溶剂,放置过夜,既得纳米纤维素复合抗菌材料。

图1是本实施例制备松香改性纳米纤维素的TEM图,与未改性的纳米纤维素对照,纳米纤维素的宽度约为5-15 nm,长度约为500-1500 nm,长宽约比为100-300。松香接枝后的纳米纤维素的尺寸为,平均直径约为15 nm,平均长度约为1100 nm。化学改性后纳米纤维素的长度并没有显著的变化,宽度有轻微增加。

图2中,松香改性后的纳米纤维素的化学结构用FT-IR测定。这里将未改性的纳米纤维素的FT-IR图用于比较。两图都有羟基的存在(在3360 cm-1处的单峰),还存在C-H的伸缩振动,CH2对称弯曲(在1470cm-1处的单峰),纤维素的C-O-C连接键(在1165 cm-1处的谱带),C-O伸缩运动(在1118 cm-1处的单峰),醚类的C-O-C特征基团(在1061 cm-1处的单峰),以及β-葡萄糖在897 cm-1处的特征谱带。

用松香进行化学改性后,1730 cm-1处出现了一个新的谱带,这是因为新出现的C=O。它是由纤维素的-OH和松香的-COOH反应生成的酯的特征基团。在1700 cm-1处并没有观察到与松香有关的基团,证明改性后的松香在经过乙醇洗涤后都被清洗干净。

在图3中,纳米纤维素与松香改性纳米纤维素在15°,23°,2θ处都有特征衍射峰,与纤维素I型的结晶区有关,证明了对CNF用松香表面改性并未影响CNF的晶型。结晶指数的计算根据峰高度的方法计算。纳米纤维素和改性纳米纤维素的结晶指数分别是59.93 %,62.31 %。改性后的CNF结晶度有轻微升高。与改性后纳米纤维素宽度轻微增加有关。

5)对上述纳米纤维素复合抗菌材料进行抗菌性能测试,以大肠杆菌和金黄色葡萄球菌作为实验菌,进行抑菌圈测试。其中聚乳酸膜以及纳米纤维素/聚乳酸膜为对照组,测试其抗菌效果。

从图4中可以看出,壳聚糖膜对两种菌都有明显的抗菌性,特别是对大肠杆菌效果优异。对聚乳酸膜和纳米纤维素/聚乳酸膜并没有抑菌作用,菌可以顺利的在膜表面生长。而经过松香改性后纳米纤维素/聚乳酸膜对金黄色葡萄球菌生长有较轻度抑制作用。松香改性后纳米纤维素/聚乳酸/壳聚糖膜对两种菌都有抑制作用,特别是对金黄色葡萄球菌,抗菌作用明显。这说明此纳米复合材料比单一的壳聚糖材料抗菌性能更加优良。

实施例2

一种纳米纤维素复合抗菌材料,包括聚乳酸基体,在聚乳酸基体中分散松香改性的纳米纤维素。上述的抗菌材料的制备方法为:

1)将15g纳米纤维素水溶液(质量分数为0.5%,纳米纤维素直径为5-15nm)用0.1mol/L盐酸溶液至pH为4.0。加入到三口烧瓶中,130℃,加热10 min后,缓慢加入1.5g松香,连接好蒸馏装置,240rpm搅拌,在N2保护条件下反应24h。反应结束后,立即向瓶中加入100mL的乙醇,先在8000rpm/min转速下高速剪切10min。随后用台式离心机在4000rpm/min下离心,取上清液在10000rpm/min下用乙醇多次洗涤反应得到的混合物,至上清液无色。最后将得到的下层沉淀重新分散于5mL二氯甲烷中,得到改性纳米纤维素-二氯甲烷溶液。

2)将1g聚乳酸(牌号为2003D的左旋聚乳酸)加入到10mL二氯甲烷中,高速搅拌,得到聚乳酸-二氯甲烷溶液。取上述制得的改性纳米纤维素-二氯甲烷溶液5mL与5mL聚乳酸-二氯甲烷溶液搅拌混合。混合液于冰水中密闭超声分散(超声频率:100KHz)0.5h,待用。

3)3g壳聚糖(分子量为600000-800000)溶于97g质量分数为3%的冰醋酸水溶液中,取7mL上述壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜。

4)壳聚糖膜上倒入7mL上述超声后的改性纳米纤维素-二氯甲烷溶液与聚乳酸-二氯甲烷溶液混合液,室温下挥发溶剂,放置过夜,既得纳米纤维素复合抗菌材料。

实施例3

一种纳米纤维素复合抗菌材料,包括聚乳酸基体,在聚乳酸基体中分散松香改性的纳米纤维素。上述的抗菌材料的制备方法为:

1)将15g纳米纤维素水溶液(质量分数为0.5%,纳米纤维素直径为5-15nm)用0.1mol/L盐酸溶液至pH为4.0。加入到三口烧瓶中,140℃,加热10 min后,缓慢加入1.5g松香,连接好蒸馏装置,240rpm搅拌,在N2保护条件下反应24h。反应结束后,立即向瓶中加入100mL的乙醇,先在8000rpm/min转速下高速剪切10min。随后用台式离心机在4000rpm/min下离心,取上清液在10000rpm/min下用乙醇多次洗涤反应得到的混合物,至上清液无色。最后将得到的下层沉淀重新分散于5mL二氯甲烷中,得到改性纳米纤维素-二氯甲烷溶液。

2)将1g聚乳酸(牌号为2003D的左旋聚乳酸)加入到10mL二氯甲烷中,高速搅拌,得到聚乳酸-二氯甲烷溶液。取上述制得的改性纳米纤维素-二氯甲烷溶液5mL与5mL聚乳酸-二氯甲烷溶液搅拌混合。混合液于冰水中密闭超声分散(超声频率:100KHz)0.5h,待用。

3)3g壳聚糖(分子量为600000-800000)溶于97g质量分数为3%的冰醋酸水溶液中,取7mL上述壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜。

4)壳聚糖膜上倒入7mL上述超声后的改性纳米纤维素-二氯甲烷溶液与聚乳酸-二氯甲烷溶液混合液,室温下挥发溶剂,放置过夜,既得纳米纤维素复合抗菌材料。

实施例4

一种纳米纤维素复合抗菌材料,包括聚乳酸基体,在聚乳酸基体中分散松香改性的纳米纤维素。上述的抗菌材料的制备方法为:

1)将15g纳米纤维素水溶液(质量分数为0.5%,纳米纤维素直径为5-15nm)用0.1mol/L盐酸溶液至pH为4.0。加入到三口烧瓶中,150℃,加热10 min后,缓慢加入1.5g松香,连接好蒸馏装置,240rpm搅拌,在N2保护条件下反应24h。反应结束后,立即向瓶中加入100mL的乙醇,先在8000rpm/min转速下高速剪切10min。随后用台式离心机在4000rpm/min下离心,取上清液在10000rpm/min下用乙醇多次洗涤反应得到的混合物,至上清液无色。最后将得到的下层沉淀重新分散于5mL二氯甲烷中,得到改性纳米纤维素-二氯甲烷溶液。

2)将1g聚乳酸(牌号为2003D的左旋聚乳酸)加入到10mL二氯甲烷中,高速搅拌,得到聚乳酸-二氯甲烷溶液。取上述制得的改性纳米纤维素-二氯甲烷溶液5mL与5mL聚乳酸-二氯甲烷溶液搅拌混合。混合液于冰水中密闭超声分散(超声频率:100KHz)0.5h,待用。

3)3g壳聚糖(分子量为600000-800000)溶于97g质量分数为3%的冰醋酸水溶液中,取7mL上述壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜。

4)壳聚糖膜上倒入7mL上述超声后的改性纳米纤维素-二氯甲烷溶液与聚乳酸-二氯甲烷溶液混合液,室温下挥发溶剂,放置过夜,既得纳米纤维素复合抗菌材料。

实施例5

一种纳米纤维素复合抗菌材料,包括聚乳酸基体,在聚乳酸基体中分散松香改性的纳米纤维素。上述的抗菌材料的制备方法为:

1)将15g纳米纤维素水溶液(质量分数为0.5%,纳米纤维素直径为5-15nm)用0.1mol/L盐酸溶液至pH为4.0。加入到三口烧瓶中,150℃,加热10 min后,缓慢加入3.0g松香,连接好蒸馏装置,240rpm搅拌,在N2保护条件下反应24h。反应结束后,立即向瓶中加入100mL的乙醇,先在8000rpm/min转速下高速剪切10min。随后用台式离心机在4000rpm/min下离心,取上清液在10000rpm/min下用乙醇多次洗涤反应得到的混合物,至上清液无色。最后将得到的下层沉淀重新分散于5mL二氯甲烷中,得到改性纳米纤维素-二氯甲烷溶液。

2)将1g聚乳酸(牌号为2003D的左旋聚乳酸)加入到10mL二氯甲烷中,高速搅拌,得到聚乳酸-二氯甲烷溶液。取上述制得的改性纳米纤维素-二氯甲烷溶液5mL与5mL聚乳酸-二氯甲烷溶液搅拌混合。混合液于冰水中密闭超声分散(超声频率:100KHz)0.5h,待用。

3)3g壳聚糖(分子量为600000-800000)溶于97g质量分数为3%的冰醋酸水溶液中,取7mL上述壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜。

4)壳聚糖膜上倒入7mL上述超声后的改性纳米纤维素-二氯甲烷溶液与聚乳酸-二氯甲烷溶液混合液,室温下挥发溶剂,放置过夜,既得纳米纤维素复合抗菌材料。

实施例6

一种纳米纤维素复合抗菌材料,包括聚乳酸基体,在聚乳酸基体中分散松香改性的纳米纤维素。上述的抗菌材料的制备方法为:

1)将15g纳米纤维素水溶液(质量分数为0.5%,纳米纤维素直径为5-15nm)用0.1mol/L盐酸溶液至pH为4.0。加入到三口烧瓶中,150℃,加热10 min后,缓慢加入4.5g松香,连接好蒸馏装置,240rpm搅拌,在N2保护条件下反应24h。反应结束后,立即向瓶中加入100mL的乙醇,先在8000rpm/min转速下高速剪切10min。随后用台式离心机在4000rpm/min下离心,取上清液在10000rpm/min下用乙醇多次洗涤反应得到的混合物,至上清液无色。最后将得到的下层沉淀重新分散于5mL二氯甲烷中,得到改性纳米纤维素-二氯甲烷溶液。

2)将1g聚乳酸(牌号为2003D的左旋聚乳酸)加入到10mL二氯甲烷中,高速搅拌,得到聚乳酸-二氯甲烷溶液。取上述制得的改性纳米纤维素-二氯甲烷溶液5mL与5mL聚乳酸-二氯甲烷溶液搅拌混合。混合液于冰水中密闭超声分散(超声频率:100KHz)0.5h,待用。

3)3g壳聚糖(分子量为600000-800000)溶于97g质量分数为3%的冰醋酸水溶液中,取7mL上述壳聚糖溶液倒在玻璃板上,85℃加热干燥成膜。

4)壳聚糖膜上倒入7mL上述超声后的改性纳米纤维素-二氯甲烷溶液与聚乳酸-二氯甲烷溶液混合液,室温下挥发溶剂,放置过夜,既得纳米纤维素复合抗菌材料。

实例2,实例3,实例4中的制得的改性纳米纤维素-二氯甲烷溶液分别为图5中的a,b,c。实例1,实例5,实例6中的制得的改性纳米纤维素-二氯甲烷溶液分别为下图5中的d,e,f。

可以明显看出,随着松香量的提高改性纳米纤维素-二氯甲烷溶液的颜色逐渐变黄,用乙醇洗涤多次后颜色仍保持不变。由于纳米纤维素尺寸较小,彼此之间有强烈的吸附作用,过量的松香导致纳米纤维素表面吸附松香导致产物的颜色加深,影响溶液的色泽,进而影响以后成膜的透光性。

随着温度的升高,改性纳米纤维素 -二氯甲烷溶液颜色逐渐加深。150℃反应得到的产物呈现黑黄色。松香的融化温度在130℃左右,温度低于130℃导致松香无法融化成液态,无法进行反应。反应温度的提高,松香会随着水蒸气蒸发出去,还会因为温度高而引起松香氧化作用,导致颜色加深。另外,高温会导致少量的CNF碳化。

综上,用松香改性纳米纤维素的最适反应条件为130℃,反应24 h,松香:纳米纤维素溶液为1:10(w:w)。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1