一种高荷电复合超滤膜及其制备方法

文档序号:9934017阅读:347来源:国知局
一种高荷电复合超滤膜及其制备方法
【技术领域】
[0001]本发明涉及膜分离技术领域,具体涉及一种高荷电复合超滤膜及其制备方法。
【背景技术】
[0002]随着全球范围内对水环境的日益重视以及人们对水质要求的提高,传统的絮凝和过滤的方法处理供给城市饮用水已经不能满足要求。膜分离技术作为一种高效分离技术,由于其具有分离系数大、无二次污染以及可在常温下连续操作等明显优点,近年来普遍应用于水处理领域。
[0003]现有的复合超滤膜其分离孔径大且膜表面多为电中性或弱电性,难以去除水中盐分;且制膜的铸膜液的组分多为成膜主体材料、溶剂和复配添加剂(成孔剂、表面活性剂以及增稠剂)等,体系相对复杂,在一定程度上影响铸膜液的稳定性。

【发明内容】

[0004]有鉴于此,本发明提供一种高荷电复合超滤膜及其制备方法,旨在优化对膜组件的注胶和封装工艺。
[0005]本发明采用的技术方案具体为:
[0006]—种高荷电复合超滤膜,包括纤维支撑衬以及依次涂覆于所述纤维支撑衬上的基膜聚砜层和复合磺化聚砜层;其中:
[0007]膜的总壁厚为100?300μπι;
[0008]所述纤维支撑衬的厚度为总壁厚的60?90%;
[0009]所述基膜为聚砜层,所述聚砜层的厚度为总壁厚的10?20%,膜分离孔径为0.01?0.5μπι;
[0010]所述复合膜为磺化聚砜层,所述磺化聚砜层的厚度为总壁厚的2?5%,截留分子量为600-6000Da;
[0011]三个膜层的邻层之间在厚度方向有重叠。
[0012]在上述高荷电复合超滤膜中,所述纤维支撑衬是由纤维原材采用钩编的方式形成,钩编的孔径为100?200μπι;或者
[0013]由纤维原材采用高编的方式形成,高编的孔径为10?50μπι;
[0014]所述纤维支撑衬的孔隙率为30?80%。
[0015]—种高荷电复合超滤膜的制备方法,包括如下步骤:
[0016]S10、铸膜液体系的配制:
[0017]将溶剂或者包含添加剂的溶剂搅拌使其充分混合后,将事先烘干的膜主体材料投入到混合溶液中搅拌溶解,形成包括基膜铸膜液和复合膜铸膜液在内的不同的铸膜液体系;其中:
[0018]基膜铸膜液的膜主体材料为聚砜;
[0019]复合膜铸膜液的膜主体材料为磺化聚砜;
[0020]S20、复合超滤膜的制备:
[0021 ]相转化成包括基膜和复合层的膜;其中:
[0022]I)基膜的制备:
[0023]向基膜铸膜液中打入氮气,对其加压打料,待料液的各项测试指标达标后开始进行铸膜操作;具体地:
[0024]关闭料液出口开关,将料液管放入料液槽中,开启铸膜机,待机器正常运行后开启料液罐排料开关,使用排料开关来调节进料速度,将料液的液位稳定在一定位置;在基膜出凝胶槽后需调整并测试其厚度,达标后将基膜收卷;
[0025]2)复合膜的制备:
[0026]将配制好的复合膜铸膜液冷却到至25°C后,采用滚轮滚动装置以一定的滚轮压力和滚动速度将铸膜液均匀涂覆在基膜表面,初步成型的膜体进入到凝固浴水后固化形成复合膜;将复合膜用水进行冲洗后通过后处理工艺处理后成型。
[0027]在上述高荷电复合超滤膜的制备方法中,所述基膜铸膜液由以下组分均匀混合而成:
[0028]聚砜的固含量为15?30wt%,;
[0029]致孔剂的添加量为I?5wt%;
[0030]复配添加剂的添加量为I?3wt%;
[0031]余量为溶剂,所述溶剂为氮-氮二甲基甲酰胺(DMF)。
[0032]在上述高荷电复合超滤膜的制备方法中,所述致孔剂为聚乙烯吡咯烷酮(PVP),所述复配添加剂由丙二醇和吐温-80按照3:2的重量配比均匀混合而成。
[0033]在上述高荷电复合超滤膜的制备方法中,所述复合膜铸膜液由以下组分均匀混合而成:
[0034]磺化聚砜的固含量15?30wt%,且其磺化度15%、25%或者40%;
[0035]余量为溶剂,所述溶剂为氮-氮二甲基乙酰胺(DMAc)。
[0036]本发明产生的有益效果是:
[0037]本发明的超滤膜采用利用磺化聚砜本体材料的高荷电性和磺化聚砜材料易于形成相对均一小孔超滤膜的特点,通过在超滤基膜表面进行复合改性,使超滤膜表面负载强电荷,通过磺化聚砜直接成膜减小了分离孔径,进而达到脱盐目的;且包括基膜聚砜层和复合磺化聚砜层在内的复合外层为高分子和溶剂二元体系,体系简单,易于分析,膜制备工艺也更易于控制。
【附图说明】
[0038]当结合附图考虑时,能够更完整更好地理解本发明。此处所说明的附图用来提供对本发明的进一步理解,实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
[0039]图1为本发明一种高荷电复合超滤膜的结构示意图。
【具体实施方式】
[0040]下面结合附图及实施例对本发明的技术方案作进一步详细的说明。
[0041]如图1所示的一种高荷电复合超滤膜,主要包括纤维支撑衬以及依次涂覆于所述纤维支撑衬上的基膜(聚砜层)和复合膜(磺化聚砜层);其中:
[0042]膜的总壁厚为100?300μπι,纤维支撑衬的厚度为总壁厚的60?90%,而基膜的厚度为总壁厚的10?20%,膜分离孔径为0.01?0.5μπι;复合膜的厚度为总壁厚的2?5%,截留分子量为600-6000Da。由于三个膜层的邻层之间在厚度方向有重叠,所以膜的总厚度<三个膜层的厚度之和。
[0043]其中,纤维支撑衬是由玻璃纤维等纤维原材采用钩编的方式形成,钩编的孔径为100?200μπι;或者由纤维原材采用高编的方式形成,高编的孔径为10?50μπι;形成的纤维支撑衬的孔隙率为30?80 %。
[0044]本发明的高荷电复合超滤膜的制备方法包括如下步骤:
[0045]S10、铸膜液体系的配制:
[0046]首先将溶剂和相应的添加剂搅拌使其充分混合后,将事先烘干的聚砜/磺化聚砜颗粒(烘干温度控制在80±2°C,干燥时间2h)投入到混合溶液中搅拌溶解,形成由聚砜、磺化聚砜、添加剂以及溶剂中的某几种组分组成的包括基膜铸膜液和复合膜铸膜液在内的不同铸膜液体系,脱泡、过滤后备用;
[0047]基膜铸膜液中,聚砜的固含量15?30wt%,作为致孔剂的聚乙烯吡咯烷酮(PVP)的添加量为I?5wt%,复配添加剂(丙二醇和吐温-80按照3:2的重量配比均匀混合而成)的添加量为I?3wt%,余量为溶剂。基膜成型后,经甘油保护风干和自然风干的后处理工艺之后,需使基膜表面有一定湿度;
[0048]复合膜铸膜液中,磺化聚砜的固含量15?30wt%,且其磺化度可以为15 %、25 %和40%;余量为溶剂DMAc。
[0049]S20、复合超滤膜的制备:
[0050]相转化成包括基膜和复合层的膜。其中:
[0051 ] I)平板超滤基膜的制备:
[0052]向脱好泡的基膜铸膜液中打入氮气,对其加压打料,通过放出的部分料液观察料液中气泡情况以及测试料液粘度、温度,待料液的各项测试指标达标(如温度降至25°C)后开始进行铸膜操作。具体地:
[0053]关闭料液出口开关,将料液管放入料液槽中,开启铸膜机,待机器正常运行后开启料液罐排料开关,观察进料速度及料液外观,根据料液槽中料液的液位判断进料速度,使用排料开关来调节进料速度,将料液的液位稳定在一定位置;在基膜出凝胶槽后需调整并测试其厚度,将合格的基膜收卷后,清零铸膜计数器。
[0054]2)复合膜的制备:
[0055]将配制好的复合膜铸膜液冷却至25°C后,分别倒在若干组甘油保护风干的基膜表面,将铸膜液均匀涂覆在基膜表面,初步成型的膜体经一定的蒸发时间后进入到凝固浴水,固化形成复合膜。蒸发时间可以为5、30或者60s,将复合膜用水进行冲洗后,依次经过泡在甘油以及自然风干的后处理工艺。
[0056]具体的制备实施例如下:
[0057]实施例1:
[0058]I)铸膜液(基膜铸膜液)的配制:
[0059]将作为溶剂的15.5kg氮-氮二甲基甲酰胺(DMF)倒入搅拌釜中,加入0.2kg复配添加剂,再加入已烘干处理的3.3kg聚砜颗粒,最后加入Ikg PVP,在80°C的温度条件下搅拌溶液。
[0060]即:聚砜的固含量为16.5wt %,PVP的固含量为5wt %,复配添加剂的添加量为Iwt%,其余为溶剂DMF,搅拌均匀后静止脱泡。
[0061 ] 2)涂膜液(复合膜铸膜液)的配制:
[0062]将作为溶剂的0.85kg氮-氮二甲基乙酰胺(DMAc)倒入搅拌釜中,加入0.15kg磺化聚砜(磺化度25% ),在80°C的温度条件下搅拌溶液。
[0063]即磺化聚砜的固含量为15wt%,溶剂(DMAc)添加量为85wt%,搅拌均匀后静止脱泡。
[0064]将铸膜室的湿度控制在20?40%,温度控制在15?25°C,在洁净的铸膜室环境内进行铸膜,铸膜的总厚度为125um(无纺布采用三木74,90um),铸膜速度为5?10m/min。将铸膜液快速进入温度为5?16°C的纯水中,并经过不同温度的纯水清洗槽,得到基膜(聚砜层)。采用滚轮滚动装置将涂膜液滚动涂覆至不同的基膜,即得到复合超滤膜。其中,滚轮滚动速度为I?4m/s,滚动压力为200?1000N,凝固浴水前的蒸发时间为2?5s。直接将涂膜液在无纺布上进行复合得到超滤膜BF-1;将涂膜液在30%的甘油水溶液中进行保护后风干,之后再与基膜进行复合得到超滤膜BF-2;将涂膜液在湿态基膜阴干后复合得到超滤膜BF-3。
[0065]按照常规的膜性能评价方法,在压力为0.41MPa、料液温度为25°C的条件下;上述三种超滤膜的性能分别为:
[0066]BF-2膜的纯水通量为142LMH,对200mg/L的硫酸钠截留率为72.4%,对200π^/1的氯化钠截留率为52.4%,对PEG800(相对分子量为800)的截留率为81.4%,表面zeta电位为-60mV;
[0067]BF-1膜的纯水通量很小,分析原因主要为铸膜液在无纺布深入厚度大;
[0068]BF-3膜中的复合膜与基膜的结合力较差,分析原因主要为基膜表面携有一定量水分导致相转化不均
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1