半导体封装件及其制造方法与流程

文档序号:12370096阅读:323来源:国知局
半导体封装件及其制造方法与流程

技术领域

本发明是有关于一种半导体封装件及其制造方法,且特别是有关于一种具有散热孔的半导体封装件及其制造方法。



背景技术:

传统半导体封装件包含封装体及芯片,其中封装体包覆芯片,而芯片提供半导体封装件的功能。然而,芯片会产生高热,且封装体的热传导性通常不佳,导致芯片周围温度过高而影响其工作效率。因此,如何驱散芯片的热量成为业界努力重点之一。



技术实现要素:

本发明有关于一种半导体封装件及其制造方法,一实施例中,半导体封装件具有散热孔可驱散其芯片的热量。

根据本发明,提出一种半导体封装件。半导体封装件包括一芯片、一封装体、一导电件及一屏蔽膜。芯片设置于该导电件上且具有一散热件贯穿芯片。封装体包覆芯片及导电件,且具有一外侧面及相对的一上表面及一下表面且包括一第一散热孔及一第二散热孔。第一散热孔从散热件延伸至该封装体的该上表面,第二散热孔从封装体的上表面延伸至芯片上散热件以外的一区域。屏蔽膜形成于封装体的上表面及外侧面并电性连接导电件。

根据本发明,提出一种半导体封装件。半导体封装件包括一基板、一芯片、一封装体及一屏蔽膜。基板包括一接地件。芯片形成于基板上且电性连接基板,芯片具有一散热件贯穿该芯片。封装体包覆芯片且具有一外侧面及相对的一上表面及一下表面且包括一第一散热孔及一第二散热孔。第一散热孔从散热件延伸至封装体的上表面,第二散热孔从封装体的上表面延伸至芯片上散热件以外的一区域。屏蔽膜形成于封装体的上表面及外侧面并电性连接基板的接地件。

为让本发明的上述内容能更明显易懂,下文特举实施例,并配合附图,作详细说明如下:

附图说明

图1A绘示依照本发明一实施例的半导体封装件的剖视图。

图1B绘示图1A的俯视图。

图2绘示依照本发明另一实施例的半导体封装件的剖视图。

图3绘示依照本发明另一实施例的半导体封装件的剖视图。

图4A绘示依照本发明另一实施例的半导体封装件的剖视图。

图4B绘示图4A的俯视图。

图5A绘示依照本发明另一实施例的半导体封装件的剖视图。

图5B绘示图5A的俯视图。

图6绘示依照本发明另一实施例的半导体封装件的剖视图。

图7,其绘示依照本发明另一实施例的半导体封装件的剖视图。

图8绘示依照本发明另一实施例的半导体封装件的剖视图。

图9A至9G绘示图1A的半导体封装件的制造过程图。

图10A至10C绘示图2的半导体封装件的制造过程图。

图11A至11G绘示图3的半导体封装件的制造过程图。

图12A至12F绘示图4A的半导体封装件的制造过程图。

图13A至13C绘示图5A的半导体封装件的制造过程图。

图14A至14B绘示图8的半导体封装件的制造过程图。

主要元件符号说明:

100、200、300、400、500、600、700、800:半导体封装件

110:芯片

110a:主动面

110b:背面

111、471:散热件

120:封装体

120s、120s1、120s2、130s、140s、360s、470s、472s:外侧面

120u、130u、470u:上表面

120b、140b、470b:下表面

121:散热孔

1211:贯孔

1212:热导材料

130:导电件

140:屏蔽膜

150:焊球

151:信号焊球

152:接地焊球

153:散热焊球

360:导电架

470:基板

472:接地件

480:焊线

170:暂时基板

P、P1、P2:切割道

具体实施方式

请参照图1A,其绘示依照本发明一实施例的半导体封装件的剖视图。半导体封装件100包括芯片110、封装体120、导电件130、屏蔽膜140及焊球150。

芯片110具有相对的主动面110a与背面110b,芯片110以其主动面110a朝下方位设于导电件130上,且直接或间接接触于导电件130,藉以通过导电件130电性连接于焊球150。

芯片110可以单层或多层结构。芯片110更包括至少一散热件111,其中散热件111从芯片110的主动面110a延伸至芯片110的背面110b,即散热件111贯穿芯片110。本例中,散热件111散热孔,例如,芯片110硅晶圆,而散热件111硅穿孔(Through-Silicon Via,TSV),然本发明实施例不限于此。另一例中,虽然图未绘示,然芯片110的散热件111包括至少一横向延伸的散热层及至少一直向延伸的散热孔,其中散热层连接于散热孔,以构成一散热路径。此外,散热件111的材料包括导热性佳的材料,如铜、铝、金、银或其组合。

封装体120包覆芯片110且具有相对的上表面120u及下表面120b且包括至少一散热孔121,散热孔121从散热件111延伸至封装体120的上表面120u。本例中,散热孔121及散热件111沿一直线方向延伸,而共同构成一垂直散热路径,此垂直散热路径较短或最短散热路径,可快速地传导芯片110的热量H至半导体封装件100外部。此外,散热孔121的材料包括导热性佳的材料,如铜、铝、金、银或其组合。

封装体120更具有外侧面120s,而导电件130具有外侧面130s,由于封装体120的外侧面120s与导电件130的外侧面130s于同一切割道中形成,使外侧面120s与导电件130s实质上对齐,例如是共面,如此的切割方法称为“全穿切(full-cut)”。

封装体120可包括酚醛基树脂(Novolac-based resin)、环氧基树脂(epoxy-based resin)、硅基树脂(silicone-based resin)或其他适当的包覆剂。封装体120亦可包括适当的填充剂,例如是粉状的二氧化硅。可利用数种封装技术形成封装体,例如是压缩成型(compression molding)、注射成型(injection molding)或转注成型(transfer molding)。

导电件130例如是接垫(pad)或导电片(conductive sheet),其形成于芯片110的主动面110a及封装体120的下表面120b。导电片另外以板金工法形成的元件。接垫可采用电镀方法或合适的方法形成,其厚度可薄于导电片。屏蔽膜140形成于导电件130的外侧面130s,以电性连接于导电件130。此外,导电件130具有下表面130b,屏蔽膜140具有下表面140b,其中导电件130的下表面130b与屏蔽膜140的下表面140b实质上对齐,例如是共面。

屏蔽膜140形成于封装体120的上表面120u及外侧面120s。本例中,屏蔽膜140共形屏蔽膜(conformal shielding),亦即其覆盖封装体120的整个上表面120u及整个外侧面120s,以完整包覆封装体120,而提供电磁干扰屏蔽作用;然本发明实施例不限于此,屏蔽膜140亦可覆盖封装体120的部分上表面120u及/或部分外侧面120s。

屏蔽膜140除了提供电磁干扰屏蔽作用,亦提供一大散热面积。当芯片110的热量传导至屏蔽膜140后,可通过屏蔽膜140有效地对流或传导至半导体封装件100外部。

屏蔽膜140的材料铝、铜、铬、锡、金、银、镍、不锈钢或上述材料的组合所制成,其可应用例如是化学蒸镀(Chemical Vapor Deposition,CVD)、无电镀(electroless plating)、电镀、印刷(printing)、喷布(spraying)、溅镀或真空沉积(vacuum deposition)等技术制成。屏蔽膜140可以是单层或多层结构,以多层结构来说,屏蔽膜140三层结构,其内层不锈钢层、中间层铜层,而外层不锈钢层;或者,屏蔽膜140双层结构,其内层铜层,而其外层不锈钢层。

焊球150形成于导电件130上,使半导体封装件100形成一球栅阵列封装件;另一例中,可省略焊球150,使半导体封装件100形成一平面栅格阵列(Land Grid Array,LGA)封装件。

数个焊球150包含至少一信号焊球151,其通过导电件130电性连接于芯片110的主动面110a,以输出芯片110的信号至半导体封装件100外的电路元件及/或输入来自于半导体封装件100外的信号至芯片110。

数个焊球150包含至少一接地焊球152,其通过导电件130电性连接于屏蔽膜140。接地焊球152可电性连接一电子元件的接地端(未绘示),使屏蔽膜140通过接地焊球152而接地。

数个焊球150包含至少一散热焊球153,芯片110的热量H可通过散热件111及散热焊球153传导至半导体封装件100外部。经由散热焊球153、散热件111及散热孔121,芯片110的热量H可同时往上及往下传导至半导体封装件100外部。本例中,散热焊球153、散热件111与散热孔121共同沿一直线延伸,而构成一垂直散热路径,此垂直散热路径较短或最短散热路径,可快速地传导芯片110的热量H同时往上及往下至半导体封装件100外部。

请参照图1B,其绘示图1A的俯视图。散热孔121的数量多个,其可排列成n×m阵列,其中n及m为相同或相异的正整数;另一例中,散热孔121的数量可以是单个;然而,本发明实施例并不限制散热孔121的数量。如图1B所示,导电件130例如是走线,其可沿曲线及/或直线方向延伸,并可延伸至与芯片110重迭(如上下重迭)而电性连接于芯片110的主动面110a(图1A)。

请参照图2,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件200包括芯片110、封装体120、导电件130、屏蔽膜140及焊球150(选择性)。

封装体120具有外侧面120s,而导电件130具有上表面130u,屏蔽膜140形成于封装体120的外侧面120s及导电件130的上表面130u。导电件130更具有外侧面130s,封装体120的外侧面120s与导电件130的外侧面130s分别于二不同切割工艺形成,使封装体120的外侧面120s相对导电件130的外侧面130s内凹而形成一横向段差结构,如此的切割方法称为“半穿切(half-cut)”。此外,屏蔽膜140更具有外侧面140s,由于屏蔽膜140的外侧面140s与导电件130的外侧面130s于同一切割道中形成,使外侧面140s与导电件130s实质上对齐,例如是共面。

请参照图3,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件300包括芯片110、封装体120、导电件130、屏蔽膜140、焊球150(选择性)及导电架360。

本例中,封装体120具有第一外侧面120s1及第二外侧面120s2,第一外侧面120s1及第二外侧面120s2分别于二不同切割工艺形成,使第一外侧面120s1相对第二外侧面120s2内凹而形成一横向段差结构,如此的切割方法称“半穿切”。详细来说,导电架360具有外侧面360s,封装体120的第一外侧面120s1与导电架360的外侧面360s于同ㄧ切割工艺形成,使外侧面360s与第一外侧面120s1实质上对齐,例如是共面。此外,屏蔽膜140具有外侧面140s,而导电件130具有外侧面130s,由于屏蔽膜140的外侧面140s、封装体120的第二外侧面120s2与导电件130的外侧面130s于另一切割工艺中形成,使外侧面140s、第二外侧面120s2与外侧面130s实质上对齐,例如是共面。

导电架360设于导电件130上。屏蔽膜140形成于导电架360的外侧面360s,且通过导电架360电性连接于导电件130。其中一导电件130接地导电件,使屏蔽膜140通过此接地导电件接地,以疏导一电磁干扰至接地端

请参照图4A,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件400包括芯片110、封装体120、屏蔽膜140、焊球150(选择性)、基板470及至少一焊线480。

芯片110形成于基板470上。芯片110以其主动面110a朝上方位设于基板470上,并通过焊线480电性连接于基板470。

基板470可以是单层或多层结构。基板470具有相对的上表面470u与下表面470b,且包括至少一散热件471,其中散热件471从上表面470u延伸至上表面470u。芯片110的散热件111露出其背面110b以连接基板470的散热件471,并延伸至芯片110的主动面110a。芯片110的热量可通过基板470的散热件471、芯片110的散热件111、散热焊球153及封装体120的散热孔121传导至半导体封装件400的外部。本例中,基板470的散热件471、散热焊球153、散热件111与散热孔121共同沿一直线方向延伸,而构成一垂直散热路径,此垂直散热路径较短或最短散热路径,可快速地传导芯片110的热量H至半导体封装件400外部。另一例中,虽然图未绘示,然基板470的散热件471包括至少一横向延伸的散热层及至少一直向延伸的散热孔,其中散热层连接于散热孔,以构成一散热路径。

基板470更包括至少一接地件472,其延伸于基板470的上表面470u与下表面470b之间,本例从上表面470u延伸至下表面470b为例说明。虽然图未绘示,然接地件472可通过基板470的导电层(未绘示)电性连接于焊线480及/或焊球150,藉以电性连接至接地端。

请参照图4B,其绘示图4A的俯视图。接地件472的数量多个,其围绕芯片110,而提供芯片110电磁感扰屏蔽功能。此外,基板470具有外侧面470s,而封装体120具有外侧面120s,由于外侧面470s与外侧面120s于同一切割道中形成,使外侧面470s与外侧面120s实质上对齐,例如是共面,如此的切割方法称为“全穿切”。

请参照图5A,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件500包括芯片110、封装体120、屏蔽膜140、焊球150(选择性)、基板470及至少一焊线480。

芯片110设置于基板470上。芯片110以其主动面110a朝上方位设于基板470上,并通过焊线480电性连接于基板470。

请参照图5B,其绘示图5A的俯视图。封装体120具有外侧面120s,而基板470具有外侧面470s,由于外侧面120s与外侧面470s分别于二不同切割工艺形成,使外侧面120s相对外侧面470s内凹而形成一横向段差结构,如此的切割方法称为“半穿切”。

请参照图6,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件600包括芯片110、封装体120、屏蔽膜140、焊球150(选择性)及基板470。相较于半导体封装件400,本例的芯片110以其主动面110a朝下方位设于基板470上,且以至少一焊球电性连接于基板470。

请参照图7,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件700包括芯片110、封装体120、屏蔽膜140、焊球150(选择性)及基板470。相较于半导体封装件600,本例的芯片110省略散热件111,通过封装体120的散热孔121仍可传导芯片110的热量至半导体封装件700外部。

请参照图8,其绘示依照本发明另一实施例的半导体封装件的剖视图。半导体封装件800包括芯片110、封装体120、屏蔽膜140、焊球150(选择性)及基板470。本例中,封装体120省略散热孔121。封装体120具有上表面120u,芯片110的背面110b从封装体120的上表面120u露出,其中封装体120的上表面120u与芯片110的背面110b实质上对齐,例如是共面。

请参照图9A至9G,其绘示图1A的半导体封装件的制造过程图。

如图9A所示,提供暂时基板170。

如图9A所示,形成至少一导电件130于暂时基板170上。本例中,导电件130导电片,其可采用例如是表面黏贴技术(SMT)放置于暂时基板170上。另一例中,导电件130亦可采用电镀方式形成。

如图9B所示,设置至少一芯片110于导电件130上,其中芯片110具有主动面110a及背面110b且包括至少一散热件111,其中散热件111从芯片110的主动面110a延伸至芯片110的背面110b。芯片110以其主动面110a朝下方位设置于导电件130上,其中散热件111接触导电件130。

如图9C所示,可采用例如是压缩成型、注射成型或转注成型,形成封装体120包覆芯片110及导电件130,其中封装体120具有相对的上表面120u及下表面120b。

如图9D所示,可采用例如是激光,形成至少一贯孔1211从封装体120的上表面120u延伸至芯片110的背面110b,例如是延伸至散热件111及/或芯片110的散热件111以外的区域。

如图9E所示,可采用例如材料形成技术,形成至少一热导材料1212填入贯孔1211,其中热导材料1212与贯孔1211构成散热孔121。热导材料1212例如是铜、铝、金、银或其组合。此处的材料形成技术例如是化学气相沉积、无电镀法(electroless plating)、电解电镀(electrolytic plating)、印刷、旋涂、喷涂、溅镀(sputtering)或真空沉积法(vacuum deposition)。

如图9F所示,可采用例如是刀具或激光,形成至少一切割道P经过整个封装体120、整个导电件130及部分暂时基板170,以完全切断封装体120及导电件130,如此的切割方法称“全穿切”。切割后,封装体120及导电件130分别形成外侧面120s及130s,其中外侧面120s及130s实质上对齐,如共面。

散热件111与散热孔121共同沿一直线方向延伸,而构成一垂直散热路径,此垂直散热路径较短或最短散热路径,可快速地传导芯片110的热量H至半导体封装件400外部。

如图9G所示,可采用上述材料形成技术,形成屏蔽膜140于封装体120的上表面120u及外侧面120s上,其中屏蔽膜140电性接触散热孔121。当芯片110的热量H传导至屏蔽膜140后,可通过屏蔽膜140的大面积进行有效的散热。

形成屏蔽膜140后,可移除暂时基板170,以露出导电件130的下表面;然后,形成图1A的焊球150及散热焊球153于导电件130的下表面,而形成至少一图1A所示的半导体封装件100。另一例中,焊球150及散热焊球153可于切割道P形成前形成。另一例中,亦可不形成焊球150于导电件130上。

请参照图10A至10C,其绘示图2的半导体封装件的制造过程图。

如图10A所示,可采用例如是刀具或激光,形成至少一第一切割道P1经过封装体120直到露出导电件130的上表面130u;或者,第一切割道P1可经过部分导电件130但不切断导电件130。切割后,封装体120形成外侧面120s。

如图10B所示,可采用上述材料形成技术,形成屏蔽膜140覆盖封装体120的上表面120u及外侧面120s上。本例中,屏蔽膜140覆盖封装体120的整个上表面120u及整个外侧面120s,而形成一共形屏蔽膜。

如图10C所示,可采用例如是刀具或激光,形成至少一第二切割道P2经过第一切割道P1、屏蔽膜140、导电件130及部分暂时基板170,以完全切断屏蔽膜140及导电件130。本例的半导体封装件200采用多个切割工艺完成,如此的切割方法称“半穿切”。

形成屏蔽膜140后,可移除暂时基板170,以露出导电件130的下表面;然后,形成图2的焊球150及散热焊球153于导电件130的下表面,而形成至少一图2所示的半导体封装件200。另一例中,焊球150及散热焊球153可于第一切割道P1或第二切割道P2形成前形成。另一例中,亦可不形成焊球150及散热焊球153于导电件130上。

请参照图11A至11G,其绘示图3的半导体封装件的制造过程图。

如图11A所示,可采用例如是表面黏贴技术,设置至少一导电架360于导电件130上。导电架360横跨在相邻二导电件130之间。

如图11B所示,可采用例如是压缩成型、注射成型或转注成型,形成封装体120包覆芯片110、导电件130及导电架360,其中封装体120具有相对的上表面120u及下表面120b。

如图11C所示,可采用例如是激光,形成至少一贯孔1211从封装体120的上表面120u延伸至芯片110的背面110b,例如是延伸至散热件111及/或芯片110的散热件111以外的区域。

如图11D所示,可采用例如上述材料形成技术,形成至少一热导材料1212填入贯孔1211,其中热导材料1212与贯孔1211构成散热孔121。

如图11E所示,可采用例如是刀具或激光,形成至少一第一切割道P1经过部分封装体120及至少部分的导电架360。切割后,封装体120及导电架360分别形成第一外侧面120s1及外侧面360s,其中第一外侧面120s1与外侧面360s实质上对齐,如共面。

如图11F所示,可采用上述材料形成技术,形成屏蔽膜140覆盖封装体120的上表面120u、第一外侧面120s1及导电架360的外侧面360s。

如图11G所示,可采用例如是刀具或激光,形成至少一第二切割道P2经过第一切割道P1、屏蔽膜140及部分暂时基板170,以完全切断封装体120、屏蔽膜140及导电件130。切割后,封装体120、屏蔽膜140及导电件130分别形成第二外侧面120s2、外侧面140s及外侧面130s,其中第二外侧面120s2、外侧面140s与外侧面130s实质上对齐,如共面。本例的半导体封装件300采用多个切割工艺完成,如此的切割方法称“半穿切”。

形成屏蔽膜140后,可移除暂时基板170,以露出基板导电件130的下表面;然后,形成图3的焊球150及散热焊球153于导电件130的下表面,而形成至少一图3所示的半导体封装件300。另一例中,焊球150及散热焊球153可于第一切割道P1或第二切割道P2形成前形成。另一例中,亦可不形成焊球150及散热焊球153于导电件130上。

请参照图12A至12F,其绘示图4A的半导体封装件的制造过程图。

如图12A所示,设置至少一芯片110于基板470上,其中芯片110具有主动面110a及背面110b且包括至少一散热件111,其中散热件111从芯片110的主动面110a延伸至芯片110的背面110b,且接触基板470的散热件471。芯片110以其主动面110a朝上方位设于导电件130上,并通过至少一焊线480电性连接于基板470。

如图12B所示,可采用例如是压缩成型、注射成型或转注成型,形成封装体120包覆芯片110及焊线480,其中封装体120具有相对的上表面120u及下表面120b。

如图12C所示,可采用例如是激光,形成至少一贯孔1211从封装体120的上表面120u延伸至芯片110的主动面110a,例如是延伸至散热件111及/或芯片110的散热件111以外的区域。

如图12D所示,可采用例如是上述材料形成技术,形成至少一热导材料1212填入贯孔1211,其中热导材料1212与贯孔1211构成散热孔121。

如图12E所示,可采用例如是刀具或激光,形成至少一切割道P经过封装体120及基板470的接地件472,以完全切断封装体120及基板470的接地件472,如此的切割方法称“全穿切”。切割后,封装体120及基板470的接地件472分别形成外侧面120s及472s,其中外侧面120s及130s实质上对齐,如共面。

如图12F所示,可采用上述材料形成技术,形成屏蔽膜140于封装体120的上表面120u、外侧面120s及接地件472的外侧面472s上。

形成屏蔽膜140后,可形成图4A的焊球150及散热焊球153于基板470的下表面,而形成至少一图4A所示的半导体封装件400。另一例中,焊球150及散热焊球153可于切割道P形成前形成。另一例中,亦可不形成焊球150于基板470上。

请参照图13A至13C,其绘示图5A的半导体封装件的制造过程图。

如图13A所示,可采用例如是刀具或激光,形成至少一第一切割道P1经过封装体120直到露出基板470的接地件472。切割后,封装体120形成外侧面120s;或者,第一切割道P1可经过整个封装体120及部分接地件472,但不切断接地件472。

如图13B所示,可采用上述材料形成技术,形成屏蔽膜140覆盖封装体120的上表面120u、外侧面120s及露出的接地件472。

如图13C所示,可采用例如是刀具或激光,形成至少一第二切割道P2经过第一切割道P1、屏蔽膜140及基板470的接地件472,以完全切断屏蔽膜140及基板470的接地件472。另一例中,第二切割道P2先后经过基板470及屏蔽膜140至第一切割道P1,而完全切断基板470及屏蔽膜140。本例的半导体封装件500采用多个切割工艺完成,如此的切割方法称“半穿切”。

形成屏蔽膜140后,可形成图5的焊球150及散热焊球153于基板470的下表面,而形成至少一图5所示的半导体封装件500。另一例中,焊球150及散热焊球153可于第一切割道P1或第二切割道P2形成前形成。另一例中,亦可不形成焊球150于基板470上。

图6的半导体封装件600的制造方法相似于图4A,容此不再赘述。图7的半导体封装件700的制造方法相似于图4A,容此不再赘述。

请参照图14A至14B,其绘示图8的半导体封装件的制造过程图。

如图14A所示,可采用例如是压缩成型、注射成型或转注成型,形成封装体120包覆芯片110。

如图14B所示,可采用材料移除技术移除封装体120部分材料,例如研磨(Grinding),直到露出芯片110的散热件111及封装体120的上表面120u。移除封装体120部分材料后,芯片110的背面110b及封装体120的上表面120u实质上对齐,如共面。本例中,由于芯片110上方的封装体材料被移除,故芯片110上方可不形成散热孔121。芯片110通过自身的散热件111仍可散热。

半导体封装件800的其余步骤相似于上述半导体封装件400的对应步骤,容此不再赘述。

综上可知,半导体封装件可采用全穿切或半穿切方法完成切割。以半穿切来说,封装体形成第一外侧面及第二外侧面,其中封装体的第一外侧面相对封装体的第二外侧面内凹而形成一横向段差结构;或者,封装体与基板各形成一外侧面,其中封装体与基板的一者的外侧面相对另一者的外侧面内凹而形成一横向段差结构;或者,基板形成第一外侧面及第二外侧面,其中基板的第一外侧面相对基板的第二外侧面内凹而形成一横向段差结构。以全穿切来说,半导体封装件的整个外侧面实质上对齐,如共面。

综上所述,虽然本发明已以实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1