一种磁性石墨烯复合材料的生物合成方法

文档序号:480045阅读:188来源:国知局
一种磁性石墨烯复合材料的生物合成方法
【专利摘要】本发明属于生物合成纳米材料领域,涉及一种磁性石墨烯复合材料的生物合成方法。将10-30mmol/L的哌嗪-1,4-二乙磺酸和10-30mmol/L的乳酸钠的pH值调至7.0,除氧灭菌;将氧化石墨烯加入培养液中,氧化石墨烯的浓度为0.4-0.6g/L;超声30-80min,再加入β-FeOOH,使β-FeOOH的浓度为30-80mmol/L;厌氧磁力搅拌12-36h;收集处于对数生长期末期的异化金属还原菌;将其加入混合溶液中,在厌氧30℃的条件下培养132-156h,得到磁性石墨烯复合材料。本发明工艺反应条件温和、能耗低、操作简单,制备的磁性石墨烯复合材料可用于吸附和磁性催化等。
【专利说明】一种磁性石墨烯复合材料的生物合成方法

【技术领域】
[0001] 本发明属于生物合成纳米材料领域,涉及一种磁性石墨烯复合材料的生物合成方 法。

【背景技术】
[0002] 石墨烯是一种只有一个原子厚度的二维碳材料,由于其具有机械强度高,比表面 积大和导电性能好等特点,在电子、传感器、催化和能源等领域具有广阔的应用前景。相比 于其他维度的碳材料,石墨烯除具有以上优点外,还具有制备成本低和易于功能化的优点。 因此,石墨烯成为负载无机纳米颗粒的理想选择。磁性Fe 304纳米颗粒具有生物相容性好、 超顺磁性强、毒性低、易于制备和过程中易分离等特点,其在催化、传感器、药物释放和环境 修复等领域的应用一直是科学研究的热点。因此,将磁性纳米颗粒负载在石墨烯片层上形 成磁性石墨烯复合材料,可以结合两种材料的优点,提高复合材料的使用性能。更重要的 是,复合材料中磁性颗粒的引入,不仅可以降低石墨烯片层间由于范德华力引起的聚集效 应,还可以实现石墨烯材料的分离和重复使用;而石墨烯基底的引入,也可以降低磁性纳米 颗粒的聚集,从而提高磁性颗粒的利用效率。
[0003] 近年来石墨烯和磁性纳米粒子复合材料的制备以及其在材料、化学、生物医学等 领域的应用研究发展迅速。如Sun Η等人在2011年Nano Research第4卷第550-562页、 Zhan Y 等人在 2011 年 Journal of Colloid and Interface Science 第 363 卷第 98-104 页 以及Zhang H等在2014年RSC Advances第4卷第14441 - 14446页发表的论文分别利用化 学水热法、共价键结合法和化学沉淀法合成磁性石墨烯复合材料。但这些化学方法制备磁 性石墨烯复合材料,存在着反应步骤多、反应条件苛刻、难于控制、化学试剂毒性高等缺点。
[0004] 生物法合成纳米材料是近年来随着纳米技术、生物技术和材料科学等学科的进步 而逐渐交叉发展起来的新兴领域。与传统上利用物理和化学方法合成纳米材料相比,生物 法合成纳米材料具有条件温和、对环境无污染、成本低廉等优点。近年来,生物合成磁性 纳米材料受到了研究者的广泛关注,并取得了较大的研究进展。Lovley D R等在1987年 Nature第330卷第252-254页发表的论文首次报道了利用微生物合成磁性纳米颗粒。Roh Y 等在 2006 年 Applied and Environmental Microbiology 第 72 卷第 3236-3244 页、Lee J Η 等在 2008 年 Journal of Microbiology and Biotechnology 第 18 卷第 1572-1577 页以及 Li X等在2012年Journal of Soils and Sediments第12卷第217-227页所发表的论文中 报道微生物利用不同铁前体化合物合成Fe30 4磁性纳米颗粒。同时,生物法合成石墨烯也取 得了一定进展,如Salas EC等在2010年ACS Nano第4卷第4852-4856页、Wang G等在2011 年 Nano Research 第 4 卷第 563-570 页以及 Liu G 等在 2013 年 Bioresource Technology 第 149卷第503-508页报道了利用微生物制备还原氧化石墨烯。但目前利用微生物合成磁性 石墨烯复合材料并未见报道。


【发明内容】

[0005] 本发明的目的在于解决现有技术中磁性石墨烯复合材料制备方法反应条件苛刻, 化学试剂易造成污染的技术问题,提供一种磁性石墨烯复合材料的生物制备方法。
[0006] 本发明的技术方案如下:
[0007] -种磁性石墨烯复合材料的生物合成方法,具体步骤如下:
[0008] 步骤1 :氧化石墨烯的制备:采用氧化石墨烯作为磁性石墨烯复合材料的石墨烯 合成的前体物质;
[0009] 步骤2 : β -FeOOH的制备:采用β -FeOOH作为磁性石墨烯复合材料的磁性组分合 成的前体物质;
[0010] 步骤3 :异化金属还原菌的培养:采用异化金属还原菌制备磁性石墨烯复合材料 的微生物菌种;
[0011] 步骤4 :磁性石墨烯复合材料的生物合成方法:
[0012] (1)配制磁性石墨烯复合材料培养液:培养液包括10-30mmol/L的哌嗪-1,4-二 乙磺酸和l〇 -30mmol/L的乳酸钠,pH值调至7. 0,除去氧气,灭菌,得到磁性石墨烯复合材料 培养液;
[0013] (2)配制氧化石墨烯与β-FeOOH混合溶液:将步骤1中的氧化石墨烯加入到 磁性石墨烯复合材料培养液中,氧化石墨烯的浓度为0. 4-0. 6g/L ;超声30-80min,再加 入β -FeOOH,β -FeOOH的浓度为30-80mmol/L ;厌氧磁力搅拌12-36h,即得氧化石墨烯与 β -FeOOH混合溶液;
[0014] (3)收集步骤3中的处于对数生长期末期的异化金属还原菌;
[0015] (4)磁性石墨烯复合材料的生物合成:将步骤4(3)中收集的异化金属还原菌 加入步骤4(2)配制的氧化石墨烯与β-FeOOH混合溶液中,在厌氧30°C的条件下培养 132-156h,获得磁性石墨烯复合材料。
[0016] 所述的异化金属还原菌为Shewanella oneidensis MR-1。
[0017] 步骤4 (1)所述的哌嗪-1,4-二乙磺酸为20mmol/L,乳酸钠为20mmol/L。
[0018] 步骤4 (2)所述的氧化石墨烯的浓度为0. 5g/L,超声时间为60min,β -FeOOH的浓 度为50mmol/L,厌氧磁力搅拌时间为24h。
[0019] 步骤4 (4)所述的培养时间为144h。
[0020] 本发明的有益效果是,所述的磁性石墨烯复合材料,可在常温下利用 Shewanellaoneidensis MR-1合成,磁性纳米颗粒均勻分布在石墨烯片层上。本发明所涉及 的磁性石墨烯复合材料合成方法可替代传统化学合成法,工艺具有反应条件温和、能耗低, 操作简单等特点。本发明的磁性石墨烯复合材料可实现回收利用,且在作为吸附材料和磁 性催化材料等方面具有很好的应用前景。

【专利附图】

【附图说明】
[0021] 图1是所合成的磁性石墨烯复合材料的透射电镜图。
[0022] 图2是所合成的氧化石墨烯的X射线衍射光谱图。
[0023] 图3是所合成的磁性石墨烯复合材料的X射线衍射光谱图。

【具体实施方式】
[0024] 以下结合附图和技术方案具体说明本发明的【具体实施方式】。
[0025] 实施例1
[0026] 磁性石墨烯复合材料的制备:
[0027] (1)氧化石墨烯的制备:氧化石墨烯是Shewanellaoneidensis MR-1合成石墨烯的 前体物质;称取lg鳞片石墨粉加入46mL浓硫酸和10mL浓硝酸中,冰浴搅拌30min ;向浓酸 石墨粉混合液中缓慢加入6g高锰酸钾,冰浴搅拌120min ;随后将混合液置于35°C水浴搅拌 过夜;向混合液中加入46mL超纯水,98°C油浴30min,冷却至常温,再加200mL超纯水;逐滴 加入20mL质量分数为30%的双氧水,以除去过量的高锰酸钾;将所得产物用10%的稀盐酸 洗涤3次,超纯水洗涤数次,直至上清液成中性;超声3h,离心后将所得沉淀在60°C真空干 燥箱中烘干,得到氧化石墨烯。
[0028] (2) β -FeOOH 的制备:β -FeOOH 是 S. oneidensis MR-1 合成 Fe304 的前体物质;将 10m〇l/L的NaOH溶液逐滴加入0. 4mol/L的FeCl3 · 6H20溶液中,调至胶体悬浊液的pH为 7. 0,室温放置7-8h ;将制得的胶体悬浊液离心收集(11000g,5min),并用高纯水洗涤三次, 通N2曝气30min除去氧气,获得β -FeOOH,于4°C厌氧保存备用。
[0029] (3)生物合成磁性石墨烯复合材料培养液的配置:培养液由20mmol/L的哌 嗪-1,4-二乙磺酸和20mmol/L的乳酸钠组成,pH值调至7. 0,通N2曝气除去氧气,
[0030] 121°C高压灭菌20min,得到所需的生物合成磁性石墨烯复合材料培养液。
[0031] (4) S. oneidensisMR-Ι的培养:该方法以S. oneidensis MR-1作为合成磁性石墨 烯复合材料的微生物菌种;采用Luria-Bertani培养基培养所述菌种,培养基的配方为: NaC110g/L,蛋白胨10g/L,酵母浸粉5g/L,用NaOH溶液将培养基pH调至7. 0,121°C高压灭 菌20min ;将S. oneidensis MR-1接种至Luria-Bertani培养基,接种比例为1:100 ;接种后 的培养基在30°C,150rpm培养箱中培养12h,得到S. oneidensis MR-1菌液。
[0032] (5)磁性石墨烯复合材料的生物合成方法:
[0033] 第1步:将所述步骤⑴的氧化石墨烯加入所述步骤⑶的培养液中,使氧化石墨 烯浓度为〇. 5g/L,超声分散60min ;再加入所述步骤(2)的β -FeOOH,使β -FeOOH的浓度 为50mmol/L ;厌氧磁力搅拌24h ;
[0034] 第2步:所述步骤(4)中Luria-Bertani培养基培养12h后所得的S. oneidensis MR-1菌液离心分离(11000g,5min),倒掉上清液,将收集的细胞重新悬浮于哌嗪-1,4-二 乙磺酸溶液中。哌嗪-1,4-二乙磺酸溶液的浓度为20mmol/L,该溶液pH值用NaOH调节至 7.0,使用前,在121°C条件下,高压灭菌20min ;将悬浮后的菌体离心分离(11000g,5min), 倒掉上清液,收集沉淀下来的细胞,如此反复三次,该过程加入哌嗪-1,4-二乙磺酸溶液的 目的是清洗菌体,以除去残余的Luria-Bertani培养基组分和代谢产物;
[0035] 第3步:将所述第2步离心分离的细胞加入所述第1步的培养体系中并重新悬浮, 在厌氧30°C的条件下搅拌12h,静置12h,如此循环两次,随后保持静置培养96h,即可合成 磁性石墨烯复合材料;
[0036] 第4步:磁性石墨烯复合材料的收集;将第3步所述的磁性石墨烯复合材料溶液 利用外部磁铁分离,去除培养液,加入去离子水重新悬浮,在磁铁的作用下再次分离,如此 反复三次,目的是除去第1步所述的培养液和残余菌体;将磁性石墨烯复合材料重新悬浮 至高纯水中;该方法使用的高纯水在使用前通N 2曝气30min除去氧气,121°C,高压灭菌 20min ;获得磁性石墨烯复合材料。
[0037] 图1是实施例1中合成的磁性石墨烯复合材料的透射电镜图,结果表明磁性Fe30 4 纳米颗粒均匀地负载在石墨烯片层上。
[0038] 图2是实施例1中合成的氧化石墨烯的X射线衍射光谱图,图中2 Θ = 9. 7°出现 氧化石墨烯的特征峰。
[0039] 图3是实施例1中合成的磁性石墨烯复合材料的X射线衍射光谱图,谱图中2 Θ = 9.7°的峰基本消失,23. 2°出现新的弱峰,说明氧化石墨烯得到了还原,30.3°,35. 8°, 43. 5°,54. 3°,57. 5°和63. Γ出现的新峰则说明磁性Fe304纳米颗粒的形成。
【权利要求】
1. 一种磁性石墨烯复合材料的生物合成方法,其特征在于,具体步骤如下: 步骤1 :氧化石墨烯的制备:采用氧化石墨烯作为磁性石墨烯复合材料的石墨烯合成 的前体物质; 步骤2 : β -FeOOH的制备:采用β -FeOOH作为磁性石墨烯复合材料的磁性组分合成的 前体物质; 步骤3 :异化金属还原菌的培养:采用异化金属还原菌制备磁性石墨烯复合材料的微 生物菌种; 步骤4 :磁性石墨烯复合材料的生物合成方法: (1) 配制磁性石墨烯复合材料培养液:培养液包括10-30mmol/L的哌嗪-1,4-二乙磺 酸和10-30mmol/L的乳酸钠,pH值调至7. 0,除去氧气,灭菌,得到磁性石墨烯复合材料培养 液; (2) 配制氧化石墨烯与β-FeOOH混合溶液:将步骤1中的氧化石墨烯加入到磁性石墨 烯复合材料培养液中,氧化石墨烯的浓度为〇. 4-0. 6g/L ;超声30-80min,再加入β -FeOOH, β -FeOOH的浓度为30-80mmol/L ;厌氧磁力搅拌12-36h,即得氧化石墨烯与β -FeOOH混合 溶液; (3) 收集步骤3中的处于对数生长期末期的异化金属还原菌; (4) 磁性石墨烯复合材料的生物合成:将步骤4 (3)中收集的异化金属还原菌加入步骤 4(2)配制的氧化石墨烯与β-FeOOH混合溶液中,在厌氧30°C的条件下培养132-156h,获得 磁性石墨烯复合材料。
2. 根据权利要求1所述的生物合成方法,其特征在于,所述的异化金属还原菌为 Shewanella oneidensis MR-l〇
3. 根据权利要求1或2所述的生物合成方法,其特征在于,步骤4(1)所述的哌 嗪-1,4-二乙磺酸为20mmol/L,乳酸钠为20mmol/L。
4. 根据权利要求1或2所述的生物合成方法,其特征在于,步骤4 (2)所述的氧化石墨 烯的浓度为〇. 5g/L,超声时间为60min,β -FeOOH的浓度为50mmol/L,厌氧磁力搅拌时间为 24h。
5. 根据权利要求3所述的生物合成方法,其特征在于,步骤4 (2)所述的氧化石墨烯的 浓度为〇. 5g/L,超声时间为60min,β -FeOOH的浓度为50mmol/L,厌氧磁力搅拌时间为24h。
6. 根据权利要求1、2或5所述的生物合成方法,其特征在于,步骤4(4)所述的培养时 间为144h。
7. 根据权利要求3所述的生物合成方法,其特征在于,步骤4(4)所述的培养时间为 144h。
8. 根据权利要求4所述的生物合成方法,其特征在于,步骤4(4)所述的培养时间为 144h。
【文档编号】C12R1/01GK104046652SQ201410287122
【公开日】2014年9月17日 申请日期:2014年6月24日 优先权日:2014年6月24日
【发明者】柳广飞, 张欣, 王宁, 周集体, 金若菲 申请人:大连理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1