粉末附聚物的制备方法

文档序号:1115583阅读:157来源:国知局
专利名称:粉末附聚物的制备方法
技术领域
本发明广义上涉及附聚物的形成。更具体地讲,本发明涉及药物剂型设计领域,特别是用于对患者进行药学活性试剂给药的独特的附聚剂型。本发明的制剂特别适于口腔和/或鼻内吸入。
发明介绍治疗上和下呼吸道及肺部疾病和病症的已知方法有几种。这些病症包括,例如,哮喘和鼻炎。这种技术之一包括以立即起作用的方式将某些药学活性试剂或药物如莫米松糠酸酯局部施用于呼吸道或肺。莫米松糠酸酯是局部使用有效的甾类抗炎药。
口腔吸入治疗是施用这类局部活性药物的一种方法。这种形式的给药包括以易于提供速效作用的方式直接对患病区域口服干粉药物。
但是,吸入治疗特别需要给药系统,且其涉及了自身一套独特的设计及效果问题。在这些问题中令人忧虑的是给药剂量的准确性和重复性。人们必须保证每次施用等量的药物。此外,不象丸剂、胶囊和霜剂,口腔吸入治疗必须不但考虑其自身的剂型,还要考虑给药装置以及它们之间的相配合作用。一个需要非处方鼻内喷雾剂的人必须理解此问题。当一个人压常规的塑料挤瓶时,每次要施加同样的力是困难的。即使力量稍有不同,就可导致给药量的不同。即使对某种意义上讲非常一致的泵类喷雾器,也可发生给药量的变化。虽然当使用OTC鼻内喷雾剂时这种变化通常不是问题,但是当对严重病症如哮喘施用处方药物时还是应尽量减小这种变化。过量或不足量给药的危险及这种不利的偏差的后果很严重。当给药量与口腔吸入治疗中使用量一样小时,此问题会变得更复杂。
为了有助于减轻这些问题,公司如Schering Corporation为粉末药物的给药研制了复杂而高精度的吸入器系统,例如PCT申请WO94/14492所述,该文献公开于1994年7月7日,将其文本在此引入以供参考。这种吸入器系统设计成能用特定大小的给药孔计量出粉末药物的准确剂量。在给药前此孔填满了药物,随后给药孔的整个含量通过喷嘴给患者施用。然后,再将此给药孔填满以备下次给药。此装置已经过特别设计来尽可能排除人为的误差和机械引起的给药量变化。
在口腔吸入治疗中虽然这些装置代表了一种显著的进步,但是仍留下了一些情况,在这些情况下还存在问题。这些问题常集中在药物活性试剂的性质和它们与吸入器之间的相互作用。例如,某些药物不能“自由流动”,这可能使其难于从贮罐的储存中排出药物,再将这些药物在给药孔中计量,从该吸入器中给药。其它药物可能存在静电荷问题或可能具有不能接受的粘合力。这些药物即使是粉末形式也可能是“粘”的。这些药物可能堵塞吸入器/涂药器,影响其准确计量预定给药量的能力。这些粉末还可能粘在涂药器的喷嘴上,因此降低了药物的实际给药量。这就是常说的“残留”。药物还可能“蓬松”,这给操作并向给药孔中加入足够药物带来了真正的挑战。更糟的是,不同药学活性试剂的这些和其它物理性质在一个批次中也可能变化。这可能使补救措施失败。
常用于吸入治疗的小粒度的颗粒也可导致相关问题。吸入治疗通常使用药物颗粒,该颗粒粒度为10μm或更小。这保证了药物对肺部的适当穿透以及良好的局部覆盖。为了使这些药物的分配合理,必须对该药物颗粒的粒度严格控制。但是,这种粒度的粉末可能极难处理,特别所当需要小剂量时。这样的粉末一般不能自由流动,且其本质通常是轻、粉尘状和蓬松的,这给操作、加工和保存带来了问题。此外,将这些物质重复且准确地加入吸入器的给药孔是困难的。因此,不仅药物的性质,而且治疗颗粒的所需粒度,会同时联合引起操作和给药的严重问题。
改进细粉药物给药能力的方法之一是通过包合干燥赋形剂,如干燥的乳糖。但是,现已明确当需要特别小的药物剂量时,如小于约100-200μg药物,用常规赋形剂的包合对使用细药物颗粒带来的问题进行补救可能是不适当的。此外,如常规使用的干燥赋形剂,一般其粒度比药物的粒度明显大。遗憾的是,这些大颗粒的使用可能对每次给药之间的给药量造成显著的影响。再者,使用这些赋形剂的预期优点随给药剂量的降低而逐步消失。因此,在计量装置或吸入喷嘴和其它操作部件中,药物残留或保留带来的问题日益严重。
或者,可将药物产物加工为附聚物或微粒,它们一般更易自由流动且较大。附聚药物的方法之一描述于PCT国际申请WO95/09616,公开于1995年4月13日。如其中所述,细粉末药物如粒度小于10μm的微粒化粉末的附聚,不用粘合剂就可制备。但是,它们可与赋形剂配制。然后,这些附聚物可通过粉末药物用吸入器给药。
不用粘合剂制备颗粒的能力对吸入治疗是重要的,并且可较在附聚物形成中使用水或其它传统粘合剂的其它技术具有极大的优点。当配制和处理粉末时,纯药物的附聚物可带来极大的优点。但是,已发现药物如莫米松糠酸酯的剂量为约100-200μg或更低时,纯药物的附聚物可存在人们真正关心的残留和剂量变化问题。即使在为提供较大剂量的药学活性试剂,如约400μg或更大而设计的给药系统中,所得纯药物的附聚物仍可存在完整的问题。这些附聚物仍较软,在计量期间会被压碎,因此造成了给药计量的变化。例如,吸入器从约4英尺的高度落下时,此物质也相当容易破碎。这样可能过早地导致较小颗粒的形成,较小颗粒更难处理。事实上,正是细颗粒处理困难才需要先进行附聚。
如果使用含粘合剂的附聚物,则该附聚物可通过,例如,美国专利4161516和英国专利1520247描述的方法制备,它们公开了某些粘合物质包括水制备口腔吸入附聚物的用途。按照其中描述的方法,在附聚前,增加某些“自身附聚”或吸湿性微粒化药物的含水量。微粒化粉末的含水量升至所需浓度后,就会附聚。按照其中的描述,非吸湿性物质必须结合更多的传统粘合剂。同样,WO95/05805公开了形成附聚物的方法,其中用水蒸气处理均匀的微粒化物质的混合物以消除任何易变的无定型物质,这些物质最后会不稳定。用水蒸气处理后,现存的结晶物质附聚。但是,此申请警告如果附聚后接触水蒸气,该产物“在吸入器中是无用的”。
Sebhatu,Elamin和Ahlneck在“水分吸收对压片特性和喷雾干燥(15%无定型)乳糖的影响”,Pharmaceutical Research,Vol.11,No.9,1233-1238页(1994)中讨论了水分对无水乳糖压片特性的影响。但是,该文章并未讨论附聚物的形成,或可获得可接受“细颗粒部分”的附聚物的制备,当作为口腔吸入治疗的一部分给药时,这种“细颗粒部分”也称为“可吸入部分”。
Sebhatu等的文章中使用的测定无定型含量的方法更详细地描述于T.Sebhatu,M.Angberg和C.Ahlneck,“等温微量热法评估结晶固体中紊乱度”,International Journal of Pharmaceutics,Vol.104,135-144页(1994)。用等温微量热计测定全部无定型乳糖结晶的特定热量,然后,通过部分无定型样品的特定结晶热量除以开始确定的全部无定型物质的热量,再乘以100,计算“紊乱百分率”(为本发明的目的,在本文中指“易变的无定型物质的百分率”)。用于这些测量的仪器满足本发明的要求。
发明概述本发明提供了改进的附聚物及其制备方法。按照设计要求,本发明利用了使用与细药物颗粒结合的固体粘合剂和无定型特性的优点,而此无定型特性可给予该固体粘合剂和/或药物。这恰恰发生在其他人试图消除这些特性的时候。本发明还提供了首要物质和固体粘合剂的独特的结晶附聚物,其可自由流动,体积足够大,对处理、计量和给药来说足够稳定,即使极小剂量给药亦如此。同时,附聚物颗粒间的结合力使附聚物的易碎性足以在通过吸入器给药时使该附聚物分离,从而提供可接受的细颗粒部分。不用使用其它、更多的常规粘合剂就能达到所有这些目的。
具体地讲,本发明提供了制备附聚物的方法。该方法包括提供至少一种首要物质(一般是药学活性试剂)的颗粒,并提供至少一种粘合剂的颗粒。药物或固体粘合剂这两种颗粒的至少一种,包括作为其一部分的预选量的易变无定型物质,这些无定型物质在其结晶时足以允许一般结晶,附聚物的形成。粘合剂和/或药物的易变无定型的预定含量在接触包括湿度等的预选刺激时能转变为结晶形式。
然后,这些颗粒附聚,同时维持易变无定型物质的预选或预定量。附聚完成后,附聚物内的易变无定型物质接触预选的刺激并转变为结晶形式。所谓“结晶”,应理解为本发明的附聚物可仍含一些无定型物质,主要的非易变无定型相,含或不含一定量的不可转变的易变无定型物质。将后者最小化。不窠臼于任何特定的科学理论,确信易变无定型物质的转变造成了颗粒间的结晶键合。这些键的强度足以在处理、保存和计量时保持这些附聚物的完整性。但是,它们又足够地软,足以配合商购的吸入器,以便在给药时提供可接受的细颗粒部分。
本发明的重要内容是这些附聚物在形成时含有一定量的易变无定型物质。“易变”指当接触某些预定或预选的刺激因素时,该无定型物质将由无定型转变结晶形式。此易变无定型物质可作为药物部分、固体粘合剂部分、或二者兼而有之的形式存在。在颗粒中这些无定型物质的分布一般是不重要的,只要在该系统中存在足够的无定型物质,优选基本均匀。
实际上,该固体粘合剂含有任何易变无定型物质与否就其本身而言并不重要。在此情况下,该粘合剂仍在其自由流动能力、堆积密度、强度及阻止残留的能力方面赋予所得附聚物某些优点。
在更优选的实施方案中,本发明提供了制备药学活性试剂的附聚物的方法,该方法包括如下步骤提供平均粒度低于约10μm的至少一种药学活性试剂和至少一种固体粘合剂。优选该固体粘合剂的大部分也以粒度小于约10μm的颗粒存在。一般来说,该粘合剂具有预定量的易变无定型物质,该量足以允许其与药学活性试剂在接触预选刺激因素如空气湿气而结晶时形成附聚物。下一步包括形成基本均匀的颗粒混合物,同时保持易变无定型物质的预选量。然后,该混合物附聚,同时仍保持预选量的无定型物质。最后,附聚物中固体粘合剂和/或药物的易变无定型物质接触预选刺激因素转变为结晶形式。所得附聚物是自由流动的并且特征为颗粒间,例如,药学活性试剂和该固体粘合剂间(或甚至在固体粘合剂本身颗粒之间)形成桥或键,它们的强度足以忍受处理加工,但是又较弱,能允许进行该药学活性试剂的自由颗粒的可接受细颗粒部分的给药。
本发明优选内容的结果是制造了用作口腔和/或鼻内吸入治疗的一部分的药学活性试剂的剂型。该剂型包括药学活性试剂颗粒和结晶固体粘合剂的颗粒的附聚物。这些颗粒预选的平均粒度为10μm或更小。
附聚物中药物与粘合剂的比例可根据给药量、需要的细颗粒部分以及易变无定型物质作为部分药物和/或粘合剂的量和相对分布而进行大范围的变化。实际上,药物与粘合剂的比例可以是约1000∶1至1∶1000(药物∶粘合剂)。但是,优选药物和粘合剂以100∶1至1∶500,并更优选100∶1至1∶300的比例存在。
这些附聚物的粒度一般为约100至1500μm,平均粒度为300至1000μm。所得附聚物的堆积密度为约0.2至约0.4g/cm3。优选药物与固体粘合剂的比例为约20∶1至约1∶20,并最优选1∶3至1∶10。这些附聚物的平均粒度还优选为约300μm至约800μm,并最优选约400μm至约700μm。
在本发明的另一方面中,提供了用于制备药物活性试剂的自由流动结晶附聚物剂型的中间体附聚物。此中间体附聚物含有药学活性试剂颗粒和固体粘合剂优选无水乳糖颗粒。该粘合剂和/或该药物颗粒包括预选量的易变无定型物质,该量足够允许在接触预选刺激因素时形成结晶附聚物。该药学活性试剂颗粒和粘合剂颗粒平均粒度为约10μm或更小,其比例为约100∶1至约1∶500,并更优选约100∶1至约1∶300。所得附聚物的粒度为约100μm至约1500μm,平均粒度为300至1000μm。其堆积密度一般为约0.2至约0.4g/cm3。
这些中间体附聚物不能接受一般加工处理,因此它们不适于制备药物剂型。它们在喷嘴或吸入器中相应的残留率也较高。这些附聚物还不稳定。时间长了,它们会以无法控制的方式转变为结晶形式。这样造成了键强度和给药均匀性的高度变化。但是,这些无定型附聚物在形成结晶形式时非常有用,其中通过接触预选的刺激因素至少基本所有的易变无定型物质转变为结晶形式。
本发明特别优选的内容是提供了保证非常小剂量的口腔吸入药学活性试剂或药物(约400μg或更少的药物)给药高度均匀的方法。该方法包括按照上述方法计量一定量的附聚的药学活性试剂,并将该剂量的附聚的药学活性试剂给需要的患者使用。
本发明还提供了用于口腔吸入治疗给药的药学活性试剂的计量剂量。该计量剂量的大小变化很大,每次吸入是该量可上至约50000μg的药学活性试剂。能适应如此大的给药剂量范围是用本发明方法制备附聚物所得优点的直接结果。但是,本发明最有利于非常小的剂量,包括上至约400μg的颗粒化药学活性试剂,其用乳糖粘合剂平衡。更特别地,该剂量含约100μg或更少的药学活性试剂。这些较小剂量水平正是剂型中最需要的。
药学活性试剂的口腔吸入如上所述不但对给药装置,还对制剂提出要求。该剂型似乎需要同时满足一些标准,其中很多被认为是相互排斥的。例如,以高度可重复性、一致的方式,其中颗粒大小、药物含量和颗粒间键强度变化极小,形成附聚物是非常重要的。这些附聚物还必须足够硬,使它们能进行加工、过筛、成球形微粒化及其它处理,而不破碎。同时,这些附聚物强度必须足够弱,以便它们在吸入时分离,并得到尽可能小的治疗有效的细颗粒药物。再例如,这些附聚物流动性必须足够好,以使其可装入吸入器,并通过吸入剂计量并给药,使残留量尽可能小。但是,本来就自由流动的物质形成附聚物可能是困难的。
本发明最有利的方面之一是明确了试图平衡这些经常对抗的性能标准不可能也不必要。相反,当这些性质有利时本发明利用了其中某些性质。然后,恰恰在这些相同的性质变得不利时,该附聚物发生了根本变化以全部消除这些性质。代之以新结晶共聚物的形成。该新附聚物不保留前面的附聚物的有利于附聚物形成,但对加工、计量和给药不利的任何性质。
作为替代,在固体粘合剂和/或药物的易变无定型物质转变后,该新的附聚物是自由流动的并在附聚物粒度和粒度分布方面非常一致。此外,这些附聚物足够粗糙,使它们可以加工、计量,甚至吸入器坠地其中的附聚物也不会发生现有技术中发现的不利后果。同时,当与可产生足够力量的吸入器结合使用时,这些粗糙附聚物的结构完整性可被足够地打破,以便提供可接受的细颗粒部分。
因此,按照本发明的另一个方面,提供了平均粒度为10μm或更小的药物与固体粘合剂颗粒的结晶附聚物。这些颗粒结合在一起,其结果部分易变的无定型范围,包括药物的、粘合剂的,或二者兼而有之,进行了转变。不需要传统的粘合剂。这些附聚物与鼻内或口腔吸入器联合提供,将其装配得能提供至少10%的药物颗粒的细颗粒部分。一般来说,所得这些附聚物的压碎强度为约50mg至约5000mg。更优选本发明的结晶附聚物的压碎强度为约200mg至1500mg。因此,这些附聚物给药用吸入器必须最少提供足以克服附聚物的固有力的力量,以便得到至少10%或更多的细颗粒部分。这意味着至少10%的药物将变为粒度6.8μm或更小颗粒的细颗粒部分。当附聚物的力是5000mg时,如果吸入器装配用来提供至少10%的细颗粒部分的药物,则与例如力为500mg的本发明的附聚物联合使用时,同样的吸入器将提供更多的细颗粒部分。
还发现当与药物的粒度相比,通过提供相似粒度的固体粘合剂能使在每个计量剂量中药物基本均匀地分布,即使当药物的计量剂量小到约400μg或更低时也是如此。
总之,现已发现通过将存在于预先形成的附聚物中的粘合剂或药物的无定型部分转变为结晶形式,一旦附聚完成,就可得到所需的性质。当附聚物的无定型成分转变为结晶形式时,这些附聚物变得稳定。它们确实对如湿度和温度等因素更不敏感。此结晶物质也是自由流动的并较转变前的相同附聚物而言具有较低的残留量。将它们装填入计量孔或从其中排空都是容易的,因此提供了一致的计量。加上高稳定性和均匀性,这使非常小剂量的一致性给药成为可能。
因此通过本发明已发现,可能提供恰恰在其需要将这些物质附聚时确实适于附聚的物质,并且还可能制备确实适于通过口腔吸入系统进行药学活性物质给药的附聚物。
本发明的另一个重要方面是改变了对颗粒的无定形部分的常规概念。在工业领域长期以来就知道无定型性质通过如微粒化、喷雾干燥、冻干和球磨赋予给某些物质。当用这些技术降低粒度时,无定型性质在一定程度上不可避免地赋予给这些物质。但是,由于这些无定型物质可能产生的可变性,在工业领域长期以来一直寻找减小或消除微粒形成期间无定型部分产生的方式。
实际上,这正是WO95/05805的关键。此PCT申请寻找尽可能形成颗粒的均匀混合物,越均匀越好,以便保证粒度得到更紧密控制的附聚物。该理论似乎是,如果可保证粒度、颗粒的混合物和结晶性的一致性,控制所得附聚物的粒度和组成是容易的。因此,在附聚前,向这些颗粒中加入水分,以保证将其中全部易变无定型部分转变为结晶形式。
然而,本发明却已发现可以利用药物和/或粘合剂的此无定型性质来形成试剂的优点。通过作为粘合剂使用混合物的无定型部分,可消除对传统粘合剂的需要。但是,这只有在接触显著量的空气水分前发生附聚才能完成。一旦该颗粒已接触水分,易变无定型部分的转化将阻止固体附聚和直接的结晶间键的形成。
此外,现已发现只赋予颗粒这种无定型部分是不够的。当然,这对将药物微粒化早就是已知的。但是,由于多数药物的天然稳定性,它们可能不会真正转变为本文中讨论的结晶附聚物。再者,现已发现通过将一定量的无定型性质赋予给固体粘合剂,该粘合剂能容易地再转变为结晶形式,可实现本发明的优点。已发现使用固体相对稳定的物质如粘合剂,在粘合剂以其无定型形式和结晶形式存在时,只要这些变化形式在正确的时间使用,都提供了优点。
附图简述

图1说明转变前和后接触水分时,本发明的附聚物对水的吸收。
图2为方框图,说明了单独的乳糖或莫米松糠酸酯和乳糖的附聚物的制备流程。
图3说明了122cm(48英寸)坠落试验,其中°吸入器1,●吸入器2,吸入器3,吸入器4,□吸入器5,■吸入器6,|吸入器7,▲吸入器8,◇吸入器9,及◆吸入器10。
图4说明了对照组122cm(48英寸)坠落试验的结果,其中°吸入器1,●吸入器2,吸入器3,吸入器4,□吸入器5,■吸入器6,|吸入器7,▲吸入器8,◇吸入器9,及◆吸入器10。
发明详述本发明的附聚物是小颗粒的结合物质团。该附聚物包括至少一种首要物质和至少一种粘合剂。本发明的首要物质可以是任何物质,该物质可确实被本发明广泛使用制备自由流动的附聚物,该附聚物用于任何应用,包括药学、化妆品、食品和香料等。但是,优选该首要物质是给需要治疗的患者使用的药学活性试剂或药物。该药学活性试剂可以为预防目的预防给药,或在患病时为治疗或治愈目的使用。
本发明最优选该药学活性试剂或药物是能以干粉形式对呼吸系统包括肺进行给药的物质。例如,本发明的药物给药后可以通过肺吸收入血液中。但是,更优选该药学活性试剂是粉末药物,该药物能直接和/或局部地有效治疗肺或呼吸系统的一些病症。特别优选本发明的药学活性试剂非限制性地包括皮质甾类如莫米松糠酸酯、倍氯米松二丙酸酯、布地奈德、氟替卡松、地塞米松、氟尼缩松、曲安西龙、(22R)-6α,9α-二氟-11β,21-二羟基-16α,17α-丙基亚甲二氧基-4-孕-3,20-二酮、替泼尼坦等。还可使用β-激动剂(包括β1和β2-激动剂)非限制性地包括沙丁胺醇(舒喘宁)、特布他林、沙美特罗和比托特罗。福莫特罗(也称为埃福莫特罗(eformoterol)),如其富马酸酯和酒石酸酯,是一种高选择性的、具有支气管解痉作用的长效β2-肾上腺素能激动剂,它有效地治疗多种原因造成的可逆性阻塞性肺病,特别是哮喘。可按照本发明给药的另一种长效β-激动剂是TA-2005,化学命名为2(1H)-喹啉酮,8-羟基-5-[1-羟基-2-[[2-(4-(甲氧基苯基)-1-甲基乙基]氨基]乙基]单盐酸盐,[R-(R*,R*)]-形式的化学文摘登记号为137888-11-0,并公开于美国专利4579854,将其全文在此引为参考。可使用如异丙托溴铵和氧托溴铵等抗胆碱药。还可使用色甘酸钠、奈多罗米钠和白三烯拮抗剂如zafirlukast和普仑司特。班布特罗(如其盐酸盐)、非诺特罗(如其氢溴酸盐)、克仑特罗(如其盐酸盐)、丙卡特罗(如其盐酸盐)和溴沙特罗是高选择性的β2-肾上腺素能激动剂,也是可使用的。这些化合物中的一些可以以药用酯、盐、溶剂化物如水合物,或这些酯或盐的溶剂化物(如果存在)形式应用。该术语也旨在包括外消旋混合物及一种或多种光学异构体。本发明的药物还可以是可吸入蛋白质或肽如胰岛素、干扰素、降钙素、甲状旁腺激素、粒细胞集落刺激因子等。本文中“药物”可以指单一药学活性体自身,或任何两种或多种的联合形式,有利的联合的实例为含有皮质甾类和某种β-激动剂的剂型。本发明优选的药学活性试剂为莫米松糠酸酯。
为了在肺或上和/或下呼吸道局部使用有效,该药学活性试剂以约10μm或更小的颗粒给药是重要的。见“肺动力学工作小组,人呼吸道内部剂量测定的沉积和保留模型”(Task Group on Lung Dynamics,Deposition and Retention Models For Internal Dosimetry of theHuman Respiratory Tract),Health Phys.,12,173,1996。能这些治疗有效粒度的自由颗粒的正确给药的剂型是细颗粒部分。因此,细颗粒部分是给药期间结合的药物颗粒以粒度小于某些阈值的形式释放的药物自由颗粒的百分率的尺度。可以用CopleyInstruments(Nottingham)制造的多步液体尘埃测定器按照使用说明检测细颗粒部分。按照本发明,可接受的细颗粒部分至少占以具有空气动力粒度6.8μm或更小的自由颗粒提供的药物重量的10%,上述粒度在每分钟60升的流速下检测。
给药量将随一些因素变化,这些因素非限制性地包括患者的年龄、性别、体重、病症、药物、治疗过程、每天给药次数等。对于莫米松糠酸酯,每次给药即每次吸入的给药剂量一般为约10.0μg至约10000μg。优选剂量为25μg、50μg、75μg、100μg、125μg、150μg、175μg、200μg、250μg、300μg、400μg和/或500μg。
如本文中讨论的,该药物可以包括一些或全部为易变无定型成分。
本发明的固体粘合剂可以是可以以基本与上述药学活性试剂的粒度一致的粒度提供的,或降低到该粒度的任何物质。例如,无水莫米松糠酸酯(USP)的附聚物优选的粒度至少80%的不大于5μm,且至少95%的不大于10μm(由体积分布检测)。该固体粘合剂,如无水乳糖(NF)的粒度至少60%不大于5μm,至少90%小于1Oμm,且至少95%不大于20μm。二者的平均粒度基本相同并小于10μm。
当以结晶形式存在,即全部或几乎全部固体粘合剂的易变无定型成分转变为结晶形式,该粘合剂必须稳定,并能支持并维持附聚物和治疗活性试剂的粘合颗粒,以便它们同样可以以颗粒的细颗粒部分释放。该粘合剂还必须赋予该结晶附聚物以需要的性质,包括堆积密度、强度、自由流动性和保存稳定性。
优选该固体粘合剂的易变无定型成分,如果确实如此,它们占有了附聚物的一些或全部的易变无定型成分,在接触预选或预定刺激因素如湿度形式表示的空气水分,将从其无定型形式转变为结晶形式。但是,也可以使用符合所有上述标准并因其它预选刺激因素如温度、放射、制剂蒸汽等而转变的物质。优选的固体粘合剂包括多羟基醛、多羟基酮和氨基酸。优选所羟基醛和多羟基酮为水合的或无水糖类,非限制性地包括乳糖、葡萄糖、果糖、半乳糖、海藻糖、蔗糖、麦芽糖、棉子糖、甘露醇、松三糖、淀粉、木糖醇、甘露糖醇、肌醇、及其衍生物等。
特别优选的氨基酸包括甘氨酸、丙氨酸、甜菜碱和赖氨酸。
当此药物是彻底的结晶,或其中只含有非易变无定型成分时,该固体粘合剂必须提供附聚物系统所有的无定型成分,反之亦然。固体粘合剂物质和药物都不需要天然具有无定型成分,只要这种无定型成分可以可逆地赋予即可。
该药物、该粘合剂或其二者都含有一定百分率的无定型成分是可能的,该成分在使用和保存的条件下以及当提供预选的刺激因素时是非易变的或稳定的。此稳定的无定型成分不是上述易变无定型成分的一部分。通常情况下,该稳定的无定型成分对颗粒间的结合起一定作用。但是,它们对由本发明的无定型和结晶物质间转化而产生的颗粒间键合没有贡献。
因此,在某些制剂如莫米松糠酸酯的那些制剂中,所有的易变无定型成分由固体粘合剂提供。于是,必须提供足够的固体粘合剂给该附聚物系统赋予足够的易变无定型成分。但是,对于其它药物,例如,舒喘宁,其本身可含有易变无定型成分,与舒喘宁一起使用不含无定型成分的粘合剂或使用含较低百分率的无定型成分的粘合剂是可能的。太多的易变无定型成分可导致附聚物结合太紧密,从而不能产生需要的细颗粒部分。一般来说,该系统中无定型成分的量应为约1至约50%(重量),并优选约3至约30%(重量)。最优选易变无定型成分在该系统中的量为约5至约25%(重量)。当然,以在系统中无定型成分所占百分率的形式,分别确定粘合剂或药物的无定型成分是同样可接受的。因此,当该粘合剂含有全部易变无定型成分,且该粘合剂含有20%无定型成分,又其与药物以重量比1∶1提供时,在该系统中总易变无定型成分含10%(重量)。
在降低其粒度的期间内,一些易变无定型性质可赋予某些物质。因此,例如,如果无水乳糖在微粒化器如MICRON-MASTERJetPulverizer(由Jet Pulverizer Co.,Palmyra,New Jersey提供)中微粒化,则不仅得到所需的粒度,而且还赋予一定量的无定型成分,这是可能的。用其它传统的微粒制备设备如磨、喷雾干燥或球磨也可完成上述任务。见Briggner,Buckton,Bystrom and Darcy,“在研究粉末加工期间引起的结晶性变化中等温微量量热法的使用”,International Journal of Pharmaceutics,105(1994),125-135页。然而,其它人正试图减小所产生的无定型成分的程度,并将这种无定型成分视为不幸却不可避免的因粒度降低产生的副作用时,本发明发现可促使一定量的无定型成分的形成。
本发明还探索在附聚过程中的特定时间前,控制并维持固体粘合剂和/或药物的无定型性质。最终,用某些步骤来赋予固体粘合剂和/或药物的预选量的无定型物性质并将该无定型性质维持。例如,当如上所述用Jet Pulverizer粉碎无水乳糖时,在认可的压力如约50至约120psig(3.45至8.27×105牛顿/平方米)下进行粉碎。优选约80至100psig(5.51至6.89×105牛顿/平方米)。使用如此高的压力营造了特别剧烈的颗粒形成环境并通常增加了无定型成分的量。此外,申请人优选使用干燥的压缩氮气来粉碎此固体粘合剂,因为申请人发现在颗粒形成期间让无定型成分接触潮湿,会将无定型成分过早地再转变回结晶形式。
当然,还可能给粒度已经合格的固体粘合剂和/或药物的颗粒赋予无定型表面,或使用性质上固有无定型并可转变为结晶形式的微粒。
一旦存在足够的易变无定型成分,该无定型性质必须维持到需要将这些颗粒转变为彻底的结晶形式时。对于固体粘合剂或药物,如对潮湿敏感的乳糖,可通过在低湿度的条件下加工和保存来实现。
优选微粒化的物质随后在21℃在相对湿度(RH)小于约30%的条件下保存和/或加工,并更优选小于20%的RH。这意味着微粒化物质在等于或小于在21℃、30%RH的空气湿度下加工和保存。在不同温度下的空气湿度的准确量可由John A,Dean,Lange′s Handbook ofChemistry,第14版,McGraw-Hill,Inc.New York(1992)的“饱和空气中水蒸气的量”中,表5.27计算出。特别优选在21℃相对湿度小于10%的条件下保存含易变无定型成分的任何物质,并最优选在实际中尽可能让相对湿度接近0。所有加工可在任何温度下进行,但是加工通常在0℃至38℃更方便。
一般来说,不过早将固体粘合剂的无定型成分转变为结晶形式,并且不需要使用其它粘合剂的附聚固体粘合剂和药学活性试剂的方法,都可用于本发明。为此,人们一般不必按照上述美国专利4161516的附聚方法进行,其中在附聚前加入水和/或湿气作为粘合剂。这可能引起一些或全部无定型成分过早转变为结晶形式,该结晶形式会确实延迟附聚物形成并导致可变性。这种可变性还可导致太硬并结合过强的附聚物形成。即使当使用提供了特别剧烈的分散作用的吸入器进行这种附聚物的给药时,这些附聚物也可能不会产生可接受的细颗粒部分。
制备粒度为约100至约1500μm的附聚物的方法很重要。这些共聚物一般平均粒度为约300至约1000μm。更优选这些附聚物的平均粒度为约400至约700μm。最优选这些附聚物的平均粒度为约500至600μm。所得附聚物还具有约0.2至约0.4g/cm3的堆积密度,并更优选约0.29至约0.38g/cm3。最优选这些附聚物的堆积密度为约0.31至约0.36g/cm3。
对于药学活性试剂的给药来说,产生相对紧密的颗粒分布的附聚方法也是重要的。在本文中,粒度指附聚物的大小。优选不超过约10%的附聚物比平均值或靶附聚物粒度小50%或大50%。因此,对于所需300μm的附聚物,不超过约10%的附聚物比约150μm小,或者比约450μm大。
制备符合上述所有标准的本发明附聚物的优选方法包括将预选量的一种或多种药学活性试剂和微粒化的、含无定型成分的、干燥的固体粘合剂以约100∶1至约1∶500的比例混合,并优选此比例为约100∶1至1∶300(药物∶粘合剂),并更优选为20∶1至约1∶20。最优选药物以其与固体粘合剂量的比例为1∶3至约1∶10的量提供。
这些颗粒再优选在一些形式的机械混合装置中进行混合。优选混合得基本均匀。当然,获得绝对的均匀是不可能的。但是,其耐受量在混合时为±10%,而在附聚期间为±5%。以细颗粒形式混合这些组分在其过程中或其本身可能就是个挑战。例如,使用带有加强棒的Patterson-Kelly V形混合器,就可完成搅拌。优选在清洁的室内进行混合过程,如上所述,应控制室内湿度和温度。例如,在21℃和20%RH下,无定型成分转变才慢得足以允许混合。根据批量的大小,在共约3至15分钟内可完成混合。如果微粒化药物和固体粘合剂的混合物不再立即进行加工,应再将其保存在低湿和低温下。
对于与该固体粘合剂相比特别小量的药物来说,常规混合技术不可能产生可接受均匀性的混合物。此时,可使用下列改进(1)在微粒化之前将该药物(一种或多种)和此固体粘合剂混合;(2)当使用药学活性试剂的混合物,并且特别是当一种比另一种存在量显著大时,将这两种试剂一起混合,并将此混合物微粒化,然后与含有易变无定型成分的微粒化固体粘合剂混合;和/或(3)提供喷雾干燥形成微球,例如(a)将此药物溶解或悬浮于稀释剂或载体如乳糖的水溶液中,喷雾干燥,然后将所得微球与含易变无定型成分的微粒化固体粘合剂混合;或者(b)将含悬浮的、微粒化的稀释剂或载体颗粒如乳糖的药物的非水溶液或悬浮液喷雾干燥,然后与含易变无定型成分的固体粘合剂颗粒混合。实际上,即使对较大量的药物,可能需要使用第一种改进。
由混合器中,将混合后的颗粒倒入并通过附聚用的常规筛/锅联合机械。现在,这些颗粒可以被看作附聚,因为它们不再保持许多的其个体特性。它们不是本文中所述的“附聚物”,因为它们还不够小,不能适应一般为球形和/或更大密度的颗粒的收集的个别需要。
然后以其平面平行于地面的偏心圆运动旋转筛和锅。这可手工或用筛动设备。在锅的顶部进行垂直的断续的敲击,这迫使或定量使物质通过该筛进入下面的锅中,该锅的偏心运动有助于上述定义的附聚物的形成。这些附聚物也同时圆化。当然,该附聚过程,象然后本发明的附聚方法一样,必须在低湿条件下进行以防止固体粘合剂的无定型成分向结晶形式不需要的、过早的转化。
这些附聚物形成并通过,例如,通过另一个筛使其粒度适当后,它们可接触预选的刺激因素,如较高的湿度,以便引起附聚物内含的易变无定型成分向结晶形式的基本上的彻底转变。
当然,湿度越高,接触所需时间就越短。但是,优选逐渐和可控制的转化,因为这样附聚物的强度会被严密地控制。含易变无定型成分的附聚物可接触的相对湿度为约30%至约80%(在25℃),接触时间足以将全部无定型成分转化。更优选此易变无定型成分通过接触空气进行转化,该空气的水含量等于约40%至约60%的相对湿度(在约25℃检测相对湿度)。当该固体粘合剂是无水的如无水乳糖时这样作是特别有利的。接触时间可随附聚物的粒度和密度以及接触的表面积剧烈变化。例如,将一薄层附聚物放置在平底开口盘上,与将等量的附聚物放置在狭窄的缸内,将带来更快的整体转变。在某些情况下,接触时间长度需要数十分钟。在另一些情况下,可能需要一或二天。
因为优选接触控制在相对湿度为65%或更低(25℃),一般不会发生过度接触。只要提供足够的时间让附聚物的所有易变无定型成分转变为结晶形式,实际上可能发生的其它接触不会产生任何结果。但是,如果使用湿度高于约65%,那么水蒸气实质上可作为粘合剂。虽然用水作为粘合剂是熟知的,但是它对形成细颗粒部分的能力是有害的,特别是当与本文所述粘合的主要方式即结晶粘合联合使用时。因此,仍需要限制附聚物与超出彻底转化需要的升高的湿度接触。转化后,这些附聚物具有微粒间键合力,其检测值比转化前微粒间键合力大。
如上所述,所得附聚物的本质通常为天然的、自由流动的、粗糙的并耐处理的结晶。这些附聚物可保存、加工、计量并分散,而同时保持了其结构的完整性。这些附聚物还具有非常需要的且一致的粒度和粒度分布。也许是最重要的,本发明的这些结晶附聚物具有足够的强度使其可加工并进行拷打试验。同时,这些附聚物足够软,足以在给药期间充分破碎,以便提供可接受的细颗粒部分。一般来说,这些附聚物的强度为约50mg至约5000mg,并最优选为约200mg至约1500mg。用Seiko Instruments,Inc.Tokyo,Japan提供的SeikoTMA/SS 120C热机械分析仪,用产品说明书的方法检测压碎强度。应注意,用此方法检测的压碎强度受本文所述微粒间结晶键合的量和程度的影响。但是,附聚物的粒度也在检测压碎强度中起一定作用。一般说来,较大的附聚物并较小的颗粒需要更大的力才能压碎。
当按照实施例1所述的方案制备的附聚物以每次吸入100μg的量用转让给Schering Corporation的WO94/14492所述的粉末吸入器给药时,产生了足够剧烈的力来破坏这些附聚物,使其足以得到需要浓度的、粒度为约6.8μm或更小的自由药物颗粒。当然,当将此附聚物分散时必须产生的力的强度,依赖于这些附聚物内部的键合力。键合力越强,得到可接受细颗粒部分需要的力就越大。本发明的附聚物,虽然对某些吸入器来说是太强或太稳定,但是对于其它商购的吸入器是有用的,并且当从同样的吸入器分散时得到了可接受的细颗粒部分。这种吸入器非限制性地包括上述Schering吸入器,Diskhaler(Allen & Hanburys)、Accuhaler(Allen & Hanburys)、Diskus(Glaxo)、Spiros(Dura)、Easyhaler(Orion)、Cyclohaler(Pharmachemie)、Cyclovent(Pharmachemie)、Rotahaler(Glaxo)、Spinhaler(Fisons)、FlowCaps(Hovione)、Turbospin(PH&T)、Turbohaler(Astra)、EZ Breath(Norton Healthcare/IVAX)、MIAT-HALER(Miat)、Pulvinal(Chiesi)、Ultrahaler(Fisons/RhonePoulenc Rorer)、MAG-Haler(GGU)、Prohaler(Valois)、Taifun(Leiras)、JAGO DPI(JAGO)、ML Laboratories′DPI(MLLabotatories)。
该吸入器必须能产生足够的力以粉碎任何所用的附聚物,以便产生可接受的细颗粒部分。因此,按照本文所述的方法检测的破碎强度为1000mg的附聚物,必须与可提供足够的力以保证从其中每次给药至少产生10%细颗粒部分的吸入器联合使用。
如图1所示,比例为1∶5.8(重量)的莫米松∶无水乳糖附聚物在转化前和后在25℃接触50%的相对湿度。此图使用实线(I)表示附聚物转变为结晶形式前当接触湿气时,附聚物对湿气水分的吸收。湿气很快被吸收并达到最大值。此时,发生向结晶的转化。作为此转化的结果,水实际上被排出并且整个水含量下降。同样,一旦已经转变的附聚物接触湿气,它们可能吸收湿气中的小量的水,但是此后吸水曲线变得平缓。见虚线(II)。就其它而言,图1说明了按照本发明形成的附聚物的所得稳定性。
结晶附聚物的键合力增加的发现和利用,就一些原因而言是显著的。首先,所得附聚物是自由流动的、稳定的并能够适当地加工和包装。其次,该附聚物提供了所需的均匀性和堆积密度,使它们能一致地装进吸入器的给药孔中,即使对特别小的剂量也是如此。因此,该结晶附聚物可被准确地计量、检测和给药。这适当地说明于图2。当本发明的方法只用于乳糖时,并且当在附聚前向乳糖中加入湿气时,证明所得乳糖附聚物太软而不能被加工。因此在重复给药中就会出现显著的问题。当药物和乳糖的混合物在附聚前接触湿气时,会观察到同样的结果。
事实上,在按照本发明实施例1所述配制一批产品时,所用的无水乳糖已基本转化。当时还不知道此事实。当所得附聚方案不能产生所需的结果时,对其原因进行了调查。随后发现了乳糖的提前转化。因此,药物和/或粘合剂的易变无定型成分维持在该状态直至本文所述的附聚物的形成后,这是重要的。
图2也说明了另一个试验,在用湿气稳定前将含附聚物的莫米松填入吸入器。终产物不稳定并由于在吸入器的喷嘴或其它部位中的高残留量使给药效果差。当含附聚物的相同药物如本文所述通过接触湿气稳定时,所得附聚物硬、自由流动并容易加工。内部键合力增加,带来了适当的加工特性。而该附聚物保持足够软,以便得到可接受的细颗粒部分。
本发明带来了较高程度的给药均匀性。如表1所示,本发明制备的附聚物填入上述WO94/14492所述的10个吸入器中。吸入器设定每次吸入施用100μg的莫米松糠酸酯。莫米松糠酸酯以与无水乳糖1∶5.8的比例(总附聚物680μg)提供,并按照实施例1所述制备。
表1标记号码的吸入的给药均匀性(发射剂量)
*理想剂量是100μg**百分变化系数用类似于Pharmaceutical Forum,Vol.20,No.3,(1994),7494页描述的干粉吸入器的剂量单位样品检测仪测定发射剂量。用一端连接多孔玻璃滤器的分液漏斗以空气流速60L/分钟收集该发射剂量,共收集4秒。然后将该药物溶解于溶剂中并用HPLC按照本领域已知方法进行分析。由表1清楚地证明从第一次吸入剂量到第120次吸入剂量,具有极大的一致性。此外,吸入器与吸入器之间的一致性也比一般预期的显著提高。也许最重要的是10个吸入器的全部120次给药的平均值表现出极大的一致性。这些数值也说明在给药时损失的物质非常少。因此,由填入给药孔带来的残留和给药问题降至最低。
还检测了这些发射剂量中的细颗粒部分(占总剂量的百分率)(表2)。以60L/分钟流速用Copley Industries(Nottingham)LTD制备的多步(5步)液体尘埃测定器测定细颗粒部分(≤6.8μm)。
表2
由每个吸入器检测的细颗粒部分大于10%,此外,第一次到第120次极均匀。
多步尘埃测定器使人们能检测每个步骤中某粒度颗粒的部分。如表3所示,第1次到第120次之间,就累积细颗粒部分中小于13μm,小于6.8μm,小于3.1μm和小于1.7μm而言,具有极大的均匀性。
表3
*三次检测的平均值最后,如图3和4所示,本发明的附聚物非常耐用。图4是对照组。在此情况下,它用图示说明了10个吸入器在120次给药中每次的给药的重量百分数或发射剂量重量百分数。所用吸入器是上述Schering粉末吸入器,剂量为100μg莫米松糠酸酯和无水乳糖粘合剂,按照实施例1所述制备。图3表示了对于同样结构的吸入器在由约122cm(48英寸)的高度坠落在应地面上后,同样的数据。比较图3和4的结果表明总体上变化很小。
本发明有助于确保附聚物均匀性的空前程度,其显著降低了现存的给药的变化性。例如,如果在附聚前或期间加入湿气,一定比例的固体粘合剂会开始转变为结晶形式。结晶形成的程度可在颗粒和颗粒之间有极大的变化。结果,附聚物的粒度和微粒之间键合的物理强度会有极大变化。此外,实际上该粘合剂可开始溶解,而这样会带来结合太强的键。这立即转化为吸入期间剂量的变化性,及给药的细颗粒部分方面的变化性。本发明克服了此问题并有效地提供了均匀的附聚物,该附聚物容易制备、保存、加工和给药。
实施例实施例1为保证产品的质量和均匀性,加工和制备本发明附聚物的环境条件如下·莫米松和乳糖的微粒化21℃±2℃,20%RH±5%·微粒化乳糖的保存21℃±2℃,小于15%RH·粉末的混合和附聚21℃±2℃,20%RH±5%·粉末附聚物的转变25℃±2℃,50%RH±5%装备有棒状增强器的Patterson-Kelley V形混合器被安装在清洁的室内,室内温度和湿度分别控制在21℃和20%RH。将微粒化无水乳糖的一半加入该V形混合器中。再加入微粒化的无水莫米松糠酸酯。然后,加入平衡量的微粒化无水乳糖。
此V形混合器以约24RPM的转速工作5分钟。接着,该V形混合器旋转3分钟,同时棒状增强器在第1分钟开动1分钟,其销舌速度为约9米/秒。然后重复此混合步骤。
然后从此V形混合器的右部、左部和底部取样,用单位剂量取样器检测混合物的均匀性。
将此混合物附聚,在清洁的室内安装摇动筛床,室内温度和湿度分别控制在21℃和20%RH。用70%乙醇洗涤30目筛、平底锅和不锈钢容器,并干燥。
将筛/平底锅联合并装备摇动器。向每个12英寸、30目筛/平底锅装置中加入比例为1∶5.8(药物∶粘合剂)的200g莫米松∶无水乳糖混合物。将此粉末混合物散布在筛上,以便粉末混合物的高度低于筛框边缘。将该筛/平底锅放置在摇动器的筛支架上。在筛顶部盖上不锈钢筛盖。
将记时器设定为10分钟,并开动此装置,在1英寸偏心轨道上以约280rpm的转速进行偏心圆摇动。还以150下/分钟的速度轻敲此筛/平底锅使物质通过此筛。停止该方法并将多锅合并。
将形成的附聚物倒在20目筛上并轻轻敲击此筛。弃去保留在该20目筛上的物质。
将通过20目筛的附聚物保存在适当的容器中。
当准备将此物质转变时,将此附聚物散布在不锈钢盘中,并暴露在清洁的室内,在24小时内将室内温度和湿度控制在25℃和50%RH。然后合并这些附聚物并置于适当的容器中。
用Vanderkamp Tap Density Tester(Vanderkamp堆密度检测器)检测一堆的堆积密度。附聚物的粒度分布用Malvern 2605L粒度分析仪检测。
实施例2总体上按照实施例1的方法装备另外三批。批次和药物与粘合剂的比例见下表4表4莫米松∶乳糖附聚物的再现性
正如容易想到的,不论粘合剂和药物的比例变化,以及批重量的变化与否,就堆积密度和粒度分布而言,都观察到了高度的可再现性。本文中粒度指附聚物的大小,而不是粘合剂和/或药物微粒的大小。
权利要求
1.制备附聚物的方法,包括步骤(a)提供至少一种首要物质的颗粒和至少一种固体粘合剂的颗粒,所述首要物质和所述固体粘合剂的至少一种含有预选量的易变无定型成分,该成分能由于接触预选刺激因素转变为结晶形式,所述易变无定型成分以足以形成附聚物的量提供;(b)将所述首要物质的和所述粘合剂的所述颗粒附聚,同时维持所述预选量的易变无定型成分;并于是(c)让所述附聚物中的所述易变无定型成分接触所述预选刺激因素,以便将所述易变无定型成分转变为结晶形式。
2.权利要求1所述的方法,其中所述首要物质包括药学活性试剂。
3.权利要求2所述的方法,其中所述药学活性试剂包括下列物质中的至少一种皮质甾类、β-激动剂、抗胆碱药、白三烯拮抗剂和可吸入蛋白质或肽。
4.权利要求2所述的方法,其中所述药学活性试剂包括下列物质中的至少一种莫米松糠酸酯、倍氯米松二丙酸酯、布地奈德、氟替卡松、地塞米松、氟尼缩松、曲安西龙、沙丁胺醇、舒喘宁、特布他林、沙美特罗、比托特罗、异丙托溴铵、氧托溴铵、色甘酸钠、奈多罗米钠、zafirlukast、普仑司特、福莫特罗、埃福特罗、班布特罗、非诺特罗、克仑特罗、丙卡特罗、溴沙特罗、(22R)-6α,9α-二氟-11β,21-二羟基-16α,17α-丙基亚甲二氧基-4-孕-3,20-二酮、TA-2005、替泼尼坦、胰岛素、干扰素、降钙素、甲状旁腺激素和粒细胞集落刺激因子。
5.权利要求2所述的方法,其中所述药学活性试剂包括莫米松糠酸盐。
6.权利要求2所述的方法,其中所述药学活性试剂的所述颗粒的平均粒度为10μm或更小。
7.权利要求1所述的方法,其中所述固体粘合剂包括下列物质中的至少一种多羟基醛、多羟基酮和氨基酸。
8.权利要求1所述的方法,其中所述固体粘合剂包括水合或无水糖。
9.权利要求1所述的方法,其中所述固体粘合剂包括无水乳糖或水合乳糖。
10.权利要求1的方法,其中所述固体粘合剂包括无水乳糖。
11.权利要求2所述的方法,其中所述固体粘合剂的所述颗粒的平均粒度为10μm或更小。
12.权利要求2的方法,其中所述附聚物含有约1%至约50%的易变无定型成分。
13.权利要求2的方法,其中所述附聚物含有约3%至约30%的易变无定型成分。
14.权利要求2的方法,其中所述附聚物含有约5%至约25%的易变无定型成分。
15.权利要求2的方法,还包括将药学活性试剂和所述固体粘合剂的所述颗粒在所述附聚步骤前混合的步骤。
16.权利要求14的方法,其中药学活性试剂和所述固体粘合剂的所述颗粒基本混合均匀。
17.权利要求2的方法,其中药学活性试剂和所述固体粘合剂的所述颗粒在进行偏心旋转运动的平底锅中附聚。
18.权利要求2的方法,其中所述附聚物的平均粒度为约300至约1000μm。
19.权利要求2的方法,其中所述附聚物的平均粒度为约100至约1500μm。
20.权利要求1的方法,其中所述预选刺激因素是空气湿气。
21.权利要求1的方法,其中所述固体粘合剂在结晶前维持在小于或等于在21℃检测时相对湿度25%的湿气量。
22.权利要求1的方法,其中所述固体粘合剂在结晶前维持在小于或等于在21℃检测时相对湿度20%的湿气量。
23.权利要求2的方法,还包括通过将所述附聚物接触湿气量等于25℃检测时约30%至约80%的相对湿度的空气,将所述附聚物中的所述易变无定型成分转变为结晶形式。
24.权利要求23所述的方法,其中通过将所述附聚物接触湿气量等于25℃检测时约40%至约60%的相对湿度的空气,将所述附聚物中的所述易变无定型成分转变为结晶形式。
25.权利要求2的方法,其中所述附聚物的所述颗粒在所述无定型成分转变为结晶形式后比转变前彼此之间结合得更强。
26.权利要求2的方法,其中所述易变无定型成分转变后,所述附聚物的压碎强度为约50mg至约5000mg。
27.权利要求2的方法,其中所述易变无定型成分转变后,所述附聚物的压碎强度为约200mg至约1500mg。
28.权利要求1的方法,还包括将所述固体粘合剂和/或所述首要物质微粒化的步骤,以在提供所述颗粒的步骤前给所得颗粒赋予预选量的无定型成分。
29.权利要求28的方法,其中所述固体粘合剂用气流粉碎机使用基本无水的气体进行微粒化。
30.权利要求2的方法,其中所述药学活性试剂与所述固体粘合剂以重量比为约1000∶1至约1∶1000混合。
31.权利要求2的方法,其中所述药学活性试剂与所述固体粘合剂以重量比为约100∶1至约1∶500混合。
32.权利要求2的方法,其中所述药学活性试剂与所述固体粘合剂以重量比为约100∶1至约1∶300混合。
33.权利要求2的方法,其中所述药学活性试剂与所述固体粘合剂以重量比为约20∶1至约1∶20混合。
34.权利要求2的方法,其中所述药学活性试剂与所述固体粘合剂以重量比为约1∶3至约1∶10混合。
35.权利要求1所述方法的产品。
36.权利要求2所述方法的产品。
37.权利要求3所述方法的产品。
38.制备含药学活性试剂的附聚物的方法,步骤如下步骤(a)提供至少一种平均粒度小于约10μm的药学活性试剂;(b)提供至少一种平均粒度为10μm或更小的固体粘合剂;所述药学活性试剂和所述固体粘合剂的至少一种含有预选量的易变无定型成分,使其足以在转变时形成附聚物;(c)所述药学活性试剂和所述固体粘合剂的所述颗粒形成均匀的混合物,同时维持所述预选量的易变无定型成分;(d)将所述药学活性试剂和所述固体粘合剂的所述颗粒附聚,同时维持所述固体粘合剂的所述预选量的易变无定型成分;并(e)此后允许所述附聚物的所述易变无定型成分转变为结晶形式;以形成(f)附聚物,该附聚物能自由流动,含有键合连接并且其强度为50mg至5000mg。
39.权利要求38所述的方法,其中所述药学活性试剂包括下列物质中的至少一种皮质甾类、β-激动剂、抗胆碱药、白三烯拮抗剂和可吸入蛋白质或肽。
40.权利要求38所述的方法,其中所述药学活性试剂包括莫米松糠酸酯。
41.权利要求38所述的方法,其中所述固体粘合剂包括无水乳糖或水合乳糖。
42.权利要求38的方法,其中所述附聚物在转变前含有约1%至约50%的易变无定型成分。
43.权利要求38的方法,其中所述附聚物在转变前含有约3%至约30%的易变无定型成分。
44.权利要求38的方法,其中所述附聚物在转变前含有约5%至约25%的易变无定型成分。
45.权利要求38的方法,其中所述附聚物的强度为200mg至约1500mg。
46.用于制备用于通过口腔或鼻内吸入治疗给药的、药学活性试剂的自由流动的结晶附聚物剂型的中间体附聚物,所述中间体附聚物含有所述药学活性试剂的颗粒和固体粘合剂的颗粒,所述药学活性试剂或所述固体粘合剂含有预选量的易变无定型成分,其足以允许在接触湿气时形成结晶附聚物,所述药学活性试剂的所述颗粒和所述固体粘合剂的所述颗粒的平均粒度为10μm或更小,且所述颗粒以1000∶1至1∶1000的重量比提供。
47.权利要求46的中间体附聚物,其平均粒度为300至1000μm,而堆积密度为约0.2至约0.4g/cm3。
48.权利要求46的中间体附聚物,其中所述乳糖包括无水乳糖。
49.权利要求46的中间体附聚物,其堆积密度为约0.29至约0.38g/cm3。
50.权利要求46的中间体附聚物,其平均粒度为400至约700μm。
51.权利要求46所述的中间体附聚物,其中所述药学活性试剂包括下列物质中的至少一种皮质类固醇、β-激动剂、抗胆碱药、白三烯拮抗剂和可吸入蛋白质或肽。
52.权利要求46所述的中间体附聚物,其中所述药学活性试剂包括下列物质中的至少一种莫米松糠酸酯、倍氯米松二丙酸酯、布地奈德、氟替卡松、地塞米松、氟尼缩松、曲安西龙、沙丁胺醇、舒喘宁、特布他林、沙美特罗、比托特罗、异丙托溴铵、氧托溴铵、色甘酸钠、奈多罗米钠、zafirlukast、普仑司特、福莫特罗、埃福特罗、班布特罗、非诺特罗、克仑特罗、丙卡特罗、溴沙特罗、(22R)-6α,9α-二氟-11β,21-二羟基-16α,17α-丙基亚甲二氧基-4-孕-3,20-二酮、TA-2005、替泼尼坦、胰岛素、干扰素、降钙素、甲状旁腺激素和粒细胞集落刺激因子。
53.权利要求46所述的中间体附聚物,其中含易变无定型成分约1至约50%(重量)。
54.一种给药系统,包括(a)吸入器,所述吸入器包括保存结晶附聚物形式的药学活性试剂的保存贮库,该保存量足以提供其单个剂量的多次给药,用于由所述保存贮库中检测和计量预选量的所述药学活性试剂的计量装置,以及由所述计量装置向患者的口腔或鼻内施用所述药学活性试剂的喷嘴;和(b)一定量的药学活性试剂,该量足以提供其单个剂量的多次给药,所述药学活性试剂保存在所述保存贮库中,以所述药学活性试剂的颗粒和结晶粘合剂的颗粒的附聚物的形式提供,其中所述颗粒的平均粒度为10μm或更小,且其组分以1000∶1至1∶1000的重量比提供,所述附聚物的平均粒度为300至1000μm,而其堆积密度为约0.2至约0.4g/cm3;并且所述附聚物和所述吸入器,当联合使用时,能产生至少10%的细颗粒部分,其吸入空气流速约60L/分钟。
55.权利要求54的给药系统,其中所述结晶附聚物的强度为约50mg至约5000mg,而所述吸入器设计得能赋予所述附聚的药学活性试剂一定量的力,该力足以产生至少10%的细颗粒部分,其吸入空气流速约60L/分钟。
56.权利要求54的给药系统,其中所述结晶附聚物的强度为约200mg至约1500mg,而所述吸入器设计得能赋予所述附聚的药学活性试剂一定量的力,该力足以产生至少10%的细颗粒部分,其吸入空气流速约60L/分钟。
全文摘要
本发明涉及制备药物和固体粘合剂的附聚物的方法。该方法包括制备单一的附聚物颗粒,然后在附聚后例如通过加入湿气对其中的易变无定型成分进行转变。能转变的附聚物和完成的附聚物及含有它们的口腔或鼻内给药系统也受到注目。该方法制备了粗糙的附聚物,但是给药时它们能产生可接受的细颗粒部分。
文档编号A61K47/26GK1903179SQ20061009998
公开日2007年1月31日 申请日期1998年3月16日 优先权日1997年3月20日
发明者杨宗德 申请人:先灵公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1