一种电效应驱动凝固结晶过程的装置的制作方法

文档序号:3363196阅读:143来源:国知局
专利名称:一种电效应驱动凝固结晶过程的装置的制作方法
技术领域
本发明涉及一种凝固结晶的装置。
背景技术
进入21世纪以来,高技术产业尤其是航空、航天及汽车工业对材料的使用要求越 来越苛刻,科技人员迫切期待从控制材料的凝固进程入手寻求获得具有优异性能的新材 料。对微重力场、电场、磁场、电磁场及超声波等外场作用下的材料凝固进程控制已展开了 深入研究,并取得丰硕成果。其中电场作用下凝固技术具有设备简单,易操作,改变凝固组 织明显等优点受到了极大的关注。电场作用下的材料凝固进程研究始于上世纪60年代,至今已有近半个世纪,大量 实验数据证实电场可以提高金属及其合金在凝固时固液(S/L)界面前沿处的温度梯度,影 响其晶体生长,细化凝固组织。电场对金属及其合金凝固的影响机制可从以下几点考虑 (1)电场热效应或热电效应(包括Joule热效应,Seebeck效应,Peltier效应,Thomson效 应);(2)电迁移;(3)电场感生出Lorentz力驱动熔体流动。热效应直接影响S/L界面处的 温度场,造成S/L界面处凝固方向上温度梯度的变化。电迁移影响凝固溶质分配系数。金 属凝固前液相的流动对凝固进程的传热、传质及动量传输过程产生影响。此三者互相制约, 耦合关系如图1所示。为直观地表征金属及其合金的凝固行为特征包括溶质再分配、枝晶尖端生长,深 入揭示材料凝固本质特征,科研工作者不断更新观测及分析手段。研究者们将各种形式的电场应用到合金熔体阶段、普通凝固条件、定向凝固条件 及凝固后热处理,选取的材料包括Pb-Sn、Zn合金、Al合金、铸铁、不锈钢、高锰钢、镁合金, 分别得到电场影响金属凝固进程和改变凝固组织的实验结果。在对电场作用下探讨金属的 凝固机制方面,学者们也进行了较为深入的研究。顾根大在定向凝固条件下对Al - 4. 5wt. %Cu及Sn — 5wt. %Bi合金施加平行于生 长方向的稳衡电场时,考虑界面静电势、界面电压和电场强度、界面处原子的跳跃几率与界 面电场的关系、溶质的电场能和界面能及固液两侧原子的能量状态后,给出在生长速度为 零时的电场下界面分配系数的最终定量关系式。分析得出随着电流密度增大合金的界面 分配系数减小;直流电场显著提高了Sn - 5%wt. Bi合金的界面稳定性,其作用表现在,平 面界面一失稳界面一胞晶界面一枝晶界面转变的临界生长速度都随电流密度增大而迅速 增大。认为,电场导致界面稳定性迅速增加的主要原因是电场使界面能和界面上最危险干 扰波的频率增大及电场导致液相中对流增大。上海大学在定向凝固条件下研究脉冲电场对 纯Al、Al合金固液界面形貌的影响,通过在Al-4. 5wt. %Cu合金上下两端通以脉冲电流,发 现随着脉冲电流密度的增大,合金胞状晶间距及糊状区深度减小,而且其固液界面形貌从 枝晶转向胞晶甚至平界面,脉冲电流使得固液界面前沿温度梯度增大,促进了溶质分布更 加均勻,二次枝晶生长被抑制。众所周知在金属的定向凝固进程中,固液界面是决定材料凝 固的重要因素,对材料的溶质分布、晶体形貌、组织结构有着重要影响,进而决定所凝固材料的性能,这说明脉冲电场对控制凝固界面前沿的凝固行为,改变溶质分配,影响固液界面前沿的温度梯度等方面必将发挥重要作用。将直流电流和交流电流作用于铸造凝固过程的研究始于20世纪60年代,当时发 现通入电流的Al-Ni合金熔体的最终凝固组织发生变化,特别是有效溶质分配系数发生变 化,在共晶合金促进两个组成相的分离或偏聚。紧接着前苏联在70年代对铸铁凝固中施加 电流,表明石墨相的平均尺寸减小了 20%-40%,而且石墨相由片状变得卷曲,拉伸强度提高 了 30%。进入80年代以后,美国学者A. K. Misra在Pb-Sb-Sn三元合金凝固中通入直流电 流,得到了细小均勻的凝固组织,共晶片层间距也减小到原来的1/4,且共晶团数量增加,这 充分验证了电流有促进生核和抑制长大的假设。90年代以后国内外学者初步证实了电流密 度与一次枝晶间距呈现线性反比关系,而且高的电流密度有利于增大凝固前沿固液两相的 焦耳热差值,提高界面能,提高温度梯度,使得凝固界面稳定性增加。然而普通的电流技术要想获得高的电流密度需要相当可靠的高功率电力设施保 障,成本昂贵,不利于实际应用。人们发现脉冲电流(电脉冲)可以通过功率较低和投资较小 的电源设备实施间歇式大能量输出,自此电脉冲对金属凝固组织的影响成为新兴的研究方 向。美国麻省理工学院M. C. Flemings教授等人率先对合金铸造过程中施加脉冲电流进行 了研究,他们采用的是低熔点Sn-15%Pb合金熔体,发现在凝固的起始阶段施加脉冲电流可 使组织中的树枝晶转变为球状晶,而且形貌取决于放电峰值电压、固相体积分数和凝固冷 却速率;他们还观察到金属液面的波动现象,证实了脉冲电流充放过程所造成伸缩力的存 在。究竟是哪种机制在控制凝固中起主导作用,还要根据不同材料的物性,成分等因 素决定,不能一概而论,而且凝固是一个复杂能量体系的转变过程,伴随着传热、传质、动量 传输,一个外界因素的扰动很难被放大显示在最终组织性能上,因此迫切期待简化凝固过 程,过滤无关影响因素,重点研究电场某一种效应对金属凝固过程的影响机制。在晶体生长观测方面,从已有的文献资料可看出,多为一些模型合金在无电场下 的凝固结晶行为研究,如西北工业大学自制的装置由4块载玻片组成的一个条形空间,两 边插入相同厚度的铜片,再经透明有机胶无缝粘合而成,其中阴影部分为模型合金。温控 系统通过铜片精确调节生长室中的温度梯度,得到不同的晶体生长形貌。但在显微镜下直接观测电场下晶体生长的装置还未见报道。

发明内容
本发明为了解决现有的用于观测晶体结晶行为的装置不能直观的观测到电场作 用下晶体生长情况的问题,提供一种电效应驱动凝固结晶过程的装置。一种电效应驱动凝固结晶过程的装置,它包括电场发生系统、恒温水循环系统、结 晶器、CCD显微镜、热电阻、通讯仪表、串行通讯口、USB总线接口电路和计算机;
所述电场发生系统的正极与结晶器的热端相连,电场发生系统的负极与结晶器的冷端 相连,恒温水循环系统与结晶器相连通,保证结晶器温度恒定,CCD显微镜设置在结晶器的 正上方,并且通过USB总线接口电路与计算机的数据通讯端相连,薄膜钼热电阻预置在结 晶器熔区内,并且与通讯仪表的数据输入端相连,通讯仪表的数据输出端通过串行通讯口 与计算机的数据通讯端相连。
本发明的装置既可直接观测具有小晶面晶体生长特征或非小晶面晶体生长特征 的晶体生长过程,控制温度梯度并施加稳衡电场、交流电场及脉冲电场作用于晶体生长过 程中,最终制备出电场作用下的晶体凝固试样又可为材料在外场下的凝固行为理论研究奠 定基础以丰富材料非平衡凝固学科内涵。本发明为直接用于电场下观测晶体结晶行为的装置,该装置具备实时温度测量及 记录,动态照片及视频录制,电场大小及方向参数可控且输出平稳,大温度梯度,体积较小 等优点。本发明适用于需要直接观测结晶过程的情况。


图1为电场对金属材料的耦合作用关系示意图。图2为电效应驱动凝固结晶过程 的装置的结构示意图。图3为图2中虚线椭圆部分的局部放大示意图。图4为无电场时丁 二腈类金属模型合金的凝固时的柱状树枝晶生长照片。图5为稳衡电场下丁二腈类金属模 型合金的凝固时的柱状树枝晶生长照片。图6为NH4Cl晶体结晶过程中熔区温度变化曲线。 图7为NH4Cl晶体在结晶400s时的熔区内枝晶生长照片。图8为NH4Cl晶体在结晶422s 时的熔区内枝晶生长照片。图9为无电场时丁二腈类金属模型合金定向凝固时的柱状树枝 晶生长照片。图10为稳衡电场下丁二腈类金属模型合金定向凝固时的柱状树枝晶生长照 片。图11为无电场时丁二腈类金属模型合金凝固时的胞晶生长照片。图12为稳衡电场下 丁二腈类金属模型合金凝固时的胞晶生长照片。图13为利用本发明的装置在显微镜下直 接观测电场下晶体生长的工作原理的流程图。图13为结晶器103的俯视图。图14为显微 镜下直接观测电场下晶体生长的工作原理的流程图。
具体实施例方式具体实施方式
一、结合图2说明本实施方式,一种电效应驱动凝固结晶过程的装 置,它包括电场发生系统101、恒温水循环系统102、结晶器103、CXD显微镜4、热电阻5、通 讯仪表7、串行通讯口 8、USB总线接口电路11和计算机12 ;
所述电场发生系统101的正极与结晶器103的热端相连,电场发生系统101的负极与 结晶器103的冷端相连,恒温水循环系统102与结晶器103相连通,保证结晶器103温度恒 定,CXD显微镜4设置在结晶器103的正上方,并且通过USB总线接口电路11与计算机12 的数据通讯端相连,薄膜钼热电阻5预置在结晶器熔区30内,并且与通讯仪表7的数据输 入端相连,通讯仪表7的数据输出端通过串行通讯口 8与计算机12的数据通讯端相连。
具体实施方式
二、结合图3说明本实施方式,本实施方式是对具体实施方式
一的 进一步说明,所述电场发生系统101包括灵敏电流计1和电源10 ;
所述恒温水循环系统102包括熔区冷端恒温水循环系统、熔区垂直电极恒温水循环系 统和熔区热端恒温水循环系统;
所述结晶器103包括熔区30、熔区热端电极插板29、熔区冷端电极插板34、上端垂直电 极33、下端垂直电极21、熔区热端传热块27、熔区冷端传热块36、垂直电极上端传热管31、 垂直电极下端传热管20;
所述熔区30为带有内部空腔结构的矩形碳酸酯块,所述内部空腔为被上下表面玻璃 片、聚碳酸酯板及熔区冷端电极插板34的一个端面、热端电极插板29的一个端面所约束的狭长空间;
熔区热端传热块27的一个端面与熔区热端电极插板29的一个端面对接,熔区热端电 极插板29的另一个端面构成了熔区30的一个端面,熔区冷端电极插板34的一个端面构成 了熔区30的另一个端面,熔区冷端电极插板34的另一个端面与熔区冷端传热块36的一个 端面对接,在熔区30内放置透明类类金属合金在垂直于熔区30的温度梯度方向上,且在熔 区30的另一个侧面设置有下端垂直电极21,垂直电极上端传热管31设置在上端垂直电极 33的表面,垂直电极下端传热管20设置在下端垂直电极21的表面;
所述电场发生系统101的电源10的正极与熔区热端电极插板29相连,电源10的负极 与熔区冷端电极插板34相连,灵敏电流计1串联在电源10、熔区热端电极插板29与熔区冷 端电极插板34组成的电路中;
熔区热端恒温水循环系统与电场发生系统101的熔区热端传热块27连通,熔区冷端恒 温水循环系统与电场发生系统101的熔区冷端传热块36连通,熔区垂直电极恒温水循环系 统与电场发生系统101的上端垂直电极33和下端垂直电极21连通。
具体实施方式
三、结合图3说明本实施方式,本实施方式是对具体实施方式
二的 进一步说明,
熔区热端恒温水循环系统包括熔区热端水浴加热及温控模块23、熔区热端加热循环水 泵24、两根循环管25和熔区热端加热用水浴26 ;
所述熔区热端传热块27和熔区冷端传热块36内部均带有马蹄形联通沟槽; 所述熔区热端水浴加热及温控模块23的温度感应部分浸没在熔区热端加热用水浴26 中,一根循环管25 —端插入熔区热端加热用水浴26中,一根循环管25的另一端与熔区热 端传热块27沟槽的一端连通,另一根循环管25 —端通过熔区热端加热循环水泵24插入熔 区热端加热用水浴26中,另一根循环管25的另一端与熔区热端传热块27沟槽的另一端连 通,两根循环管25组成一个恒温循环系统,保持熔区热端温度恒定;
熔区垂直电极恒温水循环系统包括熔区垂直电极水浴加热及温控模块18、熔区垂直电 极加热循环水泵22、三根循环管25和熔区垂直电极加热用水浴19 ;
所述熔区垂直电极水浴加热及温控模块18的温度感应部分浸没在熔区垂直电极加热 用水浴19中,一根循环管25 —端插入熔区垂直电极加热用水浴19中,一根循环管25的另 一端与垂直电极下端传热管20的一端相连通,另一根循环管25的一端与垂直电极下端传 热管20的另一端相连通,另一根循环管25的另一端与垂直电极上端传热管31的一端相连 通,第三根循环管25 —端通过熔区垂直电极加热循环水泵22插入熔区垂直电极加热用水 浴19中,第三根循环管25的另一端与垂直电极上端传热管31的另一端相连通,三根循环 管25组成一个恒温循环系统,保持熔区垂直电极温度恒定;
熔区冷端恒温水循环系统包括冷端水浴温控仪表17、熔区冷端水冷循环水泵15、两根 循环管25和熔区冷端恒温水浴16 ;
所述冷端水浴温控仪表17的温度感应部分浸没在熔区冷端恒温水浴16中,一根循环 管25 —端插入熔区冷端恒温水浴16中,一根循环管25的另一端与熔区冷端传热块36沟 槽的一端连通,另一根循环管25 —端通过熔区冷端水冷循环水泵15插入熔区冷端恒温水 浴16中,另一根循环管25的另一端与熔区冷端传热块36沟槽的另一端连通,两根循环管 25组成一个恒温循环系统,保持熔区冷端温度恒定;具体实施方式
四、本实施方式与具体实施方式
三的不同之处在于循环管25为塑料循环管。
具体实施方式
五、本实施方式与具体实施方式
二或三的不同之处在于垂直电极上端传热管31和垂直电极下端传热管20为紫铜传热管,熔区热端传热块27和熔区冷端传热 块36为紫铜传热块。
具体实施方式
六、本实施方式与具体实施方式
三的不同之处在于熔区热端水浴加 热及温控模块23由热端加热器13-1和热端水浴温控仪表14-1组成,所述热端加热器13-1 的信号输入端与热端水浴温控仪表14的信号输出端相连;
熔区垂直电极水浴加热及温控模块18由垂直电极加热器13-2和垂直电极水浴温控仪 表14-2组成,所述垂直电极加热器13-2的信号输入端与垂直电极水浴温控仪表14-2的信 号输出端相连。
具体实施方式
七、结合图2和图3说明本实施方式,本实施方式是利用上述装置在 显微镜下直接观测电场下晶体生长的工作原理
步骤一、在熔区30形成温度梯度,具体过程如下
熔区热端电极插板29和熔区冷端电极插板34连接电源10,熔区热端电极插板29和熔 区冷端电极插板34形成温度梯度GT,由熔区热端加热循环水泵24将熔区热端加热用水浴 26循环至熔区热端传热块27上形成熔区热端,熔区冷端水冷循环水泵15将熔区冷端恒温 水浴16循环至熔区冷端传热块36形成熔区冷端;
下端垂直电极21和上端垂直电极33通过熔区垂直电极加热循环水泵22循环保证下 端垂直电极21和上端垂直电极33温度与晶体在熔区30形成熔体时温度一致;
步骤二、熔区热端电极插板29和熔区冷端电极插板34连接电源10形成平行于温度梯 度Gt方向的电场强度E,下端垂直电极21和上端垂直电极33连接电源10产生于垂直温度 梯度Gt方向的电场强度E’ ;
步骤三、CXD显微镜4设置在结晶器103的正上方,通过CXD显微镜4实时拍摄熔区 30内的晶体生长的照片,并传递至USB总线接口电路11,利用计算机12保存晶体生长的照 片;
步骤四、将灵敏电流计1、电源10、熔区热端电极插板29与熔区冷端电极插板34连接 成回路,预置的薄膜钼热电阻5直接测量熔区30的温度,并通过通讯仪表7传递至串行通 讯口 8,进行温度实时测量记录。调整熔区热端加热用水浴26温度及熔区冷端恒温水浴16温度控制熔区30内晶 体生长过程。调整电源10电流强度/的大小以输出不同电流密度的电流可以改变施加在 平行于温度梯度Gt方向的电场强度E和垂直温度梯度Gt方向的E’,并作用在晶体凝固界 面上。首先观察电场方向与温度梯度方向垂直的情况
如图4所示,此照片是在定向凝固的生长速度r=12. 5 μ m/s,温度梯度GT=3. 82k/mm的 情况下拍摄的,容易看出,该晶体在垂直其生长方向上的电场作用下,柱状树枝晶生长表现 为迎流倾斜生长,说明该方向稳衡电场有加强凝固界面前沿液相区的流动效果。如图5所示,此照片是在定向凝固的生长速度r=13. 4μ m/s,温度梯度GT=3. 56k/ mm, 1=0. 5mA的情况下拍摄的,在观察稳恒电场作用下NH4Cl柱状树枝晶的生长形貌时发现电场方向近似垂直于一次臂生长方向。图中白色标尺标定了二次臂尺寸,在电场作用22s后,柱状晶一次臂生长迅速,二次臂尺寸变化不大,说明其生长受到抑制。分析认为,垂直于 凝固方向的电场可提高此方向的温度梯度,促进热流沿一次臂单向散热,从而抑制树枝晶 侧枝生长。电场的热效应在影响枝晶生长方面效果相当明显。图6至图8为NH4Cl晶体在稳衡电场下的结晶过程,加载的电流密度为22mA/mm2, 其中箭头方向为电场强度E的方向,如图6所示,对NH4Cl熔体依次加电断电2次,考察稳衡 电场NH4Cl柱状树枝晶生长的影响规律。从图7及图8中可看出,在图7、图8中,右侧为靠 近熔体中心的一端,靠近溶体边界处NH4Cl晶体在电场作用下以玻璃片为结晶衬底进行了 近似定向凝固,其生长方向近似垂直于电场方向即其一次臂枝晶干与电场方向相垂直。图8 中的晶体在经历22s后,发现其一次臂生长正常,但二次臂在尺寸上却没有多大变化,见图 中的白色标尺。分析认为,在垂直于电场方向即在凝固方向上存在较大的温度梯度,导致枝 晶一次臂沿热流方向正常生长;而在平行于电场方向温度梯度较小,热流较弱制约了二次 臂的生长。然后观察电场方向与温度梯度方向平行的情况
图9是在定向凝固的生长速度r=35. 5 μ m/s,温度梯度GT=3. 96k/mm的情况下拍摄的, 图10是在定向凝固的生长速度r=25.0ym/s,温度梯度GT=3. 96k/mm的情况下拍摄的,如 图9和图10所示,当电场方向与晶体生长方向平行时,丁二腈柱状树枝晶生长同样表现为 个别柱状树枝晶弯曲迎流倾斜生长。与图7和图8相比,电场方向平行时,凝固界面宏观上 不平整,不如电场垂直时整齐划一。枝晶二次臂比在电场垂直时发达。图11和图12为丁二腈合金胞状树枝晶在稳衡电场下的结晶生长过程,图11是在 定向凝固的生长速度r=25.0ym/s,温度梯度GT=3. 73k/mm的情况下拍摄的,图12是在定 向凝固的生长速度r=14.6ym/s,温度梯度GT=3. 73k/mm的情况下拍摄的,由图11可知,无 电场时胞晶生长容易分叉,且胞晶间距较大;施加电场后胞晶生长无分叉,且胞晶间距明显 减小。本发明致力于研制出一种装置,用于将电场作用至定向凝固过程中晶体的生长, 借助现有科技人员关于电场对金属固液界面行为的影响结果讨论,以进一步揭示其对金属 定向凝固时的溶质分配、温度场分布、晶体生长的作用机理。
权利要求
一种电效应驱动凝固结晶过程的装置,其特征在于它包括电场发生系统(101)、恒温水循环系统(102)、结晶器(103)、CCD显微镜(4)、热电阻(5)、通讯仪表(7)、串行通讯口(8)、USB总线接口电路(11)和计算机(12);所述电场发生系统(101)的正极与结晶器(103)的热端相连,电场发生系统(101)的负极与结晶器(103)的冷端相连,恒温水循环系统(102)与结晶器(103)相连通,保证结晶器(103)温度恒定,CCD显微镜(4)设置在结晶器(103)的正上方,并且通过USB总线接口电路(11)与计算机(12)的数据通讯端相连,薄膜铂热电阻(5)预置在结晶器熔区(30)内,并且与通讯仪表(7)的数据输入端相连,通讯仪表(7)的数据输出端通过串行通讯口(8)与计算机(12)的数据通讯端相连。
2.根据权利要求1所述的一种电效应驱动凝固结晶过程的装置,其特征在于所述电场 发生系统(101)包括灵敏电流计(1)和电源(10);所述恒温水循环系统(102)包括熔区冷端恒温水循环系统、熔区垂直电极恒温水循环 系统和熔区热端恒温水循环系统;所述结晶器(103)包括熔区(30)、熔区热端电极插板(29)、熔区冷端电极插板(34)、上 端垂直电极(33)、下端垂直电极(21)、熔区热端传热块(27)、熔区冷端传热块(36)、垂直电 极上端传热管(31)、垂直电极下端传热管(20);所述熔区(30)为带有内部空腔结构的矩形碳酸酯块,所述内部空腔为被上下表面玻 璃片、聚碳酸酯板及熔区冷端电极插板(34)的一个端面、热端电极插板(29)的一个端面所 约束的狭长空间;熔区热端传热块(27)的一个端面与熔区热端电极插板(29)的一个端面对接,熔区热 端电极插板(29)的另一个端面构成了熔区(30)的一个端面,熔区冷端电极插板(34)的一 个端面构成了熔区(30)的另一个端面,熔区冷端电极插板(34)的另一个端面与熔区冷端 传热块(36)的一个端面对接,在熔区(30)内放置透明类类金属合金在垂直于熔区(30)的 温度梯度方向上,且在熔区(30)的另一个侧面设置有下端垂直电极(21),垂直电极上端传 热管(31)设置在上端垂直电极(33)的表面,垂直电极下端传热管(20)设置在下端垂直电 极(21)的表面;所述电场发生系统(101)的电源(10)的正极与熔区热端电极插板(29)相连,电源 (10)的负极与熔区冷端电极插板(34)相连,灵敏电流计⑴串联在电源(10)、熔区热端电 极插板(29)与熔区冷端电极插板(34)组成的电路中;熔区热端恒温水循环系统与电场发生系统(101)的熔区热端传热块(27)连通,熔区冷 端恒温水循环系统与电场发生系统(101)的熔区冷端传热块(36)连通,熔区垂直电极恒温 水循环系统与电场发生系统(101)的上端垂直电极(33)和下端垂直电极(21)连通。
3.根据权利要求2所述的一种电效应驱动凝固结晶过程的装置,其特征在于熔区热端 恒温水循环系统包括熔区热端水浴加热及温控模块(23)、熔区热端加热循环水泵(24)、两 根循环管(25)和熔区热端加热用水浴(26);所述熔区热端传热块(27)和熔区冷端传热块(36)内部均带有马蹄形联通沟槽;所述熔区热端水浴加热及温控模块(23)的温度感应部分浸没在熔区热端加热用水浴 (26)中,一根循环管(25) —端插入熔区热端加热用水浴(26)中,一根循环管(25)的另一 端与熔区热端传热块(27)沟槽的一端连通,另一根循环管(25) —端通过熔区热端加热循环水泵(24)插入熔区热端加热用水浴(26)中,另一根循环管(25)的另一端与熔区热端传热块(27)沟槽的另一端连通,两根循环管(25)组成一个恒温循环系统,保持熔区热端温度 恒定;熔区垂直电极恒温水循环系统包括熔区垂直电极水浴加热及温控模块(18)、熔区垂直 电极加热循环水泵(22)、三根循环管(25)和熔区垂直电极加热用水浴(19);所述熔区垂直电极水浴加热及温控模块(18)的温度感应部分浸没在熔区垂直电极加 热用水浴(19)中,一根循环管(25) —端插入熔区垂直电极加热用水浴(19)中,一根循环 管(25)的另一端与垂直电极下端传热管(20)的一端相连通,另一根循环管(25)的一端与 垂直电极下端传热管(20)的另一端相连通,另一根循环管(25)的另一端与垂直电极上端 传热管(31)的一端相连通,第三根循环管(25) —端通过熔区垂直电极加热循环水泵(22) 插入熔区垂直电极加热用水浴(19)中,第三根循环管(25)的另一端与垂直电极上端传热 管(31)的另一端相连通,三根循环管(25)组成一个恒温循环系统,保持熔区垂直电极温度 恒定;熔区冷端恒温水循环系统包括冷端水浴温控仪表(17)、熔区冷端水冷循环水泵(15)、 两根循环管(25)和熔区冷端恒温水浴(16);所述冷端水浴温控仪表(17)的温度感应部分浸没在熔区冷端恒温水浴(16)中,一根 循环管(25) —端插入熔区冷端恒温水浴(16)中,一根循环管(25)的另一端与熔区冷端传 热块(36)沟槽的一端连通,另一根循环管(25) —端通过熔区冷端水冷循环水泵(15)插入 熔区冷端恒温水浴(16)中,另一根循环管(25)的另一端与熔区冷端传热块(36)沟槽的另 一端连通,两根循环管(25)组成一个恒温循环系统,保持熔区冷端温度恒定。
4.根据权利要求3所述的一种电效应驱动凝固结晶过程的装置,其特征在于循环管 (25)为塑料循环管。
5.根据权利要求2或3所述的一种电效应驱动凝固结晶过程的装置,其特征在于垂直 电极上端传热管(31)和垂直电极下端传热管(20)为紫铜传热管,熔区热端传热块(27)和 熔区冷端传热块(36)为紫铜传热块。
6.根据权利要求3所述的一种电效应驱动凝固结晶过程的装置,其特征在于熔区热端 水浴加热及温控模块(23)由热端加热器(13-1)和热端水浴温控仪表(14-1)组成,所述热 端加热器(13-1)的信号输入端与热端水浴温控仪表(14)的信号输出端相连;熔区垂直电极水浴加热及温控模块(18)由垂直电极加热器(13-2)和垂直电极水浴温 控仪表(14-2)组成,所述垂直电极加热器(13-2)的信号输入端与垂直电极水浴温控仪表 (14-2)的信号输出端相连。
全文摘要
一种电效应驱动凝固结晶过程的装置,涉及一种凝固结晶的装置。解决了现有的用于电场下观测晶体结晶行为的装置不能直观的观测到晶体生长情况的问题,它包括电场发生系统、恒温水循环系统、结晶器、CCD显微镜、热电阻、通讯仪表、串行通讯口、USB总线接口电路和计算机;所述电场发生系统的正极与结晶器的一端相连,电场发生系统的负极与结晶器的另一端相连,恒温水循环系统与结晶器相连通,保证结晶器温度恒定,CCD显微镜设置在结晶器的正上方,并且通过USB总线接口电路与计算机相连,薄膜铂热电阻预置在结晶器熔区内,并且与通讯仪表的数据输入端相连,通讯仪表的数据输出端通过串行通讯口与计算机相连。本发明适用于需要直接观测结晶过程的情况。
文档编号B22D27/02GK101811186SQ201010184719
公开日2010年8月25日 申请日期2010年5月27日 优先权日2010年5月27日
发明者丁宏升, 傅恒志, 姜三勇, 张永, 郭景杰, 陈瑞润 申请人:哈尔滨工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1